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Abstract. The objective of this research is to convert ordinary idle PCs
into virtual clusters for executing parallel applications. The paper intro-
duces VolpexMPI that is designed to enable seamless forward application
progress in the presence of frequent node failures as well as dynamically
changing networks speeds and node execution speeds. Process replica-
tion is employed to provide robustness in such volatile environments.
The central challenge in VolpexMPI design is to efficiently and automat-
ically manage dynamically varying number of process replicas in different
states of execution progress. The key fault tolerance technique employed
is fully distributed sender based logging. The paper presents the design
and a prototype implementation of VolpexMPI. Preliminary results vali-
date that the overhead of providing robustness is modest for applications
having a favorable ratio of communication to computation and a low de-
gree of communication.

1 Introduction

Idle desktop computers represent an immense pool of unused computation, com-
munication, and data storage capacity [1, 2]. The advent of multi-core CPUs and
increasing deployment of Gigabit capacity interconnects have made mainstream
institutional networks an increasingly attractive platform for executing scientific
codes as “guest” applications. Idle desktops have been successfully used to run
sequential and master-slave task parallel codes, most notably under Condor [3]
and BOINC [4]. In the recent past, some of the largest pools of commercial com-
pute resources, specifically Amazon [5] and Google [6], have opened up part of
their computation farms for public computing. Often these computers are very
busy on a few occasions (e.g. Christmas shopping) and underutilized the rest of
the time. This new phenomenon is often referred to as “cloud computing”.

However, a very small fraction of idle PCs are used for such guest comput-
ing and the usage is largely limited to sequential and “bag of tasks” parallel
applications. In particular, we are not aware of any MPI implementation that
is used widely to support execution on idle desktops. Harnessing idle PCs for
communicating parallel programs presents significant challenges. The nodes have
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varying compute, communication, and storage capacity and their availability can
change frequently and without warning as a result of, say, a new host applica-
tion, a reboot or shutdown, or just a user mouse click. Further, the nodes are
connected with a shared network where available latency and available band-
width can vary. Because of these properties, we refer to such nodes as volatile

and parallel computing on volatile nodes is challenging.

This paper introduces VolPEx (Parallel Execution on Volatile Nodes) MPI
that represents a comprehensive and scalable solution to execution of parallel
scientific applications on virtual clusters composed of volatile ordinary PC nodes.
The key features of our approach are the following:

1. Controlled redundancy: A process can be initiated as two (or more) replicas.
The execution model is designed such that the application progresses at the
speed of the fastest replica of each process, and is unaffected by the failure
or slowdown of other replicas. (Replicas may also be formed by checkpoint
based restart of potentially failed or slow processes, but this aspect is not
implemented yet).

2. Receiver based direct communication: The communication framework sup-
ports direct node to node communication with a pull model: the sending
processes buffer data objects locally and receiving processes contact one of
the replicas of the sending process to get the data object.

3. Distributed sender based logging: Messages sent are implicitly logged at the
sender and are available for delivery to process instances that are lagging
due to slow execution or recreation from a checkpoint.

VolpexMPI is designed for applications with moderate communication re-
quirements and is expected to scale to 100s of nodes on institutional LANs. Cer-
tainly many parallel applications will not run effectively on ordinary desktops
under VolpexMPI (or any other framework) because of memory and communi-
cation requirements that can only be met with dedicated clusters. In particular,
for an application to run effectively on volatile nodes, it must have a low com-
munication degree and limited sensitivity to latency. It has been shown that
many scientific applications have a low degree stencil as the dominant communi-
cation pattern [7, 8]. Hence, we believe that many parallel applications are good
candidates and an important goal of this project is to identify the extent of
applicability of this approach.

An example motivating application is Replica Exchange Molecular Dynamics
(REMD) formulation [9] where each node runs a piece of molecular simulation
at a different temperature using the AMBER program [10]. At certain time
steps, communication occurs between neighboring nodes based on the Metropo-
lis criterion, in case a given parameter is less than or equal to zero. REMD
requires low volume loosely coupled communication making it a good candidate
for VolpexMPI. It is currently implemented in the Volpex environment [11] but
not yet ported to MPI.

This paper focuses on the design, implementation and validation of VolpexMPI.
The implementation works on clusters and PC grids. Preliminary results pre-

2



sented for a commodity PC cluster compare VolpexMPI to Open MPI and an-
alyze the overhead of replication and node failure.

2 Fault tolerance in MPI

The MPI specifications are rather vague about failure scenarios. In recent years
MPI implementations have been developed to deal with process and network
failures. Fault tolerant methods supported by various implementations of MPI
can be divided into three categories: 1) extending the semantics of MPI, 2)
check-point restart mechanism, and 3) replication techniques.

FT-MPI [12] is the best known representative of the approach of extension of
semantics for failure managment. The specification of FT-MPI defines the status
of the MPI handles and messages in case of a process failure. FT-MPI has the
ability to either replace a failed process, or continue execution without it. The
library deals only with MPI-level recovery, but lets the application manage the
recovery of user level data items in a performance efficient manner [13], However,
it requires significant modifications to the application, and thus does not provide
a transparent fault-tolerance mechanism.

MPICH-V [14] belongs to the category of MPI libraries that employ checkpoint-
restart mechanisms for fault tolerance. It is based on uncoordinated check-
pointing and pessimistic message logging. The library stores all communications
of the system on reliable media through the usage of a channel memory. In case
of a process failure, MPICH-V is capable of restarting the failed application pro-
cess from the last checkpoint and replay all messages to that process. Similarly
to MPICH-V, RADICMPI [15] also fundamentally relies on checkpointing MPI
processes, but tries to avoid any central instance or single point of failure within
its overall design. Although some of the conceptual aspects of VolpexMPI are
similar to MPICH-V and RADICMPI, there are key architectural differences.
Neither of these two MPI libraries are designed to run multiple replicas of an
MPI process. Thus, while VolpexMPI can continue the execution of an appli-
cation seamlessly in case of a process failure if replicas are available for that
process, MPICH-V and RADICMPI will have to deal with the overhead gener-
ated by restarting processes from an earlier checkpoint. Also, message logging in
VolpexMPI is fully distributed on host nodes themselves and there is no equiv-
alent of channel memories.

MPI/FT [16] provides transparent fault tolerance by replicating MPI pro-
cesses and introducing a central coordinator. The library is able to recognize
malicious data by using a global voting algorithm among replicas. However, this
feature also leads to an exponential increase in the number of messages with the
number of replicas: each replica sends every message to all destination replicas.
VolpexMPI avoids the penalty resulting from this communication scheme by en-
suring that a message is pulled from exactly one sender with receiver initiated
communication. P2P-MPI [17] is also based on replication techniques where each
set of process replicas maintain a master replica that distributes messages. Fault
detection is done using a gossip-style protocol [18], which has the ability to scale
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well and provides timely detection of failures. P2P-MPI also takes advantage of
locality awareness and co-allocation strategies. A key difference is that, unlike
P2P-MPI, VolpexMPI utilizes a pull based model for data communication that
ensures that the application advances at the speed of the fastest replica for each
process.

VolpexMPI also employs replication for fault tolerance. It has been shown,
that check-pointing offers a good solution when failures are infrequent whereas
replication offers better performance when failure rates are high [19]. VolpexMPI
is designed to balance replication and checkpoint-restart, although the current
implementation is limited to replication.

3 VolpexMPI design

VolpexMPI is an MPI library implemented from scratch focusing on fault toler-
ance using process replication. As of today, the library supports around 40 func-
tions of the MPI-1 specification. The design of the library is centered around five
major building blocks, namely the MPI API layer, the point-to-point communi-
cation module, a buffer management module, a replica selection module and a
data transfer module.

The point-to-point communication module of VolpexMPI has to be designed
for MPI processes with multiple replicas in the system. This is required in order
to handle the main challenge of grids built from idle PCs, namely the fact that
processes are considered fundamentally unreliable. A process might go away for
no obvious reason, such as the owner pressing a button on the keyboard. From the
communication perspective, the library has two main goals: (I) avoid increasing
the number of messages on the fly by a factor of nreplicas×nprocesses, i.e., every
process sending each message to every replica, and (II) make the progress of the
application correspond to the fastest replica for each process.

In order to meet the first goal, the communication model of VolpexMPI
deploys a receiver initiated message exchange between processes where data is
pulled by the receiver from the sender. In this model, the sending node only
buffers the content of a message locally, along with the message envelope. Fur-
thermore, it posts for every replica of the corresponding receiver rank, a non-
blocking, non-expiring receive operation. When contacted by a receiver process
about a message, a sender participates in the transfer of the message if it is
buffered, otherwise informs the receiver that the message is not available.

The receiving process polls a potential sender and waits then for the data
item or a notification that the data is not available. As of today, VolpexMPI does
not support wildcard receive operations as an efficient implementation poses a
significant challenge. A straight-forward implementation of MPI ANY SOURCE re-
ceive operations is possible, but the performance would be significantly degraded
compared to non-wildcard receive operations.

Since different replicas can be in different execution states, a message match-
ing scheme has to be employed to identify which message is being requested by a
receiver. For deterministic execution, a simple scheme that timestamps messages
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by counting the number of messages exchanged between pairs of processes is ap-
plied based on the tuple [communicator id, message tag, sender rank, receiver
rank]. These timestamps are also used to monitor the progress of individual pro-
cess replicas for resource management. Furthermore, a late replica can retrieve
an older message with a matching logical timestamp, which allows restart of a
process from a checkpoint.

The buffer management module provides the functionality to store and re-
trieve an MPI message based on the tuple described above. An important ques-
tion is whether the message buffers on the sender processes must be maintained
for the duration of execution or whether they can be cleared at some point. From
the logical perspective, a message buffer can never be cleared due to the fact that,
even if all replicas of a particular rank have received a given message, all of them
might fail to finish the execution. Thus, a new replica of that process might have
to be started, which would have to retrieve all messages. Our current approach
employs a circular buffer where the oldest log entry is removed when the buffer
is full. The long-term goal is to coordinate the size of the circular buffer with
checkpoints of individual processes, which will allow guaranteed restarts with a
bounded buffer size.

In order to meet the goal that the progress of an application correspond to
the fastest replica for each process, the library has to provide an algorithm which
allows a process to generate an order in which to contact the sender replicas.
This is the main functionality provided by the replica-selection module. The
algorithm utilized by the replica-selection module has to handle two seemingly
contradicting goals: on one hand, it would be beneficial to contact the “fastest”
replica from the performance perspective. On the other hand, the library does
not want to slow-down the fastest replica by making it handle significantly larger
number of messages, especially when a message is available from another replica.
The specific goal, therefore, is to determine a replica which is “close” to the
execution state of the receiver process. Currently the library utilizes a simple
approach which groups replicas into ’teams’. A receiver tries to contact the first
the replica within its team, and only contacts a replica of another team if its
own replica does not response within a given time slot. This is, however, a topic
of active research with more sophisticated algorithms in the process of being
implemented.

The data transfer module of VolpexMPI relies on a socket library utilizing
non-blocking sockets. In the context of VolpexMPI, the relevant characteristics
of this socket library are the ability to handle failed processes, on-demand con-
nection setup in order to minimize the number of network connections, an event
delivery system integrated into the regular progress engine of the socket library
and the notion of timeouts for both communication operations and connection
establishment. The latter feature will be used in future versions of VolpexMPI
to identify replicas which are lagging significant.

The startup of a VolpexMPI application utilizes a customized mpirun pro-
gram which takes the desired replication level as a parameter, in addition to
the number of MPI processes, the name of the executable, and a list of hosts
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where the processes shall be started. As of today, the startup mechanism relies
on secure shell operations. However, we anticipate to extend this section of the
code in the near future by customized BOINC or CONDOR functions. mpirun
has furthermore the functionality to inform all MPI processes about their rank,
the team they belong to, as well as the information required by an MPI process
to contact any other process within this application.

4 Experiments and results

This section describes the experiments with the VolpexMPI library and the
results obtained. VolpexMPI has been deployed on a small cluster as well as
pool of desktop PCs. Although VolpexMPI is designed for PC grids and volunteer
environments, experimental results are shown for a regular cluster in order to
determine the fundamental performance characteristics of VolpexMPI in a stable
and reproducible environment. The cluster utilizes 29 compute nodes, 24 of them
having a 2.2 GHz dual core AMD Opteron processor, and 5 nodes having two
2.2GHz quad-core AMD Opteron processors. Each node has 1 GB main memory
per core and network connected by 4xInfiniBand as well as a 48 port Linksys
GE switch. For evaluation we utilize the Gigabit Ethernet network interconnect
of the cluster to compare VolpexMPI run times to Open MPI [20] v1.2.6. and
examine the impact of replication and failure on performance.

First, we document the impact of the VolpexMPI design on the latency and
the bandwidth of communication operations. For this, we ran a simple ping-pong
benchmark using both Open MPI and VolpexMPI on the cluster. The results
shown in Figure 1 indicate, that the receiver based communication scheme used
by VolpexMPI can achieve close to 80% of the bandwidth achieved by Open MPI.
The latency for a 4 byte message increases from roughly 0.5ms with Open MPI to
1.8ms with VolpexMPI. This is not surprising as receiver based communication
requires a ping-pong exchange before the actual message exchange.

Next, the NAS Parallel Benchmarks (NPBs) are executed for various process
counts and data class set sizes. For each experiment, the run times were captured
as established and reported in the NPB with the normal MPI Wtime function calls
for start and stop times. Since VolpexMPI targets the execution of applications
with moderate number of processes, we present results obtained for 8 process
and 16 process scenarios.

Figure 2 shows results for runs of 8 processes (left) and 16 processes (right)
utilizing the Class B data sets for six of the NPBs. We have excluded LU and MG
from our experiments due to their use of MPI ANY SOURCE which is not currently
supported in VolpexMPI. These reference executions did not employ redundancy
(x1). The run times for Open MPI are shown for comparison in the bar graph.
All times are noted as normalized execution times with a reference time of 100 for
Open MPI. The overhead incurred in the VolpexMPI implementation is virtually
non-existent for BT, SP, and EP for the 8 and 16 processes, except that SP shows
a noticeable overhead of 45% for 16 processes. The overhead for CG, FT and IS is
significantly higher due to a variety of reasons, such as a greater use of collective
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Fig. 1. Bandwidth comparison of OpenMPI and VolpexMPI using a Ping-Pong Bench-
mark.

Fig. 2. Comparison of OpenMPI to VolpexMPI for Class B NAS Parallel Benchmarks
using 8 Processes (left) and 16 Processes (right).

calls such as MPI Alltoall(v), and in the case of IS, a ratio of computation
to communication which is unfavorable to higher-latency environments. This
also documents the fact that the class of applications considered suitable for
execution with VolpexMPI have to follow a sparse communication scheme, i.e.,
a process should optimally only communicate with a small number of other
processes, and should have a favorable communication to computation ratio.
These requirements broadly hold for BT, SP and EP, but not necessarily for
CG, FT and IS.

Next, we document the effect of executing an application with multiple copies
of each MPI process. The left part of Figure 3 shows the normalized execution
times of VolpexMPI for the 8 process NPBs running with no (same as sin-
gle) redundancy (x1), double redundancy (x2) and triple redundancy (x3). The
results indicate that, for most benchmarks the overhead due to redundant exe-
cution is minimal if no failure occurs, i.e. executing multiple copies of each MPI
processes does not impose a significant performance penalty in the VolpexMPI
scheme/model. Note, that this is a significant improvement over the replication
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based related work in the field. The benchmarks that show some sensitivity to
replication are CG and SP, and the reasons are currently under investigation.
Since Open MPI is not designed for utilizing redundant nodes, there are no di-
rectly comparable results for the double redundancy (x2) and triple redundancy
(x3) runs.

Fig. 3. Comparison of VolpexMPI execution times for 8 MPI processes with varying
degree of replication (left) and in case of a process failure (right).

Finally, we document the performance impact of a process failure for the
NAS Parallel Benchmarks when using VolpexMPI. For this, we inserted into the
source code of each benchmark some statements which terminate the execution
of the second replica of rank 1 in MPI COMM WORLD, emulating a process failure. All
processes communicating with the terminated process will thus have to repost
all pending communication operations to the only remaining replica of process 1.
This test case represents one of the worst case scenarios for VolpexMPI, since the
number of processes communicating with a single process doubles at runtime.
Killing more than one process would actually relieve the remaining processes
with rank 1, since the number of communication partners is reduced.

The results shown in the right part of Figure 3 show virtually no overhead
in the scenario outlined above compared to the fault-free execution of the same
benchmark using double redundancy. There are two potential sources for over-
head. The first comes from the fact that the surviving process with rank 1 is
being queried for data items by the second “team” of processes. Second, de-
tecting the process failure is as of today based on a timeout mechanism or the
break-down of a TCP connection. However, since the correct result of the simu-
lation is available as soon as any replica of each process finishes the execution,
these overheads might not necessarily show up in the final result.

5 Conclusions

This paper introduces VolpexMPI, an MPI library designed for robust execution
of parallel applications on PC grids. The key design goal is efficient execution
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with replicated processes. The library employs a receiver based communication
model between the processes, and a distributed, sender based message logging
scheme.

We demonstrated with a prototype implementation the necessity to focus on
the right class of applications for Volpex MPI, namely those with a favorable
communication to computation ratio and a modest degree of communication.
Benchmarks having the required characteristics show only a minor overhead
compared to a standard MPI library. More important, utilizing multiple replicas
for each process does not impose a notable overhead for the majority of the NAS
benchmarks. Also, the NAS Parallel Benchmarks analyzed could successfully sur-
vive a process failure without suffering a major performance degradation. Hence,
the central functionality and performance goals for VolpexMPI are satisfied.

The ongoing work on VolpexMPI includes developments in algorithms and
execution environment. We are working on integrating checkpoint-restart with
Volpex-MPI to dynamically manage replication by recreating slow and failed
replicas from healthy replicas. We also plan to deploy and evaluate VolpexMPI on
a large campus PC grid. Currently CONDOR and BOINC are being investigated
as vehicles for integrated deployment.

We are investigating several applications as candidates for execution on PC
clusters and building simulation tools to rapidly assess the suitability of an appli-
cation for Volpex-MPI. In particular, we are in active discussions with a research
group at the University of Houston which develops the Replica Exchange Molec-
ular Dynamics (REMD) application [9]. The memory and compute requirements
of this application combined with its low but important communication require-
ments make the application ideally suited for VolpexMPI.
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