Logicalization of Communication Traces from
Parallel Execution

Qiang Xu', Jaspal Subhldk Rong Zheng and Sara Vos$
{qgiang.xu@cggveritas.com, jaspal@uh.edu, rzheng@uhssdasvoss@gmail.cam

*CGGVeritas, 10300 Town Park Drive, Houston, TX 77072
fDepartment of Computer Science, University of Houston, $ton, TX 77204
iCoe College, Cedar Rapids, lowa 52402

Abstract—Communication traces are integral to performance of a global communication topology (e.g a 2-D torus). We
modeling and analysis of parallel programs. However, exedion definelogicalizationas the process of converting a family of
on a large number of nodes results in a large trace volume that physical process traces into a single logical trace. Thiepa

is cumbersome and expensive to analyze. This paper preseras ¢ f K f t fi tructi f a Idai
automatic framework to convert all process traces correspoding presents a iramework for automatic construction of a ldgica

to the parallel execution of an SPMD MPI program into a Program trace from the collection of physical process sace
single logical trace. First, the application communicatim matrix ~ generated by an execution of an MPI message passing parallel
is generated from process traces. Next, topology identifitian application.

is performed based on the underlying communication structue For illustration, consider the following sections of trace

and independent of the way ranks (or numbers) are assigned to from a messade exchande between 4 bprocesses in a 1-
processes. Finally, message exchanges between physicakcpsses g g P

are converted into logical message exchanges that represeim- dimensional ring topology.
ilar message exchanges across all processes, resulting itrace

volume reduction approximately equal to the number of proceses
executing the application. This logicalization frameworkhas been
implemented and the results report on its performance and

effectiveness.
1

Process 0 Process 1 Process 2 Process 3

snd(P1,..) snd(P2,..) snd(P3,..) snd(PO,..)
rcv(P3,...) rcev(PO,...) rev(Pl,...) rev(P2,..)

These can be summarized as the following logical trace:
I. INTRODUCTION

Execution and communication traces are central to perfor-Program

mance analysis and performance modeling of parallel appli-*

X . o sndPg,...)
cations. However, for long running applications on moderat P
to large number of nodes, even relatively coarse grainedrcv(L)
communication traces can be very long and their analysis ™ . . .
prohibitively expensive. Fortunately high performance- sc where P, and Py are the logical left and right neighbor,

entific applications are dominated Istencil computations respe(.:(tjlvelyafor. ea::hh p;rocess_ mt? 1'? rltng t?DOIOQy' imatel
where the computations, and hence the traces, are simiapes' € reducing the trace size by a factor of, approximately

for all processes and the communication corresponds tot g number of processes, !oglpallzatlon also cgptqres the
grallel structure of the application. Note that logicalian

fixed stencil (or template) where each process communicatB . S .
(plate) b orthogonal totrace compressignwhich is based on dis-

with a specific set of processes relative to a well definécﬁ ering repeating patterns within a single logical or i
global communication pattern, such as a 2-D torus or guenng repeating p withi Ny gl s

(Srsace. This paper focuses on trace logicalization, althdtegre

Alamos National Labs [9] and NAS benchmarks [14] ShOW%ompression and logicalization are often employed togetise
in,the context of this work, the construction of performance

that the communication in most of these codes is dominated

by a single low degree stencil pattern. These charactaist?kdetons’.d's.cus.sed in Section Il.
s T . The logicalization framework has been developed for MPI
expose the possibility of combining all processor tracds in

. : . inB[ggrams and proceeds as follows. The application is linked
a single representative trace - in the same way as a sm\%. .
ith the PMPI library so that all message exchanges are

SPMD program represents a family of processes. We defirnec:orded in a trace file during execution. Summary infororati
a logical trace as a single aggregate trace that represents 15& Y) y

execution and communication of a parallel program, with akcr;lzn&stlng of the number of messages and bytes exchanged

: : : . tween process pairs is recorded and converted to a binary
message sends and receives to/from a logical neighbomister = " "~ . o)) o .
application communication matrithat identifies process pairs

1Appears in 2009 IEEE International Symposium on Workloadu@bter- with S'gn'f_'cant message t.rafflc. This matrix _'S then anatlyze
ization to determine the application level communication topology

matrix. For example, a 2D torus stencil topology is
possible only if all processes have 4 communicating
neighbors. Hence if there is any process with more
or less than 4 communicating neighbors, this topology
is eliminated. Of course, not every topology where all
processes have 4 neighbors is a torus. In our method, a
series of such tests are applied, from simplest to more
complex as a decision tree, to reduce the set of possible

a b .) .

@ (b) candidate topologies. The tests are based on matching
Fig. 1. Isomorphic graphs generated with different processberings for the following: number of nodes and edges, sorted list
a simple 2-D grid topology of node degrees, and graph spectrum represented by the

eigenvalues of the adjacency matriiypically very few
candidate topologies are left after this step, but even if
it is just one, a match is not proved.

Exact topology matchThis involves proving that the
application communication graph is isomorphic to the
corresponding reference topology graph. While graph

Once this global topology is determined, a representative
process trace is analyzed in detail and transformed into 3
logical program trace with endpoints of all message sends an
receives converted from physical process numbers to velati
logical process numbers in terms of the application level isomorphism is known to be a difficult problem with no
communication topology. o _ S known polynomial solution, practical algorithms exist
The key algorithmic challenge in this work is the identi- which can solve the problem efficiently for many sce-
fication of the application communication topology from the narios [12]. Also, the size of the problem to be solved is
application communication matrix which represents therint relatively modest as it corresponds to the number of pro-
process communication graph. The communication topology esses. We employ the VF2 graph matching algorithm

is easy to identify if the processes are assigned numbers .om VEIib2 library [2], [4] to establish an exact match
(or ranks) in a well defined order, but is a much harder \ith a candidate reference topology.

problem in general. This is illustrated with a very simple o . .

I X . After the communication topology is established, a repre-
example in Figure 1. The figure shows 9 executing processes , .. : ;
o . 2 . Séntative process trace is transformed to a logical program

within a 2D grid communication topology. In Figure 1(a : . . ;
. : ' race. The paper describes the design and implementation of
the processes are assigned numbers in row major order,n = . . ' 4 _
: . . the logicalization framework, along with experimentaluks
terms of the underlying 2D grid. However, if the processes .’ i Lssion
were numbered diagonally as indicated in Figure 1(b), the '

communication graph with process nodes laid out in row major [I. MOTIVATION AND CONTEXT
order would appear as Figure 1(c). Clearly, the underlying the results developed in this paper have broad applica-
topology is easy to identify in the scenario represented fin in performance modeling, workload characterizatio
Figure 1(a) by a pattern matching approach but much hardg{y jehugging of message passing parallel programs. The
when process numbering follows an unknown or arbitrayeific context and usage of this research is construcfion o
order, a simple instance of which is the scenario repredeénte o jication performance skeletons for performance ptiedic
Figure ;(c). The state of the. art in identifying commumoatl A performance skeleton is a short running program that
topologies assumes that a simple known numbering schemedsres the fundamental computation and communication
followed [9]. _ . characteristics of an application. Monitored executionaof
_ Identifying the underlying topology from a communicaperformance skeleton in a new environment (e.g, different
tion graph in general (i.e., without assuming any numbering,mber of nodes, different communication library, or diéet
schc_eme) is d|ff|c_ult _for two reasons. Flrst,_establlshlng Pﬁetwork sharing) is employed to rapidly estimate the per-
a given communication graph matches a given topology fi§rmance of the application (and the type of workload the
equivalent to solving the well knowmraph isomorphism appjication represents) in a new environment. The basie pro
problem for which no polynomial algorithms exist. (It iS NOkedure for construction of performance skeletons consists
known if it is NP-complete). Further, there are many différe co|lection and compression of application traces follovogd
types of topologies (different stencils on graph/toruses; the generation of an executable program that recreatesthe ¢
etc.) and many instantiations within each topology typg.(€. application behavior. The steps in the skeleton constncti
different number and sizes of dimensions). A naive meth@glocedure are outlined in Figure 2. A framework for scalable
would require solving the graph isomorphism problem folreagyeleton construction has been developed and the effaetige
instance of each candidate topology, which is computalipnagf performance skeletons for performance prediction have
infeasible. Our approach has the following main steps: been evaluated [19], [13].

1) Identification of candidate topologieSimple tests exist ~ The highlighted logicalization step in Figure 2 is the focus

that can eliminate the possibility that a given topologgf this paper and discussed in detail in the following sec-
could be a match for a given application communicatictions. Table | presents summary results from twnbined

APPLICATION

‘ Record execution trace for each process ‘

Construct executable
performance skeleton program

I Logicalize process traces into a single program trace I

~

h

‘ Compress the program trace by identifying the loop structure

Fig. 2. Skeleton construction procedure

logicalization and compression phases for 16 process N
benchmarks. The trace length is measured as the numbe
trace records (or lines), each representing one MPI operati
The logical trace is approximately the same size as a sin
process trace, hence the compression achieved in Iogi'eali{_h
tion equals the number of processes. The compression ratio
presented in Table | is the ratio of the size of full logicade
to the final compressed logical trace. Clearly the approach;
effective in reducing a family of raw MPI traces to a sho
single compressed logical trace. The compression proeed
and performance results are presented in detail in [20].

COMBINED TRACE LOGICALIZATION AND COMPRESSION RESULTS

visualization is clear from the popularity of tools like Vam

[1l. RELATED WORK
The importance of MPI traces in program analysis and 2) ldentification of the application communication topofog

Benchmark| Raw Trace | Compressed| Compression
Name Length Logical Ratio
Per Process Trace Length
BT B/C 17106 44 388.77
SP B/C 26888 89 302.11
CG B/C 41954 10 41954
MG B 8909 590 15.1
MG C 10047 648 15.5
LUB 203048 63 3222.98
LU C 323048 63 5127.75
Average 71695 165 1815.39
TABLE |

I

consolidation of compressed traces that they refer to &s-int
node compression. An important difference is that we perfor
logicalization (or inter-node compression) first on praces
traces, and subsequently perform trace compression. Since
trace compression is performed only on a single logical
program trace in our approach, we can use more effective
compression procedures even if they are more expensive [19]
[20]. Also, the logicalization procedure we employ is more
general, independent of process numbering, and evaluated
more thoroughly. On the other hand, our scheme as presented
does require recording of the trace for every process wisieh i
concern for scalability. This is discussed further in SatiI.

We have borrowed part of our pattern identification method-

Rg)gy from Kerbyson et.al. [9]. In this work, a point-to-

P%ipt communication matrix is developed from application
execution and the degree afatchwith a set of predefined
cemmunication templates, representing regularly ocuegrri
ommunication patterns in scientific applications, is mead.

eir method assumes that the nodes are numbered in a
reasonable” way, e.g., along the rows or columns for a 2-D
rid. The basic goal of our approach to topology identifmati

s similar. However, more complex processing steps, that
|L|j‘1rclude eigenvalue and graph isomorphism computatiors, ar
necessary to identify communication patterns with no agsum
tions about the numbering of processes. Also, the motinatio
in this work is to understand the communication patterns in
an application while our goal is to convert a suite of process
traces into a single program trace.

An important limitation of the current framework is that the
input trace must represent a relatively static commurocati
pattern. This is known to be the case for many scientific appli
cations [16], [9], [14]. A parallel application can have gka
that show different communication behavior. Identificatiof
phases at different levels of granularity has been studied i

related work, such as [3], [11], [8].

IV. LOGICALIZATION METHODOLOGY

The trace logicalization procedure has the following main
steps:
1) Generation of a binary application communication ma-
trix from application process traces.

from the communication matrix.

pir [1] and Jumpshot [18]. Several tools have been developed) Generation of a single logical program trace from a

to perform statistical analysis of MPI communication bebav

selected physical trace and topology information.

to summarize the execution behavior, an example being [15].Each of these steps is presented separately in this section.
The idea of communication/adjacency matrix for trace anathe central assumption in our current implementation i$ tha
ysis for parallel programs was introduced in [6], [7]. TheYhere is a dominant regular communication pattern in theetra

used communication matrices to discover the logical togplo being processed, else no topology is identified.
employed in MPI and PVM applications to develop a parallel

program debugger that exploits topological informatiomr O A- Generation of application communication matrix

work can be considered a generalization of the approach withFor generation of a physical trace, the target MPI applbcati

efficient detection of isomorphism.
Perhaps the work closest to this paper is the scalable traeeording of communication operations through user predid

compression presented in Noeth et. al. [10]. They perforfunctions. During execution a trace file is generated foheac

task (or process) level compression on-the-fly, followed kyrocess. Attributes recorded for each MPI call include ypet

is linked with the PMPI library, which allows lightweight

of call, the rank of the source/destination process, and thmph to match withis a non-trivial one. Second, for a graph
number of bytes transferred, along with timing informatiorrepresenting a topology, numbering of vertices is not ugiqu
This information is utilized to generate fll application Different numberings of graph vertices correspond to cififi
communication matrix The matrix records the total datapermutations of the rows and columns of its adjacency matrix
transferred between each pair of processes involved in #heimple comparison of an application communication matrix
execution. with a communication matrix corresponding to a reference

The next objective is to convert the full communication maepology is not sufficient antsomorphisnbetween the graphs
trix to abinary application communication matriwhere pairs represented by the matrices must be established. Two graphs
of processes wittsignificant communicatioare represented G and H with graph verticed,, = {1,2,...,n} are said to be
by 1 and pairs of processes with no communication or veigomorphic if there is a permutatignof V,, such that{u, v}
low communication are represented by 0. This is achievéslin the set of graph edges(G) iff {p(u),p(v)} is in the
by threshold basedommunication filtering Most parallel set of graph edge®&(H). No polynomial algorithm exists to
scientific applications show a distinct dominant communicaetermine if two graphs are isomorphic although the problem
tion pattern, typically a simple stencil. However, occasib is not known to be NP-complete.
minor communication is sometimes recorded between otherThe approach taken to topology identification attempts to
processes. This can be inherent in the algorithm or due rtonimize the use of potentially expensive graph isomonphis
other reasons, such as distribution and collection of datfaea analysis. It consists of two phases, i) determining cartdida
beginning and end of execution. Very low level communiaatigpatterns in the reference library and ii) determining ancexa
(in terms of number of calls and volume of data exchangeaiatching to a reference topology.
is eliminated as the procedure focuses on capturing, andrhe first step is to reduce candidate patterns based on-nvari
later recreating, the dominant application charactesstA ants that must hold for isomorphic graphs. It is widely bedig
heuristic threshold of 5% of average communication was usgtht there is no simple-to-calculate complete graph iawdyi
for the generation of the binary communication matrix frome., there are simple-to-calculate invariants that haiwss all
the full communication matrix in our experiments. isomorphic graphs, but there also exist non-isomorphipluyga

As a simple example, the full communication matrix angvhich have the same set of invariants. Hence, graph invarian
the binary communication matrix for the 8 process NAS M@annot be employed to establish isomorphism, but they can
benchmark are shown in Table II. Filtering was necessary foe utilized to narrow down the reference patterns that are
discovering the main communication pattern in some sizes @dtential matches. To compute candidate reference paftern
the MG benchmark, but not for any of the other benchmarksie following attributes of an application gragh(V, E) are
The full communication matrix and the binary communicatiosxamined:
matrix after filtering for 16-process MG t_)enphmark are shown 1) Number of verticesV|
xit':']atlﬂg :lé;hso\;gmumneic(:ti?r? communication not ass(())mated 2) Number of edge$®|

i X pattern was around 0.5% com-3) Node degree in descending order

pared to the main communication pattern.

This filtering_ st_ep makes the overall Iogicaliza_tion praces adjacency matrix.
lossy, when it is invoked. An accuracy measure in the frame-

work quantifies the extent of low volume communication th(_&learl){, the numper of edges and vertices, as well qs the,ﬂ'St
is eliminated. However, the impact of eliminating a sma[l°des in ascending order of node degree, must be identical fo
communication step on the end application of this work, sucfPmerphic graphs. Itis also known that the set of eigerealu
as performance modeling, is difficult to judge and beyond 4 the adjiacency matrices of isomorphic graphs are identica
scope of this paper. However, it has been analyzed with Hgnce, if any of these quantltles_do hot match for a pair of
end to end performance prediction framework that emplo%aphs' they cannot be isomorphic.

4) Graph spectrumA(G), the set of eigenvalues of the

logicalization [19]. Clearly the first three quantities are very simple to compute
The complexity for computing\(G) is O(n?) using the
B. Topology identification Gauss-Jordan reduction. Several solver packages exist for

The procedure in the previous section yields a binary appfPmPuting eigenvalues for sparse matrices [5]. In detengin
cation communication matrix. We now present a procedure f3¢ candidate reference patterns, we adopt a decision tree
determine if this application communication matrix rerets Pased approach that eliminates most patterns efficiently by
an instance of a topology such as a stencil, tree or anotﬁé‘ﬂploy'ng invariants in increasing order of computational
pattern that is part of a reference library. This is a chaiieg COMPplexity.
problem for two major reasons. First, each type of pattes ha 1) Nodes, edges and prime factotet the number of
numerous instances. For example, a 2-D grid is an instance vertices of the graph to be match€dbe|V| = n. Letm

of a grid pattern, and it represents a differéntx Y grid for be the maximum dimension of the Euclidean structures -
every distinct pair(X,Y’). The number of instances can be graphs, tori and stencils based on them - in the reference
large even when the total number of proces&esY is fixed library. The first step is to factorize into products of
because of different factorizations. Thus, the questionto€h the formng-ny - - - n,, [21]. This prime factor analysis is

KBytes | PO [PL | P2 | P3| P4 | P5 | P6 | P7 PO PL][P2 P3| PA[P5[P6[P7
PO 0 141|144 0 148 0 0 0 PO | O 1 1 0 1 0 0 0
P1 141 0 0 144 0 148 0 0 P1 1 0 0 1 0 1 0 0
P2 144 0 0 141 0 0 148 0 P2 1 0 0 1 0 0 1 0
P3 0 144 | 141 0 0 0 0 148 - P3 0 1 1 0 0 0 0 1
P4 148 0 0 0 0 141 | 144 0 P4 1 0 0 0 0 1 1 0
P5 148 © 0 0 141 0 0 144 P5 | 1 0 0 0 1 0 0 1
P6 0 0 148 | 0 1441 0 0 141 P6 | 0 0 1 0 1 0 0 1
P7 0 0 0 148 0 1441 0 141 P70 0 0 1 0 1 0 1
TABLE I
FuLL APPLICATION COMMUNICATION MATRIX (TRAFFIC IN KBYTES/SEC) AND BINARY APPLICATION COMMUNICATION MATRIX FOR 8 PROCESIMG
BENCHMARK
PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 | P11 P12 P13 P14 P15
P2 | 89.09 0 0 87.09 0 0 91.19 0 0 0 0 0 0 0 91.19 0
P3 0 89.09 | 87.09 0 0 0 0 91.19 0 0 0 0 0 0 0 91.19
P4 | 91.21 0 0 0 0 87.09 | 89.10 0 91.23 0 0 0 0 0 0
P5 0 91.21 0 0 87.09 0 0 89.10 0 91.23| 0 0 0 0 0
PO| P1| P2 P3| PA|P5|P6]| P7|P8| PO| PIO| P11]| P12 | P13 | P14 | P15
P2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
P3| O 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1
P4 | 1 0 0 0 0 1 1 0 1 0 0 0 [a 0 0 0
P51 0 1 0 0 1 0 0 1 0 1 0 0 0 [o] 0 0
TABLE IlI

SECTIONS OF FULL AND BINARY COMMUNICATION MATRIX (TRAFFIC IN KBYTES/SEC) FOR16-PROCESIMG BENCHMARK. THE HIGHLIGHTED
ENTRIES ARE SMALL VALUES THAT ARE ELIMINATED BY FILTERING.

applied for the Euclidean patterns to arrive at a subset ofThe VF2 algorithm takes a bottom-up approach [4]. It tries
reference graphs; = {G},G3,. .., Glll}, which have to extend an existing mapping of nodes and edges until a full
the same number of edges @s mapping is reached, starting from the empty mapping. This
2) Degree orderingn the second step, we order the verteis equivalent to a depth-first search in the tree of all pdssib
degrees ofg € S; in descending order and eliminatepermutations where branches that cannot lead to a feasible
those with different sequences. Let the resulting subsslution are pruned early.
be S, = {G},G3,...,GL}.
3) Computing graph spectrurAs the final step, we com- , o L .
pute the graph spectrum of(G) and A(g), Yg € S The logical communication trace of an application exeautio

and eliminate those with different graph spectrum. g similar to the physical communication trace generateshat
the resulting subset hs; = {G2, G3 G5} execution node, except that all communication events tefer
Gy

neighbors in a logical topology instead of a physical preces

By the end of this procedure, we may be left with a singlgumber (or rank). For presenting the logical trace genmmati
candidate topology but cannot conclude that it is the matchgrocedure, we assume that the application communication
topology. The invariants employed can eliminate a patteffpology has been established.
from consideration but do not guarantee a match. We first define the set ahaximal communicatioprocesses

We apply a graph isomorphism algorithm to determinf®r a communication topology, as the set of processes thvat ha
whether application communication gragh matches with all possible communication neighbors within the patteror. F
any of the graphs in the candidate $gt While there are no fully symmetrical communication patterns, e.g 2D torus or
known polynomial algorithms for graph isomorphism, effitie All-All, all processes are maximal communication procssse
and practical solution approaches exist. We chose the VFlHowever, that is not the case for asymmetrical communinatio
2.0 graph matching library [2], developed at the Universitgatterns. For example, for a 2D grid pattern, all processes
of Naples “Federico II”. VFLib2 implements the VF2 graphexceptthe processes on the perimeter of the grid pattern (i.e.
matching algorithm along with a few other algorithms infirst and last rows and columns) are maximal communication
cluding Schmidt-Druffel algorithm and Ullmann’s algonith processes as the interior processes have 4 neighbors,thdile
We chose VFIib2 library, in part, because of the ease pkrimeter processes have 2 or 3 neighbors.
integration with C++ programs. Evaluation studies showt tha For every application communication topology with
the VF2 algorithm can solve a graph isomorphism problem af maximum of £ communicating neighbors, we define
thousands of nodes in less than a minute [2]. A compariséh, D5, D3,...D;, as the set of logical neighbor pro-
of different graph isomorphism algorithms is given in [12]. cesses/directions. For illustration, for a 2D grid or torus

C. Generation of logical execution trace

structure,k = 4 and Dy, Do, D3, D4 intuitively represent We will not discuss the results from the FT benchmark any
North, East, South, West neighbors respectively. further.

We now describe the process of generating the logical com-The matching procedure was then applied to the bench-
munication trace from physical traces and a known appbocatimarks. The reference library employed for comparisonahti
communication topologyD with maximum communication consisted of the following patterns:

degreek. « Grids: Any number of dimensions
1) Identify one maximal communication process, say « Torus: Any number of dimensions
2) Let i1,19,13,...ix be the ranks of the processdy « Common stencils (6pt, 8pt) on 2D/3D meshes
communicates with. o All to All

3) Rewrite the trace oy by replacing all references to « Binary Tree

i1, 49,13, ..ix_IN communication operations with corre- Nt that the topologies listed are abstract and repregient a

sponding references 1, Dz, Dy, ... Dy , respectively. gjzes and dimensions. Also, it is fairly straightforwardaitd

This is the logical trace. a new topology to the library. Hypercubes are not listed as

The logical trace represents the entire program executigiey are special cases of a torus or a grid configuration.,Also

and is interpreted with the corresponding communicatiqRe CG benchmark originally did not match any topology in
topology. If a neighbor does not exist for a particular dil@t the reference library. The topology of CG (a 3 point stencil)
for a process number, (e.g., théorth neighbor for a process was manually analyzed and added to the library. The results
in top row of a grid), corresponding communication does n@kesented include this addition.
exist either. Finally, all collective operations are rata from The matching procedure consists of 3 distinct steps based on
the physical trace to the logical trace - collective opersi the description in Section IV-B, i.eSimple Test$o eliminate

are already global logical operations across the gxecutiﬁg)st topologiesGraph Spectrum Tesbased on computing
processes in the curreMPI COMMWORLDcommunicator ejgenvalues, and finalllsomorphism Tedb establish a topol-

and no change is needed. ogy.

A section of physical and corresponding logical traces for Taple V lists the topologies that remain as candidates after
the 16-process BT benchmark are shown in Table IV. Note theich of the tests is applied, along with the final established
the directions are labeled as North, South, etc. for ilat&in topology. We discovered that many topologies in our abstrac
and are actually indices in a general topology matrix. lists are themselves isomorphic to each other. In Table Weve
Communication outside the main topologyny communica- uynique topology is irboldface All topologiesnotin boldface
tion operation in the physical trace that references a Bc@nd listed below one in boldface are isomorphic to the bakifa
rank not in the established topology is not included in tfee Iotopology above them. Note that BT and SP benchmarks have
ical trace as corresponding operations do not exist ach®ss fgentical communication graphs and topologies and aredist
parallel application. In fact, whenever communicatiorefittg together.
discussed in section Il is applied, such local communizati \\e make the following observations from Table V:
is present in the physical trace for some of the processes. I\ yonehmarks in our test suite were matched correctly
our implementation we record the fraction of communication !

that falls in thi ¢ d it : i t although CG was matched only when a custom stencil
apa:ar:ashm is category and report it as an inaccuracyis was added. The topology of SP and BT is a 6 point stencil

on a 2D grid (i.e. NE and SW neighbors in addition to
V. EXPERIMENTS AND RESULTS N E W S), and for LU, CG, and MG, the topology is a

The framework for application pattern identification and gr|d_or a torus_. In_fact, MG_has a hypercupe structure up
trace logicalization has been implemented. Experimentg we to size 64 which is a spemal_case of a gridftorus. L
conducted with MPI NAS benchmarks EP, MG, SP, BT, LU, * The simple tests that we listed are very effective in
CG, and FT executing with up to 128 processes on a cluster. reducing the set (?f candidate patterns. In all cases a very
We discuss the results for the benchmarks executing on }, 8(9 small set of candidate patterns were left after these tests

16 , 32(36) , 64 and 128(121) processes. (Some benchmarks were employed. ,)
run only on perfect square numbers of processes.) « The graph spectrum test was also effective, and in fact,
eliminated all candidates except for the final correct

A. Topology identification topology. However, since the isomorphism test also must

A full application communication matrix was generated b€ employed, its value is unclear.
for each program and then converted to a binary commu-Traces for the benchmark programs were converted to
nication matrix based on the discussion in Section Ill. THegical traces. For all benchmarks except MG, each commu-
FT benchmark and EP benchmark showed no point-to-poiitation call in the trace was directly mapped to a logical
communication and hence an empty communication matridall within the program’s communication topology implying
The EP benchmark indeed has no communication. The Bé&rfect “accuracy”. In the case of MG, a low volume of com-
benchmark only has collective All-All communication whichmunication could not be mapped to the application topology,
implies that the physical trace is essentially the logicaté. as a consequence of filtering discussed in Section IV-A, and

PHYSICAL

TRACE

MPI_Isend(...1, MPI_DOUBLE, 480, ...)
MPI_Irecv(... 3, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */
MPI_Wait() /* wait for Irecv */

MPI_Isend(...4, MPI_DOUBLE, 480, ...)
MPI_Irecv(..12, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */
MPI_Wait() /* wait for Irecv */

MPI_Isend(...7, MPI_DOUBLE, 480, ...)
MPI_Irecv(..13, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */
MPI_Wait() /* wait for Irecv */

LOGICAL
MPI_Isend(..EAST, MPI_DOUBLE, 480, ...)
MPI_Irecv(.. WEST, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */

MPI_Wait() /* wait for Irecv */

MPI_Isend(..SOUTH, MPI_DOUBLE, 480, ...)
MPI_Irecv(..NORTH, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */

MPI_Wait() /* wait for Irecv */
MPI_Isend(..SOUTHWEST, MPI_DOUBLE, 480, ...)
MPI_Irecv(..NORTHEAST, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */

MPI_Wait() /* wait for Irecv */

TRACE

TABLE IV
SECTIONS OF A SAMPLE PHYSICAL TRACELEFT) AND CORRESPONDING LOGICAL TRACHRIGHT) FOR THEBT BENCHMARK. THE TRACE IS SANITIZED
FOR THE PURPOSE OF ILLUSTRATION

8x4x2x2 torus
8x4x4 torus

8x4x2x2 torus
8x4x4 torus

Code | #P Simple Tests Graph Spectrum Isomorphism
9 3x3 6-p stencil 3x3 6-p stencil 3x3 6-p stencil
16 4x4 6-p stencil 4x4 6-p stencil 4x4 6-p stencil
BT 36 6x6 6-p stencil 6x6 6-p stencil 6x6 6-p stencil
SP 4x3x3 torus
2x2x3x3 torus
64 8x8 6-p stencil 8x8 6-p stencil 8x8 6-p stencil
2x2x2x2x2x2 grid
4X2Xx2X2X2 torus
4x4x2x2 torus
4x4x4 torus
121 | 12x11 6-p stencil 11x11 6-p stencil 11x11 6-p stencil
8 4x2 grid 4x2 grid 4x2 grid
CG stencil CG stencil CG stencil
LU 16 4x4 grid x4 grid 4x4 grid
32 8x4 grid 8x4 grid 8x4 grid
64 8x8 grid 8x8 grid 8x8 grid
128 | 16x8 grid 16<8 grid 16x8 grid
8 4x2 grid 4x2 grid 4x2 grid
CG stencil CG stencil CG stencil
CG 16 CG stencil CG stencil CG stencil
8x2 grid
32 CG stencil CG stencil CG stencil
8x2x2 grid
64 CG stencil CG stencil CG stencil
16x2x2 grid
128 | CG stencil CG stencil CG stencil
16x2x2x2 grid
8 2x2x2 grid 2x2x2 grid 2x2x2 grid
4x2 torus 4x2 torus 4x2 torus
MG 16 2X2x2x2 grid 2xX2x2x2 grid 2X2x2x2 grid
4x2x2 torus 4x2x2 torus 4x2x2 torus
4x4 torus 4x4 torus 4x4 torus
32 2x2x2x2x2 grid 2x2x2x2x2 grid 2x2x2x2x2 grid
4Xx2X2x2 torus 4x2x2x2 torus 4Xx2X2x2 torus
4x4x2 torus 4x4x2 torus 4x4x2 torus
64 2X2X2X2x2x2 grid | 2x2x2x2x2x2 grid 2x2x2x2x2x2 grid
4X2X2X2X2 torus | 4x2x2x2x2 torus | 4x2x2x2x2 torus
4x4x2x2 torus 4x4x2x2 torus 4x4x2x2 torus
4x4x4 torus 4x4x4 torus 4x4x4 torus
8x8 6-p stencil
128 | 8x2x2x2x2 torus 8x2x2x2X2 torus 8x2x2x2x2 torus

8x4x2x2 torus
8x4x4 torus

TABLE V
IDENTIFICATION OF COMMUNICATION TOPOLOGIES EACH UNIQUE
TOPOLOGY IS IN BOLDFACE TOPOLOGIES NOT IN BOLDFACE ARE
ISOMORPHIC TO THE BOLDFACE TOPOLOGY ABOVE THEM

was discarded.

B. Performance

1) Processing time for NAS benchmark$he sizes of
the traces for the NAS benchmark programs and the total
time to logicalize them is listed in Table VI. A trace record
corresponds to a traced MPI call. Since tracing employed is
fairly lightweight, trace sizes are modest and the tracivgr-o
head within 1% of the execution time for all the benchmark
programs. The longest trace was just under 200K records
and around 10 MBytes per process for the 128 process LU
benchmark. The processing times are measured on an ordinary
PC - a 1.86 GHz Pentium M with 1GB RAM. Processing
times are fairly low with a maximum of 134 seconds for the
aforementioned LU benchmark. The processing time tracked
the total number of lines in the trace almost linearly astptbt
in Figure 3.

160 +

140

120

100

80

Time (sec)

60

40

20

0 t t t t |
0 5 10 15 20 25

Total number of lines in trace files (million)

Fig. 3. Total length of all process communication tracesthedogicalization
time

The processing time is dominated by the construction of the

4 processes 8/9 processes 16 processes 32/36 processes 64 processes 121/128 processes
Name | Trace Length | Time Trace Length | Time Trace Length | Time Trace Length | Time Trace Length | Time Trace Length Time
Records (Size)| (secs)| Records (Size)| (secs)| Records (Size)| (secs)| Records (Size)| (secs)| Records (Size)| (secs)| Records (Size)| (secs)
BT 2278 0.63 12282 1.73 17106 2.64 26754 8.35 36402 13.19 50874 30.76
(90 KB) (490 KB) (731 KB) (1081 KB) (1459 KB) (2106 KB)
SP 12452 1.39 19670 2.09 26888 4.14 41324 12.55 55760 20.34 77414 49.16
(533 KB) (824 KB) (1147 KB) (17543 KB) (2365 KB) (3365 KB)
CG 5042 0.91 41954 3.31 41954 4.52 59964 11.94 59964 19.89 77978 47.89
(186 KB) (1599 KB) (1667 KB) (2376 KB) (2376 KB) (3224 KB)
LU 2338 0.69 152294 6.43 203048 15.39 203048 35.46 203048 66.28 203048 134.30
(95 KB) (6661 KB) (9185 KB) (9186 KB) (9088 KB) (9433 KB)
MG 1433 0.73 8867 1.98 8909 2.48 8951 4.56 8953 4.75 9035 7.33
(57 KB) (403 KB) (373 KB) (374 KB) (373 KB) (386 KB)
TABLE VI

TRACE SIZE (PER PROCESBAND PROCESSING TIME FOR LOGICALIZATION

communication matrix as that is the only step that analylzes twith synthetic data.

trace from each process, even though the actual processing oThe results for graph spectrum computation on an ordered
each trace entry is minimal. The only tests in the framewodnd an unordered 2D grid, and an ordered and an unordered 6-
that are potentially computationally expensive are theplgrapoint stencil pattern on a 2D grid, are plotted in Figure Shia
spectrum test and the graph isomorphism test. The progessinordered case, 2/3rd of graph nodes were arbitrarily renum
time for them is plotted in Figure 4. We observe that grapgbered after starting with a row major order. The computation
spectrum testing time is under one second for every catigjes are within 70 seconds for up to 1000 nodes or processes,
and graph isomorphism testing time cannot be observed laut increase rapidly from a number of 500 to 1000. Hence this
this graph as it is in millisecond range in every case. Atest may not be sufficiently efficient for larger scenariothwi
important reason for the low overhead of graph spectrub®00s of processes.

and graph isomorphism tests is that they had to be applied

on Vedr'y feW Cdandl?_ate tOpOIOgleS (I()ftef? 1 _Or 2) as S.Impl ‘+Ordered Grid —&-Unordered Grid —%— Ordered Stencil —&— Unordered Stencil‘
tests discussed earlier were extremely effective in redpitie
. . . 0T
number of candidate topologies. The simple tests also éxécu
. .. . 60+
in negligible time.
50
g
[—e— Graph spectrum —< Isomorphism | o O1
11 g w04
[=
0.8+ 27T
- 10 4
® 061
% 0 : ' ¢
E 04+ 0 250 500 750 1000
= Number of Processes/Graph Nodes
02+
0 } } }] Fig. 5. Performance of the graph spectrum test for isomerptior different
BT/SP LU cG MG topologies with and without randomness in numbering of psses

Fig. 4. Graph spectrum and graph isomorphism processing fttm121/128 We Investigate the performgnce of the VF2 graph matchlng
processes for different NAS benchmarks algorithm further with synthetic ordered and unorderedgri

tori, stencils, and binary trees. In the ordered cases, ddes

2) Scalability analysis with synthetic dataThe results of the grids, tori, and stencils are numbered in row major
noted above for the NAS benchmarks are limited to 128 prorder. The binary tree nodes are numbered in level order.
cesses, and virtually all the processes were numberedyhiceThe unordered (or randomized) cases have a percent of the
along the axes for grid/torus topologies. In this sectioe, wiodes arbitrarily renumbered from the ordered numbering. F
analyze potential performance issues as we scale to largjesstration, say the node numbered 12, which would norynall
graphs and encounter cases with irregular process nungberlve in the second row in an 8x8 grid, is renumbered, say, as
We have already noted that the the matrix construction teneriode 47, and vice versa.
linear, and hence predictable, and simple tests are exyeme The effect of process numbering for 2D grids is shown in
fast. Potential performance issues may be encounteredFigure 6. The figure shows the processing time for ordered
1) Graph spectrum tests with(N3) complexity and 2) Graph numbering and randomness degrees of 25, 50, 75, and 99
isomorphism tests which are based on a non-polynom{ahaximum). The processing time does increase with the éegre
heuristic. We investigate the performance of these testsdu of randomness, but is within a few seconds even for maximum

randomness up to a graph size around 16K nodes. approximate number of nodes:

percent of nodes reordered: —{+0 -—A-25 @50 <75 —%-99

o

@
124 £ 10

()

£

£

1 4

2Dgrid 6pton 8pton 2Dtorus 6pton 8pton 3Dgrid 3Dtorus Binary
2D grid 2D grid 2D torus 2D torus Tree

0.8

0.6 Topology

Time (sec)

044
Fig. 7. Performance of VF2 graph matching algorithm foredit topologies

0.2 with maximum randomness

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 3
Number of Processes/Graph Nodes process, and therefore, the storage space required cambe ve

large. This was not encountered in our experiments since the
scale was relatively small, and also because trace infismat
needed for our objectives is low. The situation can be mitida
by simple lossless per trace compression during recordiing.
The performance results of employing the VF2 grapparticular, storing each unique trace record in a hash taide
matching algorithm on various unordered topologies witfgplacing every instance of it with a fixed size token leads to
maximum randomness are plotted in Figure 7. The processkighificant compression, around a factor of 100 for our sace
times are very low for almost all topologies up to 1000 noddgements of this approach are similar to [10] as discussed in
and modest for around 16,000 nodes. A key exception is thection Ill but we propose it as a preprocessing step rather
6-point stencil on a 2D torus, for which the processing fdhan the final compression step. This component is part of our
over 1000 nodes could not be completed for several hodfgmework but notimplemented in an on-the-fly fashion at the
and the experiment was abandoned, so no data is shown inRFesent time.
graph. However, the processing time for the 6-point stepril ~ Our topology detection procedure implicitly assumes a
a 2D toruswithout any randomness was dramatically lowersingle dominant communication pattern for the duration of
less than a second for up to 16,000 nodes. Also note the application. While this is often the case, an applicatio
Figure 7 that the processing time for 6-point stencil on a 2€8n also have multiple phases where the computation and
grid (instead of torus) is within a second. We speculate the@mmunication pattern changes across phases. Sepaiating t
the reasons are related to the type of heuristics employed phases is the subject of other research, such as [8]. Our
graph isomorphism. This represents a potential limitatiort framework can be applied piecewise if the phases are separat
is a problem only for very irregular numbering of nodes. Wik the trace. Applications can also exhibit multiple comeunt
believe that it is important to allow all possible numberify patterns. e.g., a grid and a tree. Addressing such scenarios
nodes, as we cannot predict what numbering an applicatiggfiuires solving thesubgraph isomorphisnproblem which
may follow. However, we do not expect any application té§ known to be NP-complete and more challenging to solve
follow completely random numbering that was used in thigeuristically. We are currently investigating heuristiosolve
stress test. Overall, we conclude that the methodology the problem in practical scenarios.
effective for 1000s of nodes for any numbering of processes
that is likely to be encountered in practice. A detailed gsial o o
of the performance of different graph matching algorithme a Application communication traces are at the core of perfor-

Fig. 6. Performance of VF2 graph matching algorithm for 2l gopology
with varying degree of randomness in numbering of processes

VII. CONCLUSIONS

available packages is presented in [17]. mance analysis and performance modelmg_of c_ommunlcatlng
parallel programs. However, when execution is on a large
VI. DISCUSSION AND FUTURE WORK number of nodes, the size of the traces is a hindrance to their

The performance of the topology identification procedurffective usage. Further it is difficult to meaningfully &ywe
generally scales well to thousands of processes. One ésxephundreds of traces, each representing execution on one node
is that the execution time of polynomial eigenvalue computaf a system. This paper presents a framework to automaticall
tion for the graph spectrum test increases rapidly beyo®® 10construct a single logical trace that is representativehef t
processes. Also, the marginal value of the graph spectrsin teverall parallel execution when the communication patisrn
is limited as the number of candidate patterns after singgtst a regular stencil. The approach is based on identifying the
is very low and can be directly tested for isomorphism. Hene®mmunication topology of the application and converting
we conclude that the graph spectrum test can be removed fralinpoint-to-point communication calls between physiced-p
the procedure. cesses to logical calls representing the global communoitat

Another scalability concern is due to the fact that ouypattern. The methodology is independent of the numbering of
implementation is based on storing a trace file for eveprocesses in the system. The key contribution is an algoiith

framework to identify the global communication topology11] T. Sherwood, S. Sair, and B. Calder. Phase tracking aedigtion. In

from distributed message exchange data that is effectide an International Symposium on Computer Architecture (ISCke 2003,
.. 12] J. Singler. Graph isomorphism implementation in LEDA1.5

efficient. http://www.algorithmic-solutions.de/bilder/grapiso.pdf.

Results presented show that the procedure was succesgfi)l J. Subhlok and Q. Xu. Automatic construction of cooeded perfor-

and efficient for the NAS benchmark suite. Detailed ana%is mance skeletons. INGS 2008: NSF Next Generation Software Program
. . Workshop (Appears in Proceedings of IPDPS 2008mi, FL, April
the performance data shows that the execution time of trace ,qog’

logicalization is likely to be modest for realistic scemari [14] T. Tabe and Q. Stout. The use of the MPI communicatioratipin the

The key steps of the framework were analyzed in detail. In NAS Parallel Benchmark. Technical Report CSE-TR-386-98ivefsity
of Michigan, Nov 1999.

particular, for the purpose of identifying the communioati [15] J. S. Vetter and M. O. McCracken. Statistical scalgpitinalysis of
topology of an application, a suite of simple tests were communication operations in distributed applications. 2001 ACM
found to be very effective, the performance of the graph SI_GPLAN Symposium on Principles and Practice of Parall@gfam-
. ming (PPOPP’01) pages 123-132, 2001.

|somorph|sm test was adequate for praCt'Cal scenarlodewl’[m] J. S. Vetter and F. Mueller. Communication charactiessof large-scale
the graph spectrum test was found to have limited value and scientific applications for contemporary cluster arctiitees. J. Parallel
scalability. The paper lays the foundation for a new apgnoag _ Distrib. Comput, 63(9):853-865, 2003.

L. d reducti i . ﬁ,]7] S. Voss and J. Subhlok. Performance of general grapmagghism
to summarization and reduction of message passing traaes algorithms. Technical Report UH-CS-09-07, University afudton, Aug

is powerful and likely to be enhanced by future research. 2009.
[18] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, £han,
VIIl. A CKNOWLEDGMENTS E. Lusk, and W. Gropp. From trace generation to visualipatié

)])] performance framework for distributed parallel systems. Proc. of
Support for this work was provided by the National Science SC2000: High Performance Networking and Computim¢gpvember

Foundation under Award No. SCI-0453498, CNS-0410797_ 2000.

. - . 119] Q. Xu and J. Subhlok. Construction and evaluation ofrdo@ted per-
and ACI-0234328. Any opinions, fmd'ngs' and conclusmr{s formance skeletons. [fihe 15th annual IEEE International Conference

or recommendations expressed in this material are those of on High Performance Computing (HIiPC 200®angalore, India, Dec

the author(s) and do not necessarily reflect the views of the 2008. o .

Nati | Sci Foundation [20] Q. Xu and J. Subhlok. Efficient discovery of loop nestscommu-
ational science : nication traces of parallel programs. Technical Report C§H08-08,

We would also like to thank Ravi Prithivathi for his contri- University of Houston, May 2008.
bution to this work. [21] B. Yorgey. Generating multiset partition§he Monad.Readg(8):5-20,
Sept 2007.
REFERENCES

[1] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler. Perfmnce
optimization for large scale computing: The scalable VARRIpproach.
In International Conference on Computational Science f(@ges 751—
760, 2001.

[2] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Perdoce
evaluation of the VF graph matching algorithm. Mmoc. of the 10th
ICIAP, volume 2, pages 1038-1041. IEEE Computer Society Press,
1999.

[3] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Chaizot and
predicting program behavior and its variability. International Con-
ference on Parallel Architectures and Compilation Techef) (PACT,)
New Orleans, LA, September 2003.

[4] P. Foggia, C. Sansone, and M. Vento. An improved algoritfor
matching large graphs. Iithe 3rd IAPR-TC15 Workshop on Graph-
based Representation2001.

[5] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A sur-
vey of software for sparse eigenvalue problems. TechnicghoR
STR-6, Universidad Politecnica de Valencia, 2006. Aldda at
http://www.grycap.upv.es/slepc.

[6] S. Huband and C. McDonald. Debugging parallel programsggi
incomplete information. Inlst IEEE Computer Society International
Workshop on Cluster Computingages 278-286, 1999.

[7] S. Huband and C. McDonald. A preliminary topological dgber for
MPI programs. Inlst International Symposium on Cluster Computing
and the Grid (CCGRID 2001)page p. 422, 2001.

[8] J.Gonzalez, J. Gimenez, and J. Labarta. Automatic teteof parallel
applications computation phases. Pnoceedings of 23rd IEEE Inter-
national Parallel and Distributed Processing SymposiuRome, ltaly,
May 2009.

[9] D. Kerbyson and K. Barker. Automatic identification offdigation com-
munication patterns via templates. 18th International Conference on
Parallel and Distributed Computing Systenhsis Vegas, NV, September
2005.

[10] M. Noeth, F. Mueller, M. Schulz, and B. de Supinski. Stié
compression and replay of communication traces in magspafallel
environments. In21th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 200Zdng Beach, CA, April 2007.

10

