
A High-Level Interpreted MPI Library for Parallel
Computing in Volunteer Environments

Troy P. LeBlanc Jaspal Subhlok Edgar Gabriel

Department of Computer Science
University of Houston
Houston, TX 77204

Abstract— Idle desktops have been successfully used to run
sequential and master-slave task parallel codes on a large scale
in the context of volunteer computing. However, execution of
message passing parallel programs in such environments is
challenging because a pool of nodes to execute an application may
have architectural and operating system heterogeneity, can in-
clude widely distributed nodes across security domains, and nodes
may become unavailable for computation frequently and without
warning. The VolPEx (Parallel Execution on Volatile Nodes)
tool set is building MPI support in such environments based
on selective use of process redundancy and message logging.
However, addressing this challenge requires tradeoffs between
performance, portability, and usability. The paper introduces
a robust MPI library that is designed to be highly portable
across heterogeneous architectures and operating systems. This
VolpexPyMPI1 library is built with Python, works with Linux
and Windows platforms and accepts user level MPI programs
written in C or FORTRAN. The performance of VolpexPyMPI
is compared with a traditional C based implementation of MPI.
The paper examines in detail the tradeoffs of these usability
focused and performance focused approaches.

I. INTRODUCTION

To date, most desktop computers and workstations are
virtually idle as much as 90% of the time, representing what
the volunteer computing community sees as an attractive
”free” platform for data parallel computations. Idle desktops
have been successfully used to run sequential and master-
slave task parallel codes, most notably under Condor [12] and
BOINC [1]. Extending the classes of application that can be
executed in a volunteer environment turns out to be highly
challenging, since the compute resources are heterogeneous,
have varying compute, memory and network capacity, and
become unavailable for computation frequently and without
warning. Further, the nodes are connected with a shared
network where available latency and available bandwidth can
vary. Because of these properties, we refer to such nodes as
volatile and parallel computing on volatile nodes is the focus
of this work.

Traditionally, MPI libraries such as OpenMPI [6] are imple-
mented in C/C++ and use, in the case of Ethernet networks,
non-blocking TCP sockets for communication. While this
might be the best approach from the performance perspective,
porting such an implementation to non Unix/Linux based

1This work was conducted as a part of the author’s doctoral research while
on Fellowship from the NASA Johnson Space Center.

operating systems – most notably Windows – and supporting
arbitrary configurations of various operating systems and ar-
chitectures is a non-trivial task that requires significant effort.
The main reason is that system calls are not necessarily identi-
cal on different operating systems, and complex configuration
scripts are often required as glue for a heterogeneous envi-
ronment. The same holds for supporting heterogeneous hard-
ware configurations, especially when the data representation
supported by the processors differs, requiring potentially byte
swapping and data padding for each element of a message.
Furthermore, it has been documented that for utilizing systems
with strongly varying performance, an internal flow control is
required within the MPI library to make sure that a slow node
is not flooded with data from a fast node [4].

In this paper we explore an alternative approach to pro-
vide message passing communication in volunteer computing
environments based on Python, a high-level programming
language. Python offers a number of features that make it
highly attractive to volunteer computing environments such as
platform independence due to the fact that it is an interpreted
language; seamless handling of Linux, Windows or other oper-
ating systems as well as any combination of them; and a large
collection of available libraries which ease the development
of Python based applications and systems. In contrast to some
existing Python MPI libraries, our library targets volunteer
computing environments and supports process failures.

VolpexPyMPI consists of two major building blocks. The
first is a node selection framework to monitor a set of volunteer
computers that could be tasked with executing a standard
MPI program. The second building block is the actual MPI
library. The MPI library utilizes the Python/C Application
Programming Interface (API) to interface the VolpexPyMPI
library to execute unaltered MPI programs written in C or
FORTRAN. The resulting library system allows execution on
a mix of Linux and Windows nodes in a framework that can
execute unaltered user MPI programs.

The paper is organized as follows. Section III presents the
design of the node selection framework and the MPI library.
Section IV analyzes the performance of the VolpexPyMPI,
with an overall discussion of the findings in section V.
Section II presents the related work in the area and finally
section VI contains conclusions.



II. DESIGN AND IMPLEMENTATION

VolpexPyMPI is an MPI library targeting volunteer com-
puting environments. In order to provide reliable execution on
failure prone volunteer computing environments, the Volpex
approach to MPI library design is centered around the follow-
ing principles:

1) Controlled redundancy: A process can be initiated as
two (or more) replicas. The execution model is designed
such that the application progresses at the speed of the
fastest replica of each process, and is unaffected by the
failure or slowdown of other replicas.

2) Receiver based direct communication: The communica-
tion framework supports direct node to node communi-
cation with a pull model: the sending processes buffer
data objects locally and receiving processes contact one
of the replicas of the sending process to get the data
object.

3) Distributed sender based logging: Messages sent are
implicitly logged at the sender and are available for
delivery to process instances that are lagging due to slow
execution.

As stated earlier, VolpexPyMPI comprises two major build-
ing blocks, namely the node selection framework and the MPI
Library. Among the foremost goals of VolpexPyMPI is the
ability to execute on Linux and Windows nodes over a Wide
Area Network (WAN) and organize communication between
replicated sets of nodes. Furthermore, it must also be able to
organize data subset delivery to nodes, and track availability of
nodes. Finally, it must be able to deliver and execute unaltered
MPI programs on the nodes.

A. Node Selection Framework

The main goal of the node selection framework is to
monitor a set of volunteer computers that could be tasked
with executing a parallel application. The VolpexPyMPI node
selection framework was built as an asynchronous XML-RPC
webserver (henchforth called Volpex server) and XML-RPC
clients (henthforth called Volpex clients). The Volpex server
and client software were written in Python and can run on
Linux and Windows systems.

Among the main functionality of the Volpex server is to
maintain a GlobalMap, which is a configuration file in tabular
representation showing the status of all Volpex clients. The
GlobalMap is implemented using Python’s SQLite3 module,
a lightweight disk-based database that does not require a
separate server process. The GlobalMap status, includes the
last check-in time (reported as DDD/HH:MM:SS), the last
status message from the server to the client, the last status
message from the client to the server, and the type of OS
running on the client node. The Volpex server status messages
include abort, start, inactive, suspect, and the Volpex client
status messages include done, active, ready and avail. Upon
start of an MPI application, the Volpex server forwards the
GlobalMap to the Volpex clients, which store it as an in-
memory data structure.

The Volpex server utilizes port 8080 and is run on a standard
Linux server also running the Apache webserver which utilizes
port 80 for user interaction in MPI run setup. The Volpex
server interacts with the Volpex clients over the specified port
and through a set of public functions described later. The user
interface controls available to the end user are via CGI scripts
used to interact with the Volpex server via a webpage. The
webpage allows to set the number of MPI processes, the level
of redundancy required (currently limited to single, double,
or triple redundancy), and upload the user’s MPI program to
the server for compilation. For the purposes of initial testing
an additional drop-down list interface allowed easy selection,
upload and compilation of the NAS Parallel Benchmarks. The
user interface also has other buttons such as Execute, Print
Event Log and Reset Mapping for controlling the test case
execution.

The webpage interface also shows the SendBuffer and the
Event Log on a per process basis. The role of the SendBuffer is
detailed in the following subsection. The Event Log offers the
ability to track the progress of each process individually. Note
that the event log is typically turned off for actual performance
measurements. Each node in the GlobalMap that is involved
in the execution of a particular MPI run can post the contents
of its SendBuffer and Event Log to the Volpex server after the
run for analysis.

Performance monitoring of the Volpex server and clients
shows a relatively low CPU utilization of about 0.1% during
quiescent timeframes. CPU and memory utilization during
MPI runs will, of course, increase dramatically.

B. MPI Library Functions

As mentioned earlier the foremost goal of the MPI library
on VolpexPyMPI is to ease the support of heterogeneous
software and hardware configuration, ease the deployment
of the applications onto the client nodes, and provide a
robust communication environment between the client nodes.
From the conceptual perspective, the main features of the
VolpexPyMPI library are (i) the ability to execute multiple
copies of each MPI process and (ii) utilize a receiver based
pull model combined with sender-side message logging. In the
following we detail both aspects.

To ensure failsafe completion of MPI programs, the Volpex
XML-RPC server builds a configuration file, the GlobalMap,
described in the previous section. The configuration file is
passed to the Volpex clients and allows identification of
redundant independent nodes. A new naming scheme that
allows identification of redundant nodes is established and
assigned when the configuration file is read into memory. The
scheme uses the normal rank identifier used in other MPI
installations and as well as a letter to identify redundancy
level. As shown in Figure 2, node ”0,A” indicates the rank
0 of the first redundancy level whereas, for example, ”3,C”
indicates the rank 3 node of the third redundancy level. It
should be noted that VolpexPyMPI assigns every process to a
different processor and that the MPI application is not aware
of the redundancy level of any process.



Fig. 1. VolpexPyMPI employs redundant nodes to provide fault tolerance in
the volunteer environment.

The VolpexMPI Library uses a pull model, as described
previously to accomplish using the redundant nodes to suc-
cessfully complete a MPI program run even if one or more
volunteer nodes fail to complete execution. To implement
this functionality in VolpexPyMPI, the following functional
requirements are met:

1) MPI Send and MPI Isend are copying data to a local
SendBuffer such that any node or redundant copy can
request to receive a message from any other node or
redundant copy.

2) MPI Recv and MPI Irecv first send a short message
to check if a connection to a source node can be made
before attempting to receive the real message.

3) Each redundant group of nodes operates independently.
If no failures or drop-offs occur then all redundant
groups would successfully complete.

Since different replicas can be in different execution states,
a message matching scheme has to be employed to identify
which message is being requested by a receiver. For determin-
istic execution, a simple scheme that timestamps messages by
counting the number of messages exchanged between pairs
of processes is applied based on the tuple [communicator id,
message tag, sender rank, receiver rank]. These timestamps are
also used to monitor the progress of individual process replicas
for resource management. Furthermore, a late replica can
retrieve an older message with a matching logical timestamp,
which allows restart of a process from a checkpoint.

The SendBuffer provides the functionality to store and
retrieve an MPI message based on the tuple described above.
An important question is whether the message buffers on
the sender processes must be maintained for the duration of
execution or whether they can be cleared at some point. From
the logical perspective, a message buffer can never be cleared
due to the fact that, even if all replicas of a particular rank
have received a given message, all of them might fail to finish
the execution. Thus, a new replica of that process might have
to be started, which would have to retrieve all messages. There
are two versions of the Sendbuffer management available
in VolpexPyMPI. The first version utilizes once again the
SQLite3 module and does not limit as of today the size of the
SendBuffer. The second version uses a Python array treated as
a circular buffer. Note, that the long-term goal is to coordinate
the size of the SendBuffer with checkpoints of individual
processes, which will allow guaranteed restarts with a bounded
buffer size.

For the actual data transfer between the MPI processes,
VolpexPyMPI has once again two options: the first utilizes the
XML-RPC services for communication between the processes.
The second version uses a standard Python Threaded TCP
SocketServer class for the direct node-to-node communication,
and uses the XML-RPC service only for the communication
between to the Volpex server and clients.

TABLE I
MPI FUNCTIONS IMPLEMENTED IN VOLPEXMPI TO EXECUTE THE NPBS

MPI Init MPI Finalize
MPI Send MPI Recv
MPI Isend MPI Irecv

MPI Reduce MPI Allreduce
MPI Alltoall MPI Alltoallv

MPI Wait MPI Waitall
MPI Comm rank MPI Comm size

MPI Bcast MPI Barrier
MPI Comm split MPI Comm dup

MPI Abort MPI Wtime

Figure ?? shows the VolpexPyMPI architecture and Table I
lists all of the MPI functions chosen for this first version
of VolpexPyMPI which is based on their usage in the NAS
Parallel Benchmarks.

Fig. 2. VolpexPyMPI Architecture

In the following, we describe the four most basic func-
tions of the library, namely MPI Init, MPI Finalize,
MPI Send and MPI Recv. All other functions are, in fact,
built upon these four functions.
MPI Init initializes the VolpexPyMPI execution environ-

ment. Among the items initialized are the Python runtime en-
vironment, a request list for the management of non-blocking
messages, structures for tracking the logical time stamps,
reading the configuration file into a local data structure,
initializing the SendBuffer, and resolving the private IP address
and hostname of the local processor. Each process furthermore
reads the GlobalMap from the Volpex server and appends IP
addresses and ports to the active in-memory data structures.
MPI Finalize terminates the VolpexPyMPI execution

environment and frees data structures. MPI Finalize first
waits for a predefined amount of time (e.g. 5 seconds).
This additional waiting time allows other processes to still
retrieve messages and finish gracefully for benchmarking
purposes, but is not required for production runs later on.
Using Py Finalize, a Python library call, VolpexPyMPI
shuts down the Python run-time interpreter which will finally
de-allocate the data structures such as the SendBuffer.
MPI Recv highlights how the receiver based direct commu-

nication works; therefore, we would like to discuss it in some
more details. First, we determine the logical timestamp of the
message based on the tuple of [sender rank, receiver rank,
communicator and tag]. Next a TargetSelect function is
called to determine which target nodes to call and in which
order to call them in case of failures. For example, if a process
with the rank 1 wants to receive a message from the process
with rank 2 and the run was utilizing triple redundancy, the
TargetSelect function would read the GlobalMap for the
particular communicator to determine the IP address and port
number of nodes ”2,A”, ”2,B” and ”2,C”. The MPI function
would then proceed in a round-robin fashion attempting to
receive the message. This usually starts with an attempt to
contact the rank 2 within the same redundancy level as the



requesting rank 1 node. If the node is unreachable, the MPI
receive function proceeds to the next higher redundancy level
or loops around to the lowest level, if necessary. If the first
receive call is successful, the MPI library proceeds normally
without ever attempting to contact the redundant nodes. If
attempts are unsuccessful, the target is marked as unreachable
within the GlobalMap and there are no further attempts to
contact the node for data. Once a target is chosen, a TCP
call is made to the target MPI process’ TCP service via the
VolpexSBRequest.

Note, that the non-blocking function MPI Irecv capital-
izes on the use of Threads and allows a request for data
to proceed in the background until the associated MPI Wait
request is encountered.

The implementation of MPI Send (and MPI Isend) in
VolpexPyMPI is fairly simple, since it only copies data to
the local SendBuffer after the size of the MPI datatype used
is determined. The library also determines the logical time
stamp of each message and stores it along with the other
communication parameters in order to uniquely identify a
message upon request from a receiver process.

III. PERFORMANCE EVALUATION

The evaluation focuses on characterizing the performance of
the Python MPI Library. And, while it would be interesting to
evaluate the performance of the MPI Library on heterogeneous
volunteer computers, we executed benchmarks on a dedicated
cluster in order to have a controlled test environment and
to have comparable performance results for an interpreted
language implementation. The dedicated cluster utilizes 29
compute nodes, 24 of them having a 2.2 GHz dual core AMD
Opteron processor, and 5 nodes having two 2.2GHz quad-core
AMD Opteron processors. Each node has 1 GB main memory
per core and network connected by 4xInfiniBand as well as a
48 port Linksys GE switch. We utilized Python 2.4 across the
cluster. For evaluation we utilize the Gigabit Ethernet network
interconnect of the cluster to compare the VolpexPyMPI run
times to the C-version of VolpexMPI [9].

The BT, CG, EP, IS and SP benchmarks from the NAS
Parallel Benchmarks suite are executed for 4 process counts
and a data class set size of S. For each experiment, the run
times were captured as established and reported in the NPB
with the normal MPI Wtime function calls for start and stop
times.

Figure 4 shows the first test results for runs of 4 processes
utilizing the Class S data sets for the five NPBs of interest.
These reference executions did not employ redundancy. The
run times for the C version of VolpexMPI are shown for
comparison in the bar graph. All times are noted as normalized
execution times with a reference time of 100 for the C version
of VolpexMPI. Two different sets of results are shown for
VolpexPyMPI. Version 1 contains the SQLite3 version of
the SendBuffer management, and uses the XML-RPC service
for node-to-node communication. Version 2 uses the circular
buffer for SendBuffer management and the threaded TCP-
service for data transfer. The results indicate, that version 1 of

VolpexPyMPI run times are between 5 and 55 times greater
than the corresponding C version of the library. VolpexPyMPI
version 2 greatly improves the execution time of these bench-
marks, reducing the overhead to a more manageable factor of
1.5 in the best case and 6.5 in the worst case compared to the
C-only counterpart. Therefore, for the rest of the analysis we
are focusing entirely on the 2nd version of VolpexPyMPI.

Fig. 3. Performance results of two versions of VolpexPyMPI compared to
the C version.

Next, we document the effect of executing an application
with multiple copies of each MPI process. The left part of
Figure 5 shows the normalized execution times of Volpex-
PyMPI for the very same test cases running with no (same
as single) redundancy (x1), double redundancy (x2) and triple
redundancy (x3). The results indicate that, for most bench-
marks, the overhead due to redundant execution is minimal if
no failure occurs, i.e. executing multiple copies of each MPI
processes does not impose a significant performance penalty in
the VolpexPyMPI scheme/model. The double redundancy (x2)
runs show minimal sensitivity to process replication; however,
the triple redundancy (x3) runs show higher sensitivity to
process replication, especially for BT and SP. This is possibly
due to the fact that requests for data are made in a round-
robin fashion to all redundant processes where the requesting
process waits only for a short time and then attempts to call
another source target.

Fig. 4. Performance results of VolpexPyMPI for single, double and triple
redundancy.

Finally, we document the performance impact of a process
failure for the NAS Parallel Benchmarks when using Volp-
exPyMPI. For this, we inserted into the source code of each
benchmark some statements which terminate the execution of
the second replica of rank 1 in MPI COMM WORLD, emulat-
ing a process failure. All processes communicating with the
terminated process will thus have to repost all pending com-
munication operations to the only remaining replica of process
1. This test case represents one of the worst case scenarios for
VolpexPyMPI, since the number of processes communicating
with a single process doubles at runtime. Killing more than
one process would actually relieve the remaining processes
with rank 1, since the number of communication partners
is reduced. The results shown in Figure 6 show virtually
no overhead in the scenario outlined above compared to the
fault-free execution of the same benchmark using double
redundancy.

Fig. 5. Performance results of VolpexPyMPI in case of a process failure.

IV. DISCUSSION

Our experiments demonstrate, that unaltered MPI appli-
cations such as given with the NAS Parallel Benchmarks



can be executed using VolpexPyMPI. In our experience,
the fundamental benefits of using a ’Python only’ approach
including components such as SQLite3 and the XML-RPC
scheme are the increased portability of the software, ease of
development of the MPI library and ease of deployment of
applications. The consequences of this approach are, however,
a significant performance degradation compared to using a
’legacy’ programming language such as C. By combining both
approaches, namely using Python for the overall management
of processes and non-performance critical section, and using
more traditional TCP services and in-memory data structures
for performance critical aspects of the library, we managed
to create a hybrid implementation that combines the best of
both worlds: portability of python and a manageable perfor-
mance overhead. Finally, the applications that are likely to be
executed in a volunteer environment are not likely to be as
communication intensive as most NAS benchmarks. Hence,
the overheads of NAS benchmarks can be considered to be a
worst case scenario.

V. RELATED WORK

Fault tolerant methods for MPI libraries can be divided
into two main categories: approaches using check-point restart
mechanism, and libraries using replication techniques.

There are a large number of MPI libraries that incorporate
checkpoint-restart for fault-tolerance, with MPICH-V [3] be-
ing probably the best known example. This library is based
on uncoordinated check-pointing and pessimistic message
logging. The library stores all communications of the system
on reliable media through the usage of a channel memory. In
case of a process failure, MPICH-V is capable of restarting
the failed application process from the last checkpoint and
replay all messages to that process. Although some of the
conceptual aspects of our work are similar to MPICH-V, there
are key architectural differences, most notably the ability to
run multiple replicas of an MPI process.

MPI/FT [2] and P2P-MPI [7] are based on process replica-
tion techniques. In P2P-MPI for example, each set of process
replicas maintain a master replica that distributes messages.
Fault detection is done using a gossip-style protocol. P2P-
MPI also takes advantage of locality awareness and co-
allocation strategies. A key difference between P2P-MPI and
the approach presented in this paper is the utilization of a pull
model for data communication in VolpexPyMPI that allows
execution to be driven by the fastest replica.

Furthermore, there are a number of Python based MPI
libraries. Pypar [10] provides bindings to a subset of the
message passing interface standard MPI. To execute MPI
programs, Pypar depends on a Python installation, an MPI
library, Numeric Python and a C compiler. Pypar works with
each python process importing pypar which, in turn, imports
a shared library that has been statically linked to the C MPI
library (e.g., mpich). MPI for Python (mpi4py) [5] provides an
object oriented approach designed for translating MPI syntax
and semantics from C++ to Python. This implementation

passes general Python objects for blocking point-to-point com-
munications. Mpi4py depends on a working MPI distribution
and Python 2.3 minimally. Pypar and Mpi4py are not pure
implementations of the MPI standard.

The final two examples researched are pure Python imple-
mentations. The pyMPI [11] completely rebuilds the python
interpreter to be an integral part of each parallel process. The
intention of the developers is to provide an MPI library for
MPI programs written in Python. This differs fundamentally
from the basic requirement of VolpexPyMPI to be able to
compile and execute user MPI programs written in both C
and FORTRAN. Pydusa [8], also called MyMPI, is closest in
design to VolpexPyMPI because it supports heterogeneity as
well as dynamic process creation. It uses the existing Python
interpreter and has implemented 30 MPI functions in its
library. This implementation does not currently support non-
blocking point-to-point communication or redundancy. Pydusa
is also intended for executing MPI programs written in Python.

In conclusion, the researched Python implementations of
MPI are mostly scoped to allow the user to write MPI
programs in Python versus C or FORTRAN. While this may
be a useful tool on some cases, the majority of the scientific
MPI programs are written in C or FORTRAN.

VI. CONCLUSIONS

This paper explored a Python based implementation of
MPI for volunteer computing environments. We demonstrated
that the fundamental approach is appropriate to provide
fault-tolerance based on process replication and a pull
model communication scheme combined with sender based
message logging. The ongoing work on VolpexMPI and
VolpexPyMPI includes developments in algorithms and
execution environments. We are working on integrating
checkpoint-restart with VolpexMPI to dynamically manage
replication by recreating slow and failed replicas from healthy
replicas. We are also actively developing novel algorithms
for target selection that involves identifying groups of
process that are closest to each other in network distance at
execution stage. Furthermore, we are currently testing the
NAS benchmarks with larger process counts and investigating
several scientific applications as candidates for execution
on desktop computer clusters for VolpexMPI. Candidate
applications have typically large memory and compute
requirements combined with a low degree of communication
between the individual MPI processes.

VII. ACKNOWLEDGMENTS

Partial support for this work was provided by the National
Science Foundation’s Computer Systems Research program
under Award No. CNS-0834750. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.



REFERENCES

[1] D. Anderson. Boinc: A system for public-resource computing and
storage. In Fifth IEEE/ACM International Workshop on Grid Computing,
November 2004.

[2] Rajanikanth Batchu, Jothi P. Neelamegam, Zhenqian Cui, Murali Bed-
dhu, Anthony Skjellum, and Yoginder D. Mpi/ft tm : Architecture
and taxonomies for fault-tolerant, message-passing middleware for
performance-portable parallel computing. In In Proceedings of the 1st
IEEE International Symposium of Cluster Computing and the Grid,
pages 26–33, 2001.

[3] Aurélien Bouteiller, Franck Cappello, Thomas Herault, Géraud
Krawezik, Pierre Lemarinier, and Frédéric Magniette. Mpich-v2: a
fault tolerant mpi for volatile nodes based on pessimistic sender based
message logging. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 25, Washington, DC, USA, 2003.
IEEE Computer Society.

[4] IMPI Steering Committee. IMPI - interoperable message-passing inter-
face. http://impi.nist.gov/.

[5] Lisandro Dalcin. Mpi for python. http://mpi4py.scipy.org/.
[6] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.

Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel,
Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implementation. In
Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[7] Stephane Genaud and Choopan Rattanapoka. Large-scale experiment
of co-allocation strategies for peer-to-peer supercomputing in p2p-
mpi. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium, pages 1–8, 2008.

[8] Timothy H. Kaiser. Pydusa- parallel programming in python.
http://sourceforge.net/projects/pydusa/, 2008.

[9] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok. Volpexmpi:an mpi
library for execution of parallel applications on volatile nodes. In
In Proc. The 16th EuroPVM/MPI 2009 Conference, Espoo, Finland.
Springer-Verlag LNCS,5759, September 2009.

[10] Ole Moller Nielsen. Pypar. http://datamining.anu.edu.au/ ole/pypar/.
[11] P. Miller. pyMPI An introduction to parallel Python using MPI.

https://computing.llnl.gov/code/pdf/pyMPI.pdf, September 2002.
[12] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed

computing in practice: the condor experience. Concurrency - Practice
and Experience, 17(2-4):323–356, 2005.


