
Logicalization of Communication Traces from
Parallel Execution

Qiang Xu∗†, Jaspal Subhlok†, Rong Zheng† and Sara Voss‡†

{qiang.xu@cggveritas.com, jaspal@uh.edu, rzheng@uh.edu, sarasvoss@gmail.com}

∗CGGVeritas, 10300 Town Park Drive, Houston, TX 77072
†Department of Computer Science, University of Houston, Houston, TX 77204

‡Coe College, Cedar Rapids, Iowa 52402

Abstract—Communication traces are integral to performance
modeling and analysis of parallel programs. However, execution
on a large number of nodes results in a large trace volume that
is cumbersome and expensive to analyze. This paper presentsan
automatic framework to convert all process traces corresponding
to the parallel execution of an SPMD MPI program into a
single logical trace. First, the application communication matrix
is generated from process traces. Next, topology identification
is performed based on the underlying communication structure
and independent of the way ranks (or numbers) are assigned to
processes. Finally, message exchanges between physical processes
are converted into logical message exchanges that represent sim-
ilar message exchanges across all processes, resulting in atrace
volume reduction approximately equal to the number of processes
executing the application. This logicalization frameworkhas been
implemented and the results report on its performance and
effectiveness.

1

I. I NTRODUCTION

Execution and communication traces are central to perfor-
mance analysis and performance modeling of parallel appli-
cations. However, for long running applications on moderate
to large number of nodes, even relatively coarse grained
communication traces can be very long and their analysis
prohibitively expensive. Fortunately high performance sci-
entific applications are dominated bystencil computations
where the computations, and hence the traces, are similar
for all processes and the communication corresponds to a
fixed stencil (or template) where each process communicates
with a specific set of processes relative to a well defined
global communication pattern, such as a 2-D torus or a
structured tree. A study of DoD and DoE HPC codes at Los
Alamos National Labs [9] and NAS benchmarks [14] shows
that the communication in most of these codes is dominated
by a single low degree stencil pattern. These characteristics
expose the possibility of combining all processor traces into
a single representative trace - in the same way as a single
SPMD program represents a family of processes. We define
a logical traceas a single aggregate trace that represents the
execution and communication of a parallel program, with all
message sends and receives to/from a logical neighbor in terms

1Appears in 2009 IEEE International Symposium on Workload Character-
ization

of a global communication topology (e.g a 2-D torus). We
define logicalizationas the process of converting a family of
physical process traces into a single logical trace. This paper
presents a framework for automatic construction of a logical
program trace from the collection of physical process traces
generated by an execution of an MPI message passing parallel
application.

For illustration, consider the following sections of traces
from a message exchange between 4 processes in a 1-
dimensional ring topology.

Process 0 Process 1 Process 2 Process 3
...
snd(P1,...) snd(P2,...) snd(P3,...) snd(P0,...)
rcv(P3,...) rcv(P0,...) rcv(P1,...) rcv(P2,...)
...

These can be summarized as the following logical trace:

Program
...
snd(PR,...)
rcv(PL,...)
...
wherePL and PR are the logical left and right neighbor,

respectively, for each process in a 1-D ring topology.
Beside reducing the trace size by a factor of, approximately,

the number of processes, logicalization also captures the
parallel structure of the application. Note that logicalization
is orthogonal totrace compression, which is based on dis-
covering repeating patterns within a single logical or physical
trace. This paper focuses on trace logicalization, although trace
compression and logicalization are often employed together, as
in the context of this work, the construction of performance
skeletons, discussed in Section II.

The logicalization framework has been developed for MPI
programs and proceeds as follows. The application is linked
with the PMPI library so that all message exchanges are
recorded in a trace file during execution. Summary information
consisting of the number of messages and bytes exchanged
between process pairs is recorded and converted to a binary
application communication matrixthat identifies process pairs
with significant message traffic. This matrix is then analyzed
to determine the application level communication topology.

5 7 8

2 4 6

0 1 3

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

(a) (b) (c)

Fig. 1. Isomorphic graphs generated with different processnumberings for
a simple 2-D grid topology

Once this global topology is determined, a representative
process trace is analyzed in detail and transformed into a
logical program trace with endpoints of all message sends and
receives converted from physical process numbers to relative
logical process numbers in terms of the application level
communication topology.

The key algorithmic challenge in this work is the identi-
fication of the application communication topology from the
application communication matrix which represents the inter-
process communication graph. The communication topology
is easy to identify if the processes are assigned numbers
(or ranks) in a well defined order, but is a much harder
problem in general. This is illustrated with a very simple
example in Figure 1. The figure shows 9 executing processes
within a 2D grid communication topology. In Figure 1(a)
the processes are assigned numbers in row major order in
terms of the underlying 2D grid. However, if the processes
were numbered diagonally as indicated in Figure 1(b), the
communication graph with process nodes laid out in row major
order would appear as Figure 1(c). Clearly, the underlying
topology is easy to identify in the scenario represented in
Figure 1(a) by a pattern matching approach but much harder
when process numbering follows an unknown or arbitrary
order, a simple instance of which is the scenario represented in
Figure 1(c). The state of the art in identifying communication
topologies assumes that a simple known numbering scheme is
followed [9].

Identifying the underlying topology from a communica-
tion graph in general (i.e., without assuming any numbering
scheme) is difficult for two reasons. First, establishing if
a given communication graph matches a given topology is
equivalent to solving the well knowngraph isomorphism
problem for which no polynomial algorithms exist. (It is not
known if it is NP-complete). Further, there are many different
types of topologies (different stencils on graph/torus, trees,
etc.) and many instantiations within each topology type (e.g.,
different number and sizes of dimensions). A naive method
would require solving the graph isomorphism problem for each
instance of each candidate topology, which is computationally
infeasible. Our approach has the following main steps:

1) Identification of candidate topologies:Simple tests exist
that can eliminate the possibility that a given topology
could be a match for a given application communication

matrix. For example, a 2D torus stencil topology is
possible only if all processes have 4 communicating
neighbors. Hence if there is any process with more
or less than 4 communicating neighbors, this topology
is eliminated. Of course, not every topology where all
processes have 4 neighbors is a torus. In our method, a
series of such tests are applied, from simplest to more
complex as a decision tree, to reduce the set of possible
candidate topologies. The tests are based on matching
the following: number of nodes and edges, sorted list
of node degrees, and graph spectrum represented by the
eigenvalues of the adjacency matrix. Typically very few
candidate topologies are left after this step, but even if
it is just one, a match is not proved.

2) Exact topology match:This involves proving that the
application communication graph is isomorphic to the
corresponding reference topology graph. While graph
isomorphism is known to be a difficult problem with no
known polynomial solution, practical algorithms exist
which can solve the problem efficiently for many sce-
narios [12]. Also, the size of the problem to be solved is
relatively modest as it corresponds to the number of pro-
cesses. We employ the VF2 graph matching algorithm
from VFlib2 library [2], [4] to establish an exact match
with a candidate reference topology.

After the communication topology is established, a repre-
sentative process trace is transformed to a logical program
trace. The paper describes the design and implementation of
the logicalization framework, along with experimental results
and discussion.

II. M OTIVATION AND CONTEXT

The results developed in this paper have broad applica-
bility in performance modeling, workload characterization,
and debugging of message passing parallel programs. The
specific context and usage of this research is construction of
application performance skeletons for performance prediction.
A performance skeleton is a short running program that
captures the fundamental computation and communication
characteristics of an application. Monitored execution ofa
performance skeleton in a new environment (e.g, different
number of nodes, different communication library, or different
network sharing) is employed to rapidly estimate the per-
formance of the application (and the type of workload the
application represents) in a new environment. The basic pro-
cedure for construction of performance skeletons consistsof
collection and compression of application traces followedby
the generation of an executable program that recreates the core
application behavior. The steps in the skeleton construction
procedure are outlined in Figure 2. A framework for scalable
skeleton construction has been developed and the effectiveness
of performance skeletons for performance prediction have
been evaluated [19], [13].

The highlighted logicalization step in Figure 2 is the focus
of this paper and discussed in detail in the following sec-
tions. Table I presents summary results from thecombined

2

Record execution trace for each process

Logicalize process traces into a single program trace

Compress the program trace by identifying the loop structure

Construct executable
performance skeleton program

APPLICATION

Data Model

Sim 1

Sim 2

Pre

Vis

Stream skeleton

Data Model

Sim 1

Sim 2

Pr
e

Vi
s

Stream

Fig. 2. Skeleton construction procedure

logicalization and compression phases for 16 process NAS
benchmarks. The trace length is measured as the number of
trace records (or lines), each representing one MPI operation.
The logical trace is approximately the same size as a single
process trace, hence the compression achieved in logicaliza-
tion equals the number of processes. The compression ratio
presented in Table I is the ratio of the size of full logical trace
to the final compressed logical trace. Clearly the approach is
effective in reducing a family of raw MPI traces to a short
single compressed logical trace. The compression procedure
and performance results are presented in detail in [20].

Benchmark Raw Trace Compressed Compression
Name Length Logical Ratio

Per Process Trace Length
BT B/C 17106 44 388.77
SP B/C 26888 89 302.11
CG B/C 41954 10 41954
MG B 8909 590 15.1
MG C 10047 648 15.5
LU B 203048 63 3222.98
LU C 323048 63 5127.75

Average 71695 165 1815.39

TABLE I
COMBINED TRACE LOGICALIZATION AND COMPRESSION RESULTS

III. R ELATED WORK

The importance of MPI traces in program analysis and
visualization is clear from the popularity of tools like Vam-
pir [1] and Jumpshot [18]. Several tools have been developed
to perform statistical analysis of MPI communication behavior
to summarize the execution behavior, an example being [15].
The idea of communication/adjacency matrix for trace anal-
ysis for parallel programs was introduced in [6], [7]. They
used communication matrices to discover the logical topology
employed in MPI and PVM applications to develop a parallel
program debugger that exploits topological information. Our
work can be considered a generalization of the approach with
efficient detection of isomorphism.

Perhaps the work closest to this paper is the scalable trace
compression presented in Noeth et. al. [10]. They perform
task (or process) level compression on-the-fly, followed by

consolidation of compressed traces that they refer to as inter-
node compression. An important difference is that we perform
logicalization (or inter-node compression) first on process
traces, and subsequently perform trace compression. Since
trace compression is performed only on a single logical
program trace in our approach, we can use more effective
compression procedures even if they are more expensive [19],
[20]. Also, the logicalization procedure we employ is more
general, independent of process numbering, and evaluated
more thoroughly. On the other hand, our scheme as presented
does require recording of the trace for every process which is a
concern for scalability. This is discussed further in Section VI.

We have borrowed part of our pattern identification method-
ology from Kerbyson et.al. [9]. In this work, a point-to-
point communication matrix is developed from application
execution and the degree ofmatch with a set of predefined
communication templates, representing regularly occurring
communication patterns in scientific applications, is measured.
Their method assumes that the nodes are numbered in a
“reasonable” way, e.g., along the rows or columns for a 2-D
grid. The basic goal of our approach to topology identification
is similar. However, more complex processing steps, that
include eigenvalue and graph isomorphism computations, are
necessary to identify communication patterns with no assump-
tions about the numbering of processes. Also, the motivation
in this work is to understand the communication patterns in
an application while our goal is to convert a suite of process
traces into a single program trace.

An important limitation of the current framework is that the
input trace must represent a relatively static communication
pattern. This is known to be the case for many scientific appli-
cations [16], [9], [14]. A parallel application can have phases
that show different communication behavior. Identification of
phases at different levels of granularity has been studied in
related work, such as [3], [11], [8].

IV. L OGICALIZATION METHODOLOGY

The trace logicalization procedure has the following main
steps:

1) Generation of a binary application communication ma-
trix from application process traces.

2) Identification of the application communication topology
from the communication matrix.

3) Generation of a single logical program trace from a
selected physical trace and topology information.

Each of these steps is presented separately in this section.
The central assumption in our current implementation is that
there is a dominant regular communication pattern in the trace
being processed, else no topology is identified.

A. Generation of application communication matrix

For generation of a physical trace, the target MPI application
is linked with the PMPI library, which allows lightweight
recording of communication operations through user provided
functions. During execution a trace file is generated for each
process. Attributes recorded for each MPI call include the type

3

of call, the rank of the source/destination process, and the
number of bytes transferred, along with timing information.
This information is utilized to generate afull application
communication matrix. The matrix records the total data
transferred between each pair of processes involved in the
execution.

The next objective is to convert the full communication ma-
trix to abinary application communication matrix, where pairs
of processes withsignificant communicationare represented
by 1 and pairs of processes with no communication or very
low communication are represented by 0. This is achieved
by threshold basedcommunication filtering. Most parallel
scientific applications show a distinct dominant communica-
tion pattern, typically a simple stencil. However, occasional
minor communication is sometimes recorded between other
processes. This can be inherent in the algorithm or due to
other reasons, such as distribution and collection of data at the
beginning and end of execution. Very low level communication
(in terms of number of calls and volume of data exchanged)
is eliminated as the procedure focuses on capturing, and
later recreating, the dominant application characteristics. A
heuristic threshold of 5% of average communication was used
for the generation of the binary communication matrix from
the full communication matrix in our experiments.

As a simple example, the full communication matrix and
the binary communication matrix for the 8 process NAS MG
benchmark are shown in Table II. Filtering was necessary for
discovering the main communication pattern in some sizes of
the MG benchmark, but not for any of the other benchmarks.
The full communication matrix and the binary communication
matrix after filtering for 16-process MG benchmark are shown
in Table III. The volume of the communication not associated
with the main communication pattern was around 0.5% com-
pared to the main communication pattern.

This filtering step makes the overall logicalization process
lossy, when it is invoked. An accuracy measure in the frame-
work quantifies the extent of low volume communication that
is eliminated. However, the impact of eliminating a small
communication step on the end application of this work, such
as performance modeling, is difficult to judge and beyond the
scope of this paper. However, it has been analyzed with an
end to end performance prediction framework that employs
logicalization [19].

B. Topology identification

The procedure in the previous section yields a binary appli-
cation communication matrix. We now present a procedure to
determine if this application communication matrix represents
an instance of a topology such as a stencil, tree or another
pattern that is part of a reference library. This is a challenging
problem for two major reasons. First, each type of pattern has
numerous instances. For example, a 2-D grid is an instance
of a grid pattern, and it represents a differentX × Y grid for
every distinct pair(X, Y). The number of instances can be
large even when the total number of processesX · Y is fixed
because of different factorizations. Thus, the question ofwhich

graph to match withis a non-trivial one. Second, for a graph
representing a topology, numbering of vertices is not unique.
Different numberings of graph vertices correspond to different
permutations of the rows and columns of its adjacency matrix.
A simple comparison of an application communication matrix
with a communication matrix corresponding to a reference
topology is not sufficient andisomorphismbetween the graphs
represented by the matrices must be established. Two graphs
G andH with graph verticesVn = {1, 2, ..., n} are said to be
isomorphic if there is a permutationp of Vn such that{u, v}
is in the set of graph edgesE(G) iff {p(u), p(v)} is in the
set of graph edgesE(H). No polynomial algorithm exists to
determine if two graphs are isomorphic although the problem
is not known to be NP-complete.

The approach taken to topology identification attempts to
minimize the use of potentially expensive graph isomorphism
analysis. It consists of two phases, i) determining candidate
patterns in the reference library and ii) determining an exact
matching to a reference topology.

The first step is to reduce candidate patterns based on invari-
ants that must hold for isomorphic graphs. It is widely believed
that there is no simple-to-calculate complete graph invariant,
i.e., there are simple-to-calculate invariants that hold across all
isomorphic graphs, but there also exist non-isomorphic graphs
which have the same set of invariants. Hence, graph invariants
cannot be employed to establish isomorphism, but they can
be utilized to narrow down the reference patterns that are
potential matches. To compute candidate reference patterns,
the following attributes of an application graphG(V, E) are
examined:

1) Number of vertices|V |
2) Number of edges|E|
3) Node degree in descending order
4) Graph spectrum,λ(G), the set of eigenvalues of the

adjacency matrix.

Clearly, the number of edges and vertices, as well as the listof
nodes in ascending order of node degree, must be identical for
isomorphic graphs. It is also known that the set of eigenvalues
of the adjacency matrices of isomorphic graphs are identical.
Hence, if any of these quantities do not match for a pair of
graphs, they cannot be isomorphic.

Clearly the first three quantities are very simple to compute.
The complexity for computingλ(G) is O(n3) using the
Gauss-Jordan reduction. Several solver packages exist for
computing eigenvalues for sparse matrices [5]. In determining
the candidate reference patterns, we adopt a decision tree
based approach that eliminates most patterns efficiently by
employing invariants in increasing order of computational
complexity.

1) Nodes, edges and prime factorsLet the number of
vertices of the graph to be matchedG be|V | = n. Let m
be the maximum dimension of the Euclidean structures -
graphs, tori and stencils based on them - in the reference
library. The first step is to factorizen into products of
the formn0 ·n1 · · ·nm [21]. This prime factor analysis is

4

KBytes P0 P1 P2 P3 P4 P5 P6 P7
P0 0 141 144 0 148 0 0 0
P1 141 0 0 144 0 148 0 0
P2 144 0 0 141 0 0 148 0
P3 0 144 141 0 0 0 0 148
P4 148 0 0 0 0 141 144 0
P5 148 0 0 0 141 0 0 144
P6 0 0 148 0 144 0 0 141
P7 0 0 0 148 0 144 0 141

=⇒

P0 P1 P2 P3 P4 P5 P6 P7
P0 0 1 1 0 1 0 0 0
P1 1 0 0 1 0 1 0 0
P2 1 0 0 1 0 0 1 0
P3 0 1 1 0 0 0 0 1
P4 1 0 0 0 0 1 1 0
P5 1 0 0 0 1 0 0 1
P6 0 0 1 0 1 0 0 1
P7 0 0 0 1 0 1 0 1

TABLE II
FULL APPLICATION COMMUNICATION MATRIX (TRAFFIC IN KBYTES/SEC) AND BINARY APPLICATION COMMUNICATION MATRIX FOR 8 PROCESSMG

BENCHMARK

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
P2 89.09 0 0 87.09 0 0 91.19 0 0 0 0 0 0 0 91.19 0
P3 0 89.09 87.09 0 0 0 0 91.19 0 0 0 0 0 0 0 91.19
P4 91.21 0 0 0 0 87.09 89.10 0 91.23 0 0 0 0.46 0 0 0
P5 0 91.21 0 0 87.09 0 0 89.10 0 91.23 0 0 0 0.46 0 0

⇓
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
P3 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1
P4 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
P5 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0

TABLE III
SECTIONS OF FULL AND BINARY COMMUNICATION MATRIX (TRAFFIC IN KBYTES/SEC) FOR 16-PROCESSMG BENCHMARK. THE HIGHLIGHTED

ENTRIES ARE SMALL VALUES THAT ARE ELIMINATED BY FILTERING.

applied for the Euclidean patterns to arrive at a subset of
reference graphsS1 = {G1

1
, G1

2
, . . . , G1

l1
}, which have

the same number of edges asG.
2) Degree orderingIn the second step, we order the vertex

degrees ofg ∈ S1 in descending order and eliminate
those with different sequences. Let the resulting subset
be S2 = {G2

1
, G2

2
, . . . , G2

l2
}.

3) Computing graph spectrumAs the final step, we com-
pute the graph spectrum ofλ(G) and λ(g), ∀g ∈ S2

and eliminate those with different graph spectrum. Let
the resulting subset beS3 = {G3

1
, G3

2
, . . . , G3

l3
}.

By the end of this procedure, we may be left with a single
candidate topology but cannot conclude that it is the matched
topology. The invariants employed can eliminate a pattern
from consideration but do not guarantee a match.

We apply a graph isomorphism algorithm to determine
whether application communication graphG matches with
any of the graphs in the candidate setS3. While there are no
known polynomial algorithms for graph isomorphism, efficient
and practical solution approaches exist. We chose the VFLib
2.0 graph matching library [2], developed at the University
of Naples “Federico II”. VFLib2 implements the VF2 graph
matching algorithm along with a few other algorithms in-
cluding Schmidt-Druffel algorithm and Ullmann’s algorithm.
We chose VFlib2 library, in part, because of the ease of
integration with C++ programs. Evaluation studies show that
the VF2 algorithm can solve a graph isomorphism problem of
thousands of nodes in less than a minute [2]. A comparison
of different graph isomorphism algorithms is given in [12].

The VF2 algorithm takes a bottom-up approach [4]. It tries
to extend an existing mapping of nodes and edges until a full
mapping is reached, starting from the empty mapping. This
is equivalent to a depth-first search in the tree of all possible
permutations where branches that cannot lead to a feasible
solution are pruned early.

C. Generation of logical execution trace

The logical communication trace of an application execution
is similar to the physical communication trace generated atan
execution node, except that all communication events referto
neighbors in a logical topology instead of a physical process
number (or rank). For presenting the logical trace generation
procedure, we assume that the application communication
topology has been established.

We first define the set ofmaximal communicationprocesses
for a communication topology, as the set of processes that have
all possible communication neighbors within the pattern. For
fully symmetrical communication patterns, e.g 2D torus or
All-All, all processes are maximal communication processes.
However, that is not the case for asymmetrical communication
patterns. For example, for a 2D grid pattern, all processes
exceptthe processes on the perimeter of the grid pattern (i.e.
first and last rows and columns) are maximal communication
processes as the interior processes have 4 neighbors, whilethe
perimeter processes have 2 or 3 neighbors.

For every application communication topologyD with
a maximum of k communicating neighbors, we define
D1, D2, D3, ...Dk as the set of logical neighbor pro-
cesses/directions. For illustration, for a 2D grid or torus

5

structure,k = 4 and D1, D2, D3, D4 intuitively represent
North, East, South, West neighbors respectively.

We now describe the process of generating the logical com-
munication trace from physical traces and a known application
communication topologyD with maximum communication
degreek.

1) Identify one maximal communication process, sayP0

2) Let i1, i2, i3, ...ik be the ranks of the processesP0

communicates with.
3) Rewrite the trace ofP0 by replacing all references to

i1, i2, i3, ...ik in communication operations with corre-
sponding references toD1, D2, D3, ...Dk , respectively.
This is the logical trace.

The logical trace represents the entire program execution
and is interpreted with the corresponding communication
topology. If a neighbor does not exist for a particular direction
for a process number, (e.g., theNorth neighbor for a process
in top row of a grid), corresponding communication does not
exist either. Finally, all collective operations are retained from
the physical trace to the logical trace - collective operations
are already global logical operations across the executing
processes in the currentMPI COMMWORLDcommunicator
and no change is needed.

A section of physical and corresponding logical traces for
the 16-process BT benchmark are shown in Table IV. Note that
the directions are labeled as North, South, etc. for illustration
and are actually indices in a general topology matrix.
Communication outside the main topology:Any communica-
tion operation in the physical trace that references a process
rank not in the established topology is not included in the log-
ical trace as corresponding operations do not exist across the
parallel application. In fact, whenever communication filtering
discussed in section III is applied, such local communication
is present in the physical trace for some of the processes. In
our implementation we record the fraction of communication
that falls in this category and report it as an inaccuracy in this
approach.

V. EXPERIMENTS AND RESULTS

The framework for application pattern identification and
trace logicalization has been implemented. Experiments were
conducted with MPI NAS benchmarks EP, MG, SP, BT, LU,
CG, and FT executing with up to 128 processes on a cluster.
We discuss the results for the benchmarks executing on 4, 8(9),
16 , 32(36) , 64 and 128(121) processes. (Some benchmarks
run only on perfect square numbers of processes.)

A. Topology identification

A full application communication matrix was generated
for each program and then converted to a binary commu-
nication matrix based on the discussion in Section III. The
FT benchmark and EP benchmark showed no point-to-point
communication and hence an empty communication matrix.
The EP benchmark indeed has no communication. The FT
benchmark only has collective All-All communication which
implies that the physical trace is essentially the logical trace.

We will not discuss the results from the FT benchmark any
further.

The matching procedure was then applied to the bench-
marks. The reference library employed for comparison initially
consisted of the following patterns:

• Grids: Any number of dimensions
• Torus: Any number of dimensions
• Common stencils (6pt, 8pt) on 2D/3D meshes
• All to All
• Binary Tree

Note that the topologies listed are abstract and represent all
sizes and dimensions. Also, it is fairly straightforward toadd
a new topology to the library. Hypercubes are not listed as
they are special cases of a torus or a grid configuration. Also,
the CG benchmark originally did not match any topology in
the reference library. The topology of CG (a 3 point stencil)
was manually analyzed and added to the library. The results
presented include this addition.

The matching procedure consists of 3 distinct steps based on
the description in Section IV-B, i.e.,Simple Teststo eliminate
most topologies,Graph Spectrum Testbased on computing
eigenvalues, and finallyIsomorphism Testto establish a topol-
ogy.

Table V lists the topologies that remain as candidates after
each of the tests is applied, along with the final established
topology. We discovered that many topologies in our abstract
lists are themselves isomorphic to each other. In Table V every
unique topology is inboldface. All topologiesnot in boldface
and listed below one in boldface are isomorphic to the boldface
topology above them. Note that BT and SP benchmarks have
identical communication graphs and topologies and are listed
together.

We make the following observations from Table V:

• All benchmarks in our test suite were matched correctly,
although CG was matched only when a custom stencil
was added. The topology of SP and BT is a 6 point stencil
on a 2D grid (i.e. NE and SW neighbors in addition to
N E W S), and for LU, CG, and MG, the topology is a
grid or a torus. In fact, MG has a hypercube structure up
to size 64 which is a special case of a grid/torus.

• The simple tests that we listed are very effective in
reducing the set of candidate patterns. In all cases a very
small set of candidate patterns were left after these tests
were employed.

• The graph spectrum test was also effective, and in fact,
eliminated all candidates except for the final correct
topology. However, since the isomorphism test also must
be employed, its value is unclear.

Traces for the benchmark programs were converted to
logical traces. For all benchmarks except MG, each commu-
nication call in the trace was directly mapped to a logical
call within the program’s communication topology implying
perfect “accuracy”. In the case of MG, a low volume of com-
munication could not be mapped to the application topology,
as a consequence of filtering discussed in Section IV-A, and

6

PHYSICAL TRACE
......
MPI Isend(...1, MPI DOUBLE, 480, ...)
MPI Irecv(... 3, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...4, MPI DOUBLE, 480, ...)
MPI Irecv(...12, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...7, MPI DOUBLE, 480, ...)
MPI Irecv(...13, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......

LOGICAL TRACE
......
MPI Isend(...EAST, MPI DOUBLE, 480, ...)
MPI Irecv(...WEST, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...SOUTH, MPI DOUBLE, 480, ...)
MPI Irecv(...NORTH , MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...SOUTHWEST, MPI DOUBLE, 480, ...)
MPI Irecv(...NORTHEAST , MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......

TABLE IV
SECTIONS OF A SAMPLE PHYSICAL TRACE(LEFT) AND CORRESPONDING LOGICAL TRACE(RIGHT) FOR THEBT BENCHMARK. THE TRACE IS SANITIZED

FOR THE PURPOSE OF ILLUSTRATION.

Code #P Simple Tests Graph Spectrum Isomorphism
9 3×3 6-p stencil 3×3 6-p stencil 3×3 6-p stencil
16 4×4 6-p stencil 4×4 6-p stencil 4×4 6-p stencil

BT 36 6×6 6-p stencil 6×6 6-p stencil 6×6 6-p stencil
SP 4×3×3 torus

2×2×3×3 torus
64 8×8 6-p stencil 8×8 6-p stencil 8×8 6-p stencil

2×2×2×2×2×2 grid
4×2×2×2×2 torus
4×4×2×2 torus
4×4×4 torus

121 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil

LU

8 4×2 grid 4×2 grid 4×2 grid
CG stencil CG stencil CG stencil

16 4×4 grid 4×4 grid 4×4 grid
32 8×4 grid 8×4 grid 8×4 grid
64 8×8 grid 8×8 grid 8×8 grid
128 16×8 grid 16×8 grid 16×8 grid

CG

8 4×2 grid 4×2 grid 4×2 grid
CG stencil CG stencil CG stencil

16 CG stencil CG stencil CG stencil
8×2 grid

32 CG stencil CG stencil CG stencil
8×2×2 grid

64 CG stencil CG stencil CG stencil
16×2×2 grid

128 CG stencil CG stencil CG stencil
16×2×2×2 grid

MG

8 2×2×2 grid 2×2×2 grid 2×2×2 grid
4×2 torus 4×2 torus 4×2 torus

16 2×2×2×2 grid 2×2×2×2 grid 2×2×2×2 grid
4×2×2 torus 4×2×2 torus 4×2×2 torus
4×4 torus 4×4 torus 4×4 torus

32 2×2×2×2×2 grid 2×2×2×2×2 grid 2×2×2×2×2 grid
4×2×2×2 torus 4×2×2×2 torus 4×2×2×2 torus
4×4×2 torus 4×4×2 torus 4×4×2 torus

64 2×2×2×2×2×2 grid 2×2×2×2×2×2 grid 2×2×2×2×2×2 grid
4×2×2×2×2 torus 4×2×2×2×2 torus 4×2×2×2×2 torus
4×4×2×2 torus 4×4×2×2 torus 4×4×2×2 torus
4×4×4 torus 4×4×4 torus 4×4×4 torus
8×8 6-p stencil

128 8×2×2×2×2 torus 8×2×2×2×2 torus 8×2×2×2×2 torus
8×4×2×2 torus 8×4×2×2 torus 8×4×2×2 torus
8×4×4 torus 8×4×4 torus 8×4×4 torus

TABLE V
IDENTIFICATION OF COMMUNICATION TOPOLOGIES. EACH UNIQUE
TOPOLOGY IS IN BOLDFACE. TOPOLOGIES NOT IN BOLDFACE ARE

ISOMORPHIC TO THE BOLDFACE TOPOLOGY ABOVE THEM.

was discarded.

B. Performance

1) Processing time for NAS benchmarks:The sizes of
the traces for the NAS benchmark programs and the total
time to logicalize them is listed in Table VI. A trace record
corresponds to a traced MPI call. Since tracing employed is
fairly lightweight, trace sizes are modest and the tracing over-
head within 1% of the execution time for all the benchmark
programs. The longest trace was just under 200K records
and around 10 MBytes per process for the 128 process LU
benchmark. The processing times are measured on an ordinary
PC - a 1.86 GHz Pentium M with 1GB RAM. Processing
times are fairly low with a maximum of 134 seconds for the
aforementioned LU benchmark. The processing time tracked
the total number of lines in the trace almost linearly as plotted
in Figure 3.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

Total number of lines in trace files (million)

T
im

e
(s

ec
)

Fig. 3. Total length of all process communication traces andthe logicalization
time

The processing time is dominated by the construction of the

7

4 processes 8/9 processes 16 processes 32/36 processes 64 processes 121/128 processes
Name Trace Length Time Trace Length Time Trace Length Time Trace Length Time Trace Length Time Trace Length Time

Records (Size) (secs) Records (Size) (secs) Records (Size) (secs) Records (Size) (secs) Records (Size) (secs) Records (Size) (secs)
BT 2278 0.63 12282 1.73 17106 2.64 26754 8.35 36402 13.19 50874 30.76

(90 KB) (490 KB) (731 KB) (1081 KB) (1459 KB) (2106 KB)
SP 12452 1.39 19670 2.09 26888 4.14 41324 12.55 55760 20.34 77414 49.16

(533 KB) (824 KB) (1147 KB) (17543 KB) (2365 KB) (3365 KB)
CG 5042 0.91 41954 3.31 41954 4.52 59964 11.94 59964 19.89 77978 47.89

(186 KB) (1599 KB) (1667 KB) (2376 KB) (2376 KB) (3224 KB)
LU 2338 0.69 152294 6.43 203048 15.39 203048 35.46 203048 66.28 203048 134.30

(95 KB) (6661 KB) (9185 KB) (9186 KB) (9088 KB) (9433 KB)
MG 1433 0.73 8867 1.98 8909 2.48 8951 4.56 8953 4.75 9035 7.33

(57 KB) (403 KB) (373 KB) (374 KB) (373 KB) (386 KB)

TABLE VI
TRACE SIZE (PER PROCESS) AND PROCESSING TIME FOR LOGICALIZATION

communication matrix as that is the only step that analyzes the
trace from each process, even though the actual processing on
each trace entry is minimal. The only tests in the framework
that are potentially computationally expensive are the graph
spectrum test and the graph isomorphism test. The processing
time for them is plotted in Figure 4. We observe that graph
spectrum testing time is under one second for every case,
and graph isomorphism testing time cannot be observed on
this graph as it is in millisecond range in every case. An
important reason for the low overhead of graph spectrum
and graph isomorphism tests is that they had to be applied
on very few candidate topologies (often 1 or 2) as simple
tests discussed earlier were extremely effective in reducing the
number of candidate topologies. The simple tests also executed
in negligible time.

0

0.2

0.4

0.6

0.8

1

BT/SP LU CG MG

T
im

e
(s

ec
)

Graph spectrum Isomorphism

Fig. 4. Graph spectrum and graph isomorphism processing time for 121/128
processes for different NAS benchmarks

2) Scalability analysis with synthetic data:The results
noted above for the NAS benchmarks are limited to 128 pro-
cesses, and virtually all the processes were numbered “nicely”
along the axes for grid/torus topologies. In this section, we
analyze potential performance issues as we scale to larger
graphs and encounter cases with irregular process numbering.
We have already noted that the the matrix construction time is
linear, and hence predictable, and simple tests are extremely
fast. Potential performance issues may be encountered in
1) Graph spectrum tests withO(N3) complexity and 2) Graph
isomorphism tests which are based on a non-polynomial
heuristic. We investigate the performance of these tests further

with synthetic data.
The results for graph spectrum computation on an ordered

and an unordered 2D grid, and an ordered and an unordered 6-
point stencil pattern on a 2D grid, are plotted in Figure 5. Inthe
unordered case, 2/3rd of graph nodes were arbitrarily renum-
bered after starting with a row major order. The computation
times are within 70 seconds for up to 1000 nodes or processes,
but increase rapidly from a number of 500 to 1000. Hence this
test may not be sufficiently efficient for larger scenarios with
1000s of processes.

0

10

20

30

40

50

60

70

0 250 500 750 1000

Number of Processes/Graph Nodes

T
im

e
(s

ec
)

Ordered Grid Unordered Grid Ordered Stencil Unordered Stencil

Fig. 5. Performance of the graph spectrum test for isomorphism for different
topologies with and without randomness in numbering of processes

We investigate the performance of the VF2 graph matching
algorithm further with synthetic ordered and unordered grids,
tori, stencils, and binary trees. In the ordered cases, the nodes
of the grids, tori, and stencils are numbered in row major
order. The binary tree nodes are numbered in level order.
The unordered (or randomized) cases have a percent of the
nodes arbitrarily renumbered from the ordered numbering. For
illustration, say the node numbered 12, which would normally
be in the second row in an 8x8 grid, is renumbered, say, as
node 47, and vice versa.

The effect of process numbering for 2D grids is shown in
Figure 6. The figure shows the processing time for ordered
numbering and randomness degrees of 25, 50, 75, and 99
(maximum). The processing time does increase with the degree
of randomness, but is within a few seconds even for maximum

8

randomness up to a graph size around 16K nodes.

percent of nodes reordered:

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of Processes/Graph Nodes

T
im

e
(s

ec
)

0 25 50 75 99

Fig. 6. Performance of VF2 graph matching algorithm for 2D grid topology
with varying degree of randomness in numbering of processes

The performance results of employing the VF2 graph
matching algorithm on various unordered topologies with
maximum randomness are plotted in Figure 7. The processing
times are very low for almost all topologies up to 1000 nodes
and modest for around 16,000 nodes. A key exception is the
6-point stencil on a 2D torus, for which the processing for
over 1000 nodes could not be completed for several hours
and the experiment was abandoned, so no data is shown in the
graph. However, the processing time for the 6-point stencilon
a 2D toruswithout any randomness was dramatically lower:
less than a second for up to 16,000 nodes. Also note in
Figure 7 that the processing time for 6-point stencil on a 2D
grid (instead of torus) is within a second. We speculate that
the reasons are related to the type of heuristics employed for
graph isomorphism. This represents a potential limitation, but
is a problem only for very irregular numbering of nodes. We
believe that it is important to allow all possible numberingof
nodes, as we cannot predict what numbering an application
may follow. However, we do not expect any application to
follow completely random numbering that was used in this
stress test. Overall, we conclude that the methodology is
effective for 1000s of nodes for any numbering of processes
that is likely to be encountered in practice. A detailed analysis
of the performance of different graph matching algorithms and
available packages is presented in [17].

VI. D ISCUSSION AND FUTURE WORK

The performance of the topology identification procedure
generally scales well to thousands of processes. One exception
is that the execution time of polynomial eigenvalue computa-
tion for the graph spectrum test increases rapidly beyond 1000
processes. Also, the marginal value of the graph spectrum test
is limited as the number of candidate patterns after simple tests
is very low and can be directly tested for isomorphism. Hence
we conclude that the graph spectrum test can be removed from
the procedure.

Another scalability concern is due to the fact that our
implementation is based on storing a trace file for every

0.1

1

10

100

1000

10000

2D grid 6pt on

2D grid

8pt on

2D grid

2D torus 6pt on

2D torus

8pt on

2D torus

3D grid 3D torus Binary

Tree

132 1038 16867approximate number of nodes:

Topology

T
im

e
 (

m
S

e
c
)

Fig. 7. Performance of VF2 graph matching algorithm for different topologies
with maximum randomness

process, and therefore, the storage space required can be very
large. This was not encountered in our experiments since the
scale was relatively small, and also because trace information
needed for our objectives is low. The situation can be mitigated
by simple lossless per trace compression during recording.In
particular, storing each unique trace record in a hash tableand
replacing every instance of it with a fixed size token leads to
significant compression, around a factor of 100 for our traces.
Elements of this approach are similar to [10] as discussed in
Section III but we propose it as a preprocessing step rather
than the final compression step. This component is part of our
framework but not implemented in an on-the-fly fashion at the
present time.

Our topology detection procedure implicitly assumes a
single dominant communication pattern for the duration of
the application. While this is often the case, an application
can also have multiple phases where the computation and
communication pattern changes across phases. Separating the
phases is the subject of other research, such as [8]. Our
framework can be applied piecewise if the phases are separated
in the trace. Applications can also exhibit multiple concurrent
patterns. e.g., a grid and a tree. Addressing such scenarios
requires solving thesubgraph isomorphismproblem which
is known to be NP-complete and more challenging to solve
heuristically. We are currently investigating heuristicsto solve
the problem in practical scenarios.

VII. C ONCLUSIONS

Application communication traces are at the core of perfor-
mance analysis and performance modeling of communicating
parallel programs. However, when execution is on a large
number of nodes, the size of the traces is a hindrance to their
effective usage. Further it is difficult to meaningfully analyze
hundreds of traces, each representing execution on one node
of a system. This paper presents a framework to automatically
construct a single logical trace that is representative of the
overall parallel execution when the communication patternis
a regular stencil. The approach is based on identifying the
communication topology of the application and converting
all point-to-point communication calls between physical pro-
cesses to logical calls representing the global communication
pattern. The methodology is independent of the numbering of
processes in the system. The key contribution is an algorithmic

9

framework to identify the global communication topology
from distributed message exchange data that is effective and
efficient.

Results presented show that the procedure was successful
and efficient for the NAS benchmark suite. Detailed analysisof
the performance data shows that the execution time of trace
logicalization is likely to be modest for realistic scenarios.
The key steps of the framework were analyzed in detail. In
particular, for the purpose of identifying the communication
topology of an application, a suite of simple tests were
found to be very effective, the performance of the graph
isomorphism test was adequate for practical scenarios, while
the graph spectrum test was found to have limited value and
scalability. The paper lays the foundation for a new approach
to summarization and reduction of message passing traces that
is powerful and likely to be enhanced by future research.

VIII. A CKNOWLEDGMENTS

Support for this work was provided by the National Science
Foundation under Award No. SCI-0453498, CNS-0410797
and ACI-0234328. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

We would also like to thank Ravi Prithivathi for his contri-
bution to this work.

REFERENCES

[1] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler. Performance
optimization for large scale computing: The scalable VAMPIR approach.
In International Conference on Computational Science (2), pages 751–
760, 2001.

[2] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance
evaluation of the VF graph matching algorithm. InProc. of the 10th
ICIAP, volume 2, pages 1038–1041. IEEE Computer Society Press,
1999.

[3] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
predicting program behavior and its variability. InInternational Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
New Orleans, LA, September 2003.

[4] P. Foggia, C. Sansone, and M. Vento. An improved algorithm for
matching large graphs. InThe 3rd IAPR-TC15 Workshop on Graph-
based Representations, 2001.

[5] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A sur-
vey of software for sparse eigenvalue problems. Technical Report
STR-6, Universidad Politécnica de Valencia, 2006. Available at
http://www.grycap.upv.es/slepc.

[6] S. Huband and C. McDonald. Debugging parallel programs using
incomplete information. In1st IEEE Computer Society International
Workshop on Cluster Computing, pages 278–286, 1999.

[7] S. Huband and C. McDonald. A preliminary topological debugger for
MPI programs. In1st International Symposium on Cluster Computing
and the Grid (CCGRID 2001), page p. 422, 2001.

[8] J.Gonzalez, J. Gimenez, and J. Labarta. Automatic detection of parallel
applications computation phases. InProceedings of 23rd IEEE Inter-
national Parallel and Distributed Processing Symposium, Rome, Italy,
May 2009.

[9] D. Kerbyson and K. Barker. Automatic identification of application com-
munication patterns via templates. In18th International Conference on
Parallel and Distributed Computing Systems, Las Vegas, NV, September
2005.

[10] M. Noeth, F. Mueller, M. Schulz, and B. de Supinski. Scalable
compression and replay of communication traces in massively parallel
environments. In21th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2007), Long Beach, CA, April 2007.

[11] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In
International Symposium on Computer Architecture (ISCA), June 2003.

[12] J. Singler. Graph isomorphism implementation in LEDA 5.1.
http://www.algorithmic-solutions.de/bilder/graphiso.pdf.

[13] J. Subhlok and Q. Xu. Automatic construction of coordinated perfor-
mance skeletons. InNGS 2008: NSF Next Generation Software Program
Workshop (Appears in Proceedings of IPDPS 2008), Miami, FL, April
2008.

[14] T. Tabe and Q. Stout. The use of the MPI communication library in the
NAS Parallel Benchmark. Technical Report CSE-TR-386-99, University
of Michigan, Nov 1999.

[15] J. S. Vetter and M. O. McCracken. Statistical scalability analysis of
communication operations in distributed applications. In2001 ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPOPP’01), pages 123–132, 2001.

[16] J. S. Vetter and F. Mueller. Communication characteristics of large-scale
scientific applications for contemporary cluster architectures.J. Parallel
Distrib. Comput., 63(9):853–865, 2003.

[17] S. Voss and J. Subhlok. Performance of general graph isomorphism
algorithms. Technical Report UH-CS-09-07, University of Houston, Aug
2009.

[18] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan,
E. Lusk, and W. Gropp. From trace generation to visualization: A
performance framework for distributed parallel systems. In Proc. of
SC2000: High Performance Networking and Computing, November
2000.

[19] Q. Xu and J. Subhlok. Construction and evaluation of coordinated per-
formance skeletons. InThe 15th annual IEEE International Conference
on High Performance Computing (HiPC 2008), Bangalore, India, Dec
2008.

[20] Q. Xu and J. Subhlok. Efficient discovery of loop nests incommu-
nication traces of parallel programs. Technical Report UH-CS-08-08,
University of Houston, May 2008.

[21] B. Yorgey. Generating multiset partitions.The Monad.Reader, (8):5–20,
Sept 2007.

10

