Efficient Discovery of Loop Nests in Execution
Traces

Qiang Xu Jaspal Subhlok and Nathaniel Hammen
CGGVeritas Inc. Department of Computer Science
University of Houston
Email: Qiang.Xu@cggveritas.com Email: jaspal@uh.edu

Abstract—Execution and communication traces are central ~ 2) An important objective of this research is to identify
to performance modeling and analysis. Since the traces can the representative sections of a trace. These are clearly
be very long, meaningful compression and extraction of rep- defined in a loop nest but not if the compressed rep-

resentative behavior is important. Commonly used compressn tation is in the f f string tabl .
procedures identify repeating patterns in sections of theriput resentation is in the form of string tables (gzip) or a

string and replace each instance with a representative synab. grammar (Sequitur).
This can pl_revent the identifica_1tion of long repeating sequeces In Table I, we illustrate these points by showing the com-
corresponding to outer loops in a trace. This paper introdues pressed form of LU benchmark trace with Sequitur and our

and analyzes a framework for identifying the maximal loop nest loop discovery procedure. The compressed representation |
from a trace. The discovery of loop nests makes constructionf

compressed representative traces straightforward. The pzer also @ grammar for Sequitur and a loop nest for our procedure.
introduces a greedy algorithm for fast “near optimal” loop nest While the compression achieved is good in both cases, it is
discovery with well defined bounds. Results of compressing M easy to see that the representative sections of the trace are
communication traces of NAS parallel benchmarks show that easijly identified in the loop nest form as the elements of the
both algorithms identified the basic loop structures corredly. loops with large numbers of iterations.

The greedy algorithm was also very efficient with an average he | - . be derived i
processing time of 16.5 seconds for an average trace lengtti o | N€ 100p nest in an execution trace can be derived in

71695 MPI events. a straightforward way by repeatedly identifying the lortges
Index Terms—Trace compression, loop discovery, performance matching substring first. However, commonly used algorghm
modeling to achieve this are quadratic for a given match length and

hence cubic in trace length, and therefore impractical for
long traces. A practical approach is to limit the window size
Execution and communication traces are central to perf@gy substring matching, which again risks missing long span
mance analysis and performance modeling. However, traggeats [5].
processing is a challenge as the trace length can be larggefore presenting our approach, we introduce the basic
even for traces of relatively coarse grain events. Forelpatterminology for distinguishing various types of repeatjrag-
execution traces often contain repeating sequences tmat gans. Repeating substrings (@peats in a string can béan-
be identified to capture representative behavior. The gbal gemrepeats where successive repeat substrings immediately
the research presented in this paper is to develop effectfgiow each otherpverlappingrepeats where repeat substrings
and efficient procedures to identify the representativi®®® overlap, andplit repeats where repeat substrings are separated
of an execution traces by discovering the loop nest stractfy other symbols. Since we seek to identify the loop strectur
inherent in the trace. There are, of course, several welvknoin 3 trace, we are only interested in tandem repeats. A tandem
algorithms and tools for string compression. Most compoess repeat iprimitive if it is itself not composed of tandem repeats
procedures apply heuristics to selectively reduce seteof bf another substring. A set of tandem repeatsmaximal
peating substrings. Examples inclugep [1] that constructs a if there is no identical substring immediately preceding or
dictionary of frequently occurring substrings and reptaeach sycceeding the sequence of tandem repeats. We will refer to
occurrence with a representative symbol, a@equitur[2], the primitive and maximal tandem repeats in a strindPd
[3], [4] that infers the hierarchical structure in a string brepeats In the rest of the paper, “loops” technically refer to
automatically constructing and applying grammar rules fg#\-repeats in the execution trace, which (presumably) éxis
reduction of substrings. These approaches are efficient ajitause of the execution of program loop®ur objective
procedures can be designed to have execution time thajsisind and reduce the PM-repeats of different spans in an
nearly linear in trace length. The key reasons for develppigxecution trace, which is the same as discovering the inhere
a new approach are as follows: loop nest structure in the execution trace.
1) These compression procedures are not guaranteed tdo illustrate the properties of PM repeats, consider thagtr
identify long range loop patterns because of heuristabababab The PM-repeats corresponding to this string are
early reductions. represented a&b)* which is the most compact representation.

I. INTRODUCTION

Compressed trace with Sequitur algorithm:
S0O—-VVV1IX1IW234YRUS567899910111213R14RSRPYAOYFTTT
1—-WW 2—- Q14 3—-YQ 4—J3H3E3C 5— 1515 6— 515

7 — 16 16 8— 716 9— 10 10 10— 11 11 11— 12 12 12— 17 17
13—-146587 14— 2Y 15— 18 18 16— 19 19 17— 20 20 18— 21 21
19 - 22 22 20— 13 13 21— 2323 22— 2424 23— 2525 24— 26 26

25— 27 27 26— 28 28 27— NKID 28— MLGB

Compressed trace with loop nest discovery algorithm:
(VEW)2XW)*(QJIJYQHYQEYQCY)>?RU(NKID)'*(MLGB)'°QJYQHYQEYQCY)**?
(NKID)'*(MLGB)'**RQJYQHYQEYQCY RSRPY AOY F(T)*

TABLE |
COMPRESSED TRACE WITHSEQUITUR AND THE LOOP NEST DISCOVERY ALGORITHM PRESENTED INHIS PAPER EACH SYMBOL REPRESENTS A UNIQUE
MP| OPERATION. THE INPUT TRACE IS FORCLASS C LU BENCHMARK WITH 323048TRACE SYMBOLS

The string can also be represented as tandem repéats)> The greedy loop nest discovery procedure was also imple-
but this would not be primitive, since the repeating subgtri mented and employed to discover the loop nests in the MPI
itself is a tandem repeat of another strilg The string can traces of NAS benchmarks. The loop nests always satisfied the
also be represented &s)>ab but this would not be a maximal criteria above, and were, in fact, identical to the optinald
repeat. Henceab)* represents the only PM-repeats sequenceests in all but one case. However, the time for loop disgover
or optimal loop, for this string. was dramatically lower than the optimal algorithm, with the
Fsompression time reduced to approximately 62 seconds from
1 hours for one trace.

To the best of our knowledge, this is the first effort toward
extracting complete loop nests from execution traces. The
paper presents detailed results on the effectiveness s tile
gorithms in discovering loop nests and achieving compo@ssi

identifying the longest span PM repeat in a trace. Intulgive . ;
this procedure discovers loop nests by repeatedly idéndfy The performance and scalability of the greedy and op'FlmaI
algorithms are also presented and analyzed. Of particular

and reducing the outermost loop in a trace. For the termgyolo; N . .
J P 90 Jnterest are the insights into the theoretical complexityhe

of this paper we will refer to such a loop nest as “optimal”. . o

The procedure was applied to identify the loop nests in t orithms and the empirical measur_ements of performance.

MPI communication traces of NAS benchmarks. The com-'¢ methodology developed is applicable to any sequence
t is likely to contain a loop structure even though the

pression results were very good, but the execution time) al " ted in th imited 1
unacceptable for long traces; processing of a trace cdng;istexloe”men al resufts presented in this paper are fimited 1o
message passing communication traces.

of approximately 320K MPI calls took over 31 hours.

Our approach to identifying the loop structure in a trace
derived from Crochemore’s algorithm [6], which can idey1tif3
all repeats in a string, including tandem, split, and oyasiag
repeats, inO(nlogn) time. A framework was developed in
this research to discover the loop nest structure by realysi

The results motivated us to develop a greedy procedure Il. MOTIVATION AND CONTEXT
for loop structure discovery, which is a key contribution of This research was motivated by performance estimation
this paper. The greedy procedure intuitively works bottgm un foreign environments based on performance skeletons. A
- it identifies and reduces the shorter span inner loops apé@rformance skeletoof an application is defined to be a short
replaces them with a single symbol, before discovering tfignning program whose execution time in any scenario reflect
longer span outer loops. In this respect, it appears sirtolarthe execution time of the application it represents; thugsn
other approaches that apply heuristics to identify repgatitimate of the application execution time in a new environtmen
substrings and replace them with symbols to enable efficidatobtained by simply executing the performance skeletah an
processing. However, the key characteristic of our algorits appropriately scaling the measured skeleton executios. tim
that only primitive and maximal tandem repeats (PM-repeatbhe key steps in the construction of a performance skeleton
representing a section of the trace that corresponds to Idopm the MPI level process traces of an application are the
execution, are reduced to a single symbol. No other repgati@llowing:
substrings are reduced. The intuition is that reductionaxfe 1) Trace logicalizationFor parallel scientific applications,

sections corresponding to complete inner loop executidh wi the traces for different processes are typically similar
not interfere with the discovery of outer loops. An impottan to each other and the communication is associated with
contribution of this work is to establish that the loop sttuwe a well defined global communication patteirogical-
discovered by the greedy algorithm is provahbar optimal ization converts a family of processor traces into a sin-
Intuitively, the greedy approach still guarantees thealiscy gle logical program tracethat represents the aggregate
of long span loops or PM-repeats, but with up to 2 less execution of the program. Logicalization is a complex
iterations. The result is formally described and refinedhia t and potentially lossy procedure that is orthogonal to the

paper. subject of this paper but is detailed in [7].

2) Trace compressiorThe focus of this paper is traceoccurrences of all primitive tandem repeatin + z) time,
compression by discovering the implicit loop structureyhere z is the number of occurrences of primitive tandem
which is applied to a single logicalized trace for skeletorepeats in a string. In [15], the repeating substrings imiagst
construction. Trace logicalization and trace compressiamd their statistics are inferred from suffix trees, and used
are complementary procedures. Although the resultempression through greedy off-line textual substitution
presented in this paper are in the context of compressiorMe have based our loop nest identification procedure on
of logical MPI traces, the framework for compressioi€rochemore’s algorithm instead of suffix trees for two main
can be applied to any trace to identify any loop structureasons. First, we are not aware of a straightforward agproa
that may exist. to finding all primitive and maximal tandem repeats with

3) Performance skeleton generatidine final step is gen- suffix trees. Second, the process of building and processing
eration of an executable performance skeleton prograuffix trees is significantly more complex than that based on
from the compressed logical trace consisting of MRTrochemore’s algorithm.
communication and computation sections. Synthetic
computation and communication calls are generated to IV. OPTIMAL TRACE COMPRESSION

recreate the execution behavior captured by the traces.the main contribution of this paper is a framework to

This discussion provides a brief context for this papegompress execution traces by discovering the loop streictur
Skeleton construction and the prediction power of skeletofhherent in the trace. All repeating substrings in a trace
in different execution scenarios are detailed in [8]. are identified by employing the well known Crochemore’s
algorithm, but these repeats are implicit in a complex data
L) L) _ structure. The total number of repeats can be combinatarial

Compression is a basic operation in a wide variety @fe size of a string and very large in practice. The contidtout
scenarios. Many algorithms have been developed for tejlihis work in this context is the development of a framework
compression and employed in utilities likzip[1]. The basiC 1 efficiently construct the loop structure in the trace by
approach in such algorithms is to identify recurring shotgectively filtering and reducing the repeats. The proedu

strings and replace them with identifieSequitur[2], [3], consists of the following steps for discovery and reductén
[4] is a well-known algorithm that was developed to disCOVeStarmost loops:

the natural hierarchy in text and other data. The insight is

that repeating substrings are replaced by a grammar rulel)

that generates that substring and the process is continued

recursively, resulting in a hierarchical representatidnthe

structure of the string. In order to improve the processimg t

and quality of compression, PGTC (path grammar guided trace

compression) [9] is proposed as an enhanced approach th — . .

emplpoys progrzEm]1 staFtJic gnalysis to build a gramm;rpand guide Loop filtering: .D|scovery of outermost loops and their

compression. Noeth et al. [5] have developed an online ndetho replacement with loop symbols.

for identifying loops in a message passing trace. Howelier,t The above process is repeated recursively inside each

algorithm is not guaranteed to capture long range loops @§covered loop. For a string with symbols, the repeats

matching is limited to a maximum sliding window to avoiddiscovery take®)(n log n) time while loop identification and

O(n?) time complexity in the length of the trace. loop filtering takeO(n?) time. Hence the overall complexity
The goal of this work is to identify complete loop nestés O(n?). We discuss each of the above steps and the overall

from the repeating substrings discovered in a string. TheRop identification and compression procedure.

are two well known approaches to identifying all repeats in

a string systematically - one based on suffix trees and e

other based on Crochemore’s algorithm. We have employedBefore we can discuss thieop identification and loop

Crochemore’s algorithm as the basis of our approach and tfiliering that are our contributions, we have to explain how

is discussed in detail in this paper. We briefly discuss suffiepeats discoverys done with Crochemore’s algorithm. As

trees here. Suffix trees are a fundamental data structure saip optimizedsuccessive refinement metho€rochemore’s

porting a wide variety of efficient string searching alglonits. algorithm [6] computes all repeating substrings (tanderer-o

In particular, suffix trees are well known to allow efficientapping, and split) in a finite strin§ of lengthn in O (nlogn)

and simple solutions to problems concerning the identificat time. The successive refinement begins with grouping all

and location of repeated substrings. Several algorithn@, [1positions in the string that have the same symbol/charatter

[11], [12] can build a suffix tree in linear time. Stoye and single class. Each class is then refined into new subclasses

Gusfield have developed ad(nlogn) time method [13] to that contain starting positions of repeating substringsigth

find all occurrences of primitive tandem repeats in a striith w two. The process is continued to find the starting position of

suffix trees. They also proposed a novel method [14] to colleall repeating substrings of length, 3,4,5....until a szeeached

only the primitive tandem repeagpes in O(n) time and find for which no repeating substrings exist.

Ill. RELATED WORK

Repeats discovery: Discovery of all types of re-
peats (overlapping, split, and tandem) of all sizes by
Crochemore’s algorithm.

2) Loop identification: Identification of all PM-repeats
(primal and maximal tandem repeats) corresponding to
loops.

Repeats discovery

Before describing the details of Crochemore’s algorithm, wiavors matching against smaller classes, and thereby iagoid

introduce some basic string definitions.

some matching against larger classes. This description onl

Definition: A string S = s1s2s3...5,, IS an ordered list of gives a flavor of these technique and the interested reader is

characters/symbols written contiguously from left to tigfhe

referred to [6], [16] for details. Our implementation indks

lengthof Sis |S]. S[i..j] is the substringof S that starts at the indirect refinement and small classes techniques.

positioni and ends at position
Definition: Fj, is anequivalence relatiorover a stringS
defined as followsiE},j if and only if substringsS[i..i + k|

B. Loop identification
We formally define and illustrate the various types of repeat

and S[j..j + k] are identical.E}, partitions the positions of that are central to the discussion and analytical resulthig

string S into equivalence classes; if,; theni and j will

paper. The repeats discovered by Crochemore’s algorithm in

be in the samé&v;, class. We also us&, to denote the set of clude tandem, overlapping, and split repeats. Their defirst

those equivalence classes.

The simple successive refinement is based on the fact thaDefinition:

for string S, if iEyj and S[i + k]=S[j + k], theniEj.,j. For
example, consider the string
S=abaababaab a a b $

are as follows:

For positionsi and j of string S, that belong
to the sameF);, class, if|j —i| = k, then repeating substrings
Sli..i + k — 1] and S[j..j + k — 1] are tandem repeats; if
|7 — i| < k they areoverlapping repeats; and ifj — i| > k

123456 7 89 10 11 12 13 14 they aresplit repeats_

- - . For example, the substri repeats four times in strin
Initially, we construct thred”; classes containing repeating P nga rep 9

- . oQ,at positions 1,4,6, and 9 in Table Il. The secaidd is right
substrings of length one. Note that the unique character .) .
.) ehind the first one, so they constittendem repeats. The
is appended as the end of string symbol.

second and thirdba are overlapping repeats, while the first
and thirdaba are split repeats.

Our goal here is to find loop structures, so we need to
identify and report only the tandem repeats. Tandem re-
The first step of refinement splits each class f into peats in a string can be represented by a trigle3,),
classes that contain starting positions of substrings mjtte where: is the starting positionfs is the repeated substring,
two. We check the character following each position in thand ! is the number of iterations. But a substring may be
class. For clasa—{1,3,4,6,8,9,11,12 we need to check posi- represented by multiple tandem repeats. For example, the
tions {2,4,5,7,9,10,12,13in S. SinceS[4]=5[9]=S[12]=a and string abababababababab, could be described aél, ab,8),
S[2]=5[5]=S[7]=S[10]=S[13]=b, classa is split into subclass or (1,abab,4), or (1,abababab,2). Clearly the loop that we
aa—{3,8,11 and subclasab—{1,4,6,9,12. Similarly, classh— would like to identify corresponds ta, ab, 8). To generalize,
{2,5,7,10,13 s split into subclassa—{ 2,5,7,1¢ and subclass we definePM-repeatsand a correspondingM-triple , where
b$—{13}. The class$—{14} has no substring of length twoP and M stand foprimitive andmaximal. A triple (i, 3,1)
starting from it, so it is discarded. corresponds to a primitive tandem repeats sequence if and

The successive refinement continues with checking of thaly if 5 is not periodic. The triple corresponds to a maximal
kth character following the positions in each classif to tandem repeats sequence if and only if there isgnaght
constructEy, 1. Any singleton classes are discarded. Eventbefore or after the repeats. So, the above string can be
ally a value ofk is reached for which there are no classe&pf represented by a unique PM-triplé€l, ab,8). (A PM-triple
and the process is terminated. The entire process of refimterris a representation of a PM-repeats sequence and we will use
of string S = abaababaabaab$ is shown in Table II. the terms interchangeably.)

The total running time for the algorithm as described above For eachF), class refined in Crochemore’s algorithm, a PM-
is O (n2) since there can b® (n) levels and each level cantriple can be identified by the following Lemma, which is also
take O (n) time. But two techniques proposed in [6] optimizenentioned in [16]:
the successive refinement and reduce the running time tdemma 4.1:Triple (i,3, I) is a PM-triple, whereg is a
O (nlogn). We mention them very briefly here. k-length substring, if and only if some single class Bf

The first technique isihdirect refinement. This is based contains a maximal series of numbers i, i+k, i+2k, ..., i+lk,
on the observation that any class 6§, is a subset of such that each consecutive pair of numbers differs by k.
some E class. Because,Fy17, if and only if 1E,j and In order to identify loops, PM-triples must be identified at
i+ 1E,j+ 1, we can use classes at the same level to carry aé#ch level during the execution of Crochemore’s algorithm.
successive refinement instead of referring back to ther@igi Since the total number of members in all classes at a level
string S. This helps in reducing the complexity when use@ bounded by string length, the process take® (n) time.
with another technique calledsmall classes which can be Since the maximal possible size 8f the loop element, is half
outlined as follows. The indirect refinement process for ahe length of the string:, we need to report PM-triples after
E}, class intoFEy, ;1 classes requires matching against severaiscovering the repeats by Crochemore’s algorithm tillelev
but not all, otherE}, classes. The small classes technique/2. The running time for identifying loops represented by
prescribes that the classes be selected in a specific mdnaterPM-triples isO (n2)

By :{1,3,4,6,8911,12 {2,5,7,10,13 {14}
a b $

Levell — By : {1346891112 {257,1013 {14
a b $

Level2 — FEs: {1,4,6,9,12 {3,8,11 {2,5,7,1¢ 13}
ab aa ba b$
Leveld — Es: (1,469 (3811 {2,710
aba ab$ aab baa bab
Leveld — Ey: {1,6,9 4} {3,8} 1L {2,7,10
abaa abab aaba aab$ baab
Level5 — Es: {1,6,9 43+ 48} {2,7}
abaab aabab aabaa baaba baab$
level6 — Fg : {1,6} <9+
abaaba abaab$ baabab baabaa
Level?7 — E7: {6}
abaabab abaabaa$
TABLE I

SUCCESSIVEREFINEMENT OF STRING abaababaabaab$

C. Loop filtering this is likely to make little difference in performance sinc
rghe processing time is dominated by the time to discover
puter loops. In order to develop a compressed represemtatio
rlilf'e loop spans in the trace are replaced with tugleg, [),

here LE represents the loop element, and the number of
%op iterations. A separate table is constructed, whichsyap
op element symbol to the substring that constitutes the lo
ement. The overall complexity of the steps in this procedu
is O(n?) and is dominated by the loop identification step.

The previous steps provide a list of PM-triples whic
represent all the loops in the trace. Our interest is in figdi
all the outermost or longest span loops. These are repesse
by the PM-triples at the highest level. (The inner loops al
discovered by running the entire process recursively).asec
of multiple overlapping loops of equal span at the same Jevgq
we select the one that starts earliest in the string. €

As an example, for the stringbcdabedabedabeda, 4 PM-
triples will be identified. These PM-triples ard, abcd, 4), V. GREEDY TRACE COMPRESSION

(2,beda, 4), (3, cdab,3) and (4,dabe,3). The first WO e gcheme discussed in Section IV discovers the outermost
PM-triples both have a span of 4 versus a span of 3 fof,, However, the execution time for loop discovery can be
the remaining two. Based on the earliest starting point, theh for jong traces. We will discuss experimental resufts i
selected loop will be(1, abed, 4).) . detail later in this paper, but we jump ahead to Table IV
AS another example, consider) the ;trmgo motivate the case for a faster approach. As an example
EababababF Eababababl EababababF', which contains cqnsider the class C SP benchmark in the table. The total
a loop nest containing loops at two levels. The PM-triplgo 4 ryn the algorithm is around 747 seconds, although
l(l,EababababF,S) represents.the selected outer loop. Thgu program loops had already been discovered in just 5.8
inner loops re_presented bY triples, ab, 4), (12, ab, 4), and seconds. The reason is that the largest loop consists o6anly
(22, ab,4) are |ghored at this stage. .) symbols while the trace size is 26888 symbols. Our approach
The loop filtering step repeatedly finds the PM-triple cofjigs equivalence classes and looks for loops in increasin
responding to the longest span loop, until no PM-repeats er from 1 to half the trace length. Even though all loops
left. Since the loop element can theoretically be as small agyere discovered by the time the equivalence class of 67 was
symbols, the theoretical upper bound of this step with & Bmp.gnsirycted, (and these loops spanned over 99% of the trace)
implementation '50_(”2)' An O(nlogn)implementation iS {here is no way for the algorithm to be certain that a larger
possible. However, in practice this is a very quick step §§yp does not exist, and hence refinement continues until the
the number of loops is normally very small, antin?) is a equivalence class of 13444 that corresponds to half thénatig
very loose upper bound. string size. If the loops already discovered were replaced b
a single symbol at the equivalence class of 67, the trace size
to be processed would be less than 1% of the original trace
The procedure discussed in this section identifies all owize, and the remaining processing would be much fastes. Thi
ermost loops represented in a trace. The algorithm rumstivates greedy compression.
recursively on the substring that constitute the loop el@me The key idea of greedy compression is early compression
(or body) for identification of the inner loops. The recuesivas PM-triples are discovered. The entire span of the corre-
steps are important to get a high degree of compression. Isfgonding loop is replaced by a single symbol, and compnessio
theoretically possible to reuse some of the informatiommfrocontinues on the newly formed (shorter) string. The procedu
discovery of outer loops to identify inner loops. In praetic continues until half the current string size is reached, but

D. Compression framework summary

the string size decreases dynamically as loops are dissbvera b aababaababaabaab$
which is the key reason for improved performance. Figure la b L; b abL; babL; b L; b $ L1=(a)?

outlines the greedy compression procedure. abLibablLi baly; b$ Ly=(bL1)?=(baa)?
L3 a L2 b$ L3:(abL1b)2:(abaab)2
S = string corresponding to the original trace The loop structured discovered by the greedy procedure
Current_S = S: Level = 1; is (ab(a)?b)?a(b(a)?)?b whereas the optimal loop structure
Step 1: N is (ab(a)?b)3(a)?b. The loop with the largest loop element
if Level > |Current_S|/2 then (abaab) is captured, but with one less iteration than optimal.
Goto Step 3 In general, the greedy algorithm will discover any loop,

else except that the discovered loop may have up to 2 less itesatio
i) Find all repeats of sizeLevel in Current_S by than the maximal loops (first and/or last iteration may not
successive refinement with Crochemore’s algorithm. be discovered) and the elements in the loop body may be
ii) Identify all PM-triples with repeating substring of siz @ rotation of the elments in the maximal loop. In practice,
Level the difference between the results of the two algorithms are

if any PM-triples with repeating substring of sizevel identical or trivially different from compression standpb
are discoveredhen The “near optimality” of the greedy algorithm is discussed

Goto Step 2 further in Section VII.
eIsLeevel — Level + 1; Goto Step 1 VI. EXPERIMENTAL RESULTS
end if ’ A framework for loop discovery and compression discussed
end if in Section IV and a framework for greedy compression as
Step 2: discussed in Section V were implemented. The goal was to

UpdateCurrent_S by reducing all PM-triples with repeat- validate loop discovery and compression achieved by these
ing substrings of sizeLevel in decreasing order of loop @lgorithms and study the tradeoffs between the execution

span, employing filtering (discussed in section IV-C) foPerformance and the degree of compression.

Over|apping trip|es' The Symbo|s rep]acing the PM-trip]eS This.researCh was motivate-d |n the Cont(_-'.'xt of anaIySiS-Of
are stored in a mapping table. execution traces of MPI applications to build represewati

Level = 1; Goto Step 1. executable “performance skeleton” programs. All resufts p
Step 3: sented in this paper are for compression of MPl communica-
Stop.Current_S along with the mapping table for symbolstion traces for Class B/C NAS Parallel Benchmarks running
is the compressed trace that captures the loop nests. 0N 16 nodes. The traces were collected with the PMPI library
and converted to strings of symbols. Each symbol in the trace
Fig. 1. Greedy compression procedure that was input to the compression procedure corresponds to a
specific MPI operation with a specific set of parameters.
The worst case time complexity for this greedy algorithm is
the same as the optimal algorithm discussed in Section IV.fn Results and discussion
fact, the two algorithms will run identically if there wer@n Table 1l shows the results of the optimal compression
PM-repeats in a trace. However, the greedy algorithm is mughocedure. We observe that the length of the traces ranged
more efficient in practice for programs with a loop structurefrom 8909 to 323048 (average 71695) and the length of the
i i compressed traces ranged from 38 to 1118 (average 281) with
A. Risk of greedy compression the degree of compression ranging from 8 to 5384 (average
For most traces that we have analyzed, the greedy att73). The structures of the major loop nests discovered are
optimal procedures yield identical results. Here we illat also described in the table. Most of the trace was covered
with carefully selected examples how the results of greethy loops for all benchmarks, around 98% on average. The

compression can be suboptimal. conclusion is that many MPI traces have a loop structure that
Consider the stringibaababaabaab. The greedy compres- can be discovered automatically by this approach. The degre

sion proceeds as follows: of compression is excellent and the length of the compressed
abaababaabaab$ trace is generally relatively small. However, we cautioatth
abLibabLibLi b$ Li=(a)? the degree of compression is naturally dependent on the loop
abLibaly;b$ Lo=(bL1)*=(baa)? structure implicit in a trace and good compression resukts a

The loop structured discovered by the greedy proceduret universal. In particular, compression will be poor iEth
is ab(a)?ba(b(a)?)*b whereas the optimal loop structure iscontrol flow of a program leads to dynamic execution behavior
(ab(a)?b)?(a)?b. A 2 iteration loop with the largest elementwith little repetition in the execution trace.

(abaab)?, is completely missed. Table IV focuses on the execution time for optimal com-

Now consider the stringbaababaababaabaab. The greedy pression. The total time for loop discovery, which includes
compression proceeds as follows: repeats discovery, loop identification and loop filtering, i

Trace Span| Compressed

Name Trace Major Covered Trace Compression

Length Loop Structure by Loops Length Ratio
BT B/C | 17106 | (85)2%0 = (13 + (4)° + ... + (4)3)%00 99.38% 85 201.25
SP B/C 26888 (67)%00 99.67% 162 165.97
CG B/IC | 41954 (552)™ = ((21)%° 4 6)™ 98.68% 38 1104.05
MG B 8909 (416)?° 93.39% 1006 8.86
MG C 10047 (470)20 93.56% 1118 8.99
LUB 203048 | (812)7% = ((4)100 1 (4)100 £ 12)%%9 99.58% 60 3384.13
LuC 323048 | (1292)%% = ((4)T60 + (4)T60 4 12)%%9 99.58% 60 5384.13
Average | 71695 98.16% 281 1172.86

TABLE Il

RESULTS OF OPTIMAL COMPRESSION

Repeats Discovery Time (sec Loops Discovery Time (sec) Loop Element Size
Name Trace Up to Up to Up to Up to Per
Length Total Smallest | Largest Total Smallest| Largest | Trace | Smallest| Largest
Repeat | Repeat Element | Element | Record Size Size
BT B/C | 17106 12.85 0.47 0.87 311.18 0.63 4.84 .013 4 85
SP B/C | 26888 15.88 0.98 0.98 747.73 5.81 5.81 .014 67 67
CG B/C | 41954 | 239.29 1.46 5.78 2021.78 3.73 67.77 .018 21 552
MG B 8909 35.85 0.00 3.95 113.48 0.00 13.74 .027 1 416
MG C 10047 45.96 0.00 4.97 144.54 0.00 17.41 .048 1 470
LUB 203048 | 2565.73 4.93 24.31 44204.82 6.51 463.18 .218 4 812
LUC 323048 | 8028.83 7.83 59.72 | 113890.21| 10.18 1172.63| .352 4 1292
TABLE IV

PERFORMANCE AND EXECUTION TIME BREAKUP FOR OPTIMAL COMPRES®N. THE LOOPS DISCOVERY TIME INCLUDES THE TIME FOR REPEATS
DISCOVERY THAT IS ALSO LISTED SEPARATELY AS WELL AS THE TIME ©BR LOOP IDENTIFICATION AND LOOP FILTERING

reported along with the time per trace record. The largdsy the algorithm wasafter all the loops had already been
and the smallest loop element sizes are also noted. Qtiscovered. Of course, in hindsight, the process could have
observation is that the repeats discovery time is a relgtivdbeen terminated earlier with the same results. Howevere the
small component of the total loop discovery time, which is no definitive way to be certain that optimal compressios ha
dominated by the loop identification time. The loop filterindpeen achieved, although heuristics can be developed based o
time was consistently very small in comparison and is ntite degree of compression already achieved.

reported separately in the table. The observations from the results of this optimal algorithm

The times for repeats discovery and loop discovery increamed the fact that it spent much of the time in processing tigat d
as the trace size increases. Further, the time per tracedreamt contribute to final compression was the motivation fotous
for loop discovery increases from .013 seconds for the skbrtdevelop a greedy compression algorithm. Greedy compiessio
trace to .352 seconds for the longest trace, suggesting a I@duces the running time by reducing the length of the oaigin
polynomial relationship between trace length and proogssistring during compression as loops are discovered. Conside
time. The LU class C benchmark takes 8028.83 seconitie trace of class C LU benchmark. Table IV shows that the
(2.23 hours) to finish discovering all possible repeats, asthallest loop contains 4 symbols, so the reduction in trace
identification of loops from those repeats takes 113890.8ize starts at level 4 by replacing those loops with new loop
seconds (31.64 hours). As the experiments are for a modggmibols. The largest loop has 1292 symbols, which contains
input data size running on only 16 nodes, the execution timh@o inner loops with 4 symbols iterating 160 times and anothe
is a major concern for realistic longer running applicasi@m 12 symbols. The loops span 99.58% of the trace. Hence, after
larger clusters. the next reduction, which happens at level 14, the trace size

Table IV also shows the times at which the smallest |00\/€ill be_approximately (190'99:58) =_O'42% of the original
and the largest loop was discovered during the compressf fCe Siz€, and compression will be virtually over. In casty

of each benchmark trace. For all benchmarks, the largept |O(bot|mal loop discovery procedure will have to execute all

was discovered within a small fraction of time as compared FE)VE"'S with th_e the full trace size of 320348 until a level au
the total execution time. A similar pattern is observed for t to half that size.

largest repeats. Loop discovery with Crochemore’s algorit The results from greedy compression are presented and
employs successive refinement from 1 up to half the trace sizempared with the optimal compression results in Table V.
However, the largest loop element in all cases was a smahe reduction in the execution time with the greedy approach
fraction of the trace size. Hence, the bulk of the time speistdramatic. The maximum compression time with the greedy

Greedy Optimal Compression Ratio
NPB Trace | Compression| Compression Major Loop Structure Discovered Optimal Greedy
Name | Length | Time (secs) | Time (secs) by Greedy Compression Algorithm | Algorithm
BT B/C | 17106 8.91 311.18 (857" = (13 + (4)® + ... + (4)*)* 201.25 201.25
SP B/C | 26888 7.61 747.73 (67)™0 165.97 165.97
CG B/C | 41954 8.48 2021.78 (552)™ = (5 + (21)* +22)™ 1104.05
MG B | 8909 8.64 113.48 (416)% 8.86 8.86
MG C | 10047 10.88 144.54 (470)% 8.99 8.99
LUB | 203048 33.16 44204.82 | (812)7" = ()™ + (4™ +12)?™ | 3384.13 | 3384.13
LU C | 323048 61.9 113890.21 | (1292)*" = ((4)™° + (4™ +12)*" | 5384.13 | 5384.13

TABLE V
RESULTS OF GREEDY COMPRESSION

procedure ranges from 7.6 seconds to 61.9 seconds, veigrations in the discovered loop may be up to 2 fewer than the

the range from 113 seconds to 113,000 seconds for thember of iterations in the original longest span outer loop

optimal procedure. Clearly, this is a much more promising We have established this is indeed the case when one inner

approach for large traces. Since the greedy approach is luatp is reduced. The result is formally stated as follows:

guaranteed to always identify the outer loops correctly, we Consider PM-tripleL represented a§j, «, m) with |a| > 2.

report the loop nests discovered and the compression &thieket 3 be another substring witha| > |3|. Suppose every

for each benchmark. For 6 of the 7 benchmarks, the logM-triple with 3 as the repeating substring is identified and

nests discovered and the compression achieved were identieduced to a symbol. As a result of these reductiond, if

with the optimal and greedy approaches. One exception wasnot identified as a PM-triple, then another PM-triplg

the CG benchmark as noted in Table V. In this case tfi¢/, o/, m’) will be identified where,

optimal procedure yielded a compressed trace size of 38ewhi j’ is betweenj and j + | — 1],

the greedy procedure yielded a compressed trace size of 8%y’ and « are identical strings or one is a rotation of the

Clearly this is not a practical concern even though the degrelements of the other,

of compression reported varies by a factor of 2. The reasonmy’ is betweenn and m — 2.

for the difference is clear when the loop nest discovered for The proof is detailed in Appendix A.

the CG benchmark as shown in Table V is compared with theThe above result places a bound on the impact of reduction

loop nest discovered as shown in Table Ill. One discoverefl one inner loop, on the discovery of an outer lodihe

loop is offset due to the greedy procedure such that it hassult does not specifically address the impact of multiptg!

one less iteration as compared to the optimal loop nest, aductions on the discovery of an outer lodp.practice, it is

as a result, there are more symbols outside of loop nests w4thl the case that the outer loop is generally discoverdth w

greedy compression. up to 2 fewer iterations. However, there are pathologicaésa

where a long span outer loop is not discovered at all, even

when there are more than 2 iterations. An example is thegstrin
We have observed that the algorithms that we have dg)_cabca-bcdbcdbcdbcdacdacdacglabdal;d repegated g tir5ne5 with

veloped generally return the best loop nest that is possibf® OPtimal loop nest((abc)”(dbe)*(dac)®(dab)*d)”. The

or something very close. An important contribution of thigreedy3algorltg1m pro?f:eeds ?EO redt;ce it as follows:

work is theoretical results that provide specific bounds and(@b¢)” (dbc)” (dac)” (dab)® (cab)® ...

more insight. Because of lack of space and complexity of the The result is that the long outer loop with 5 iterations is not

problem, the discussion here is abbreviated. detected atall. _
Our “optimal” algorithm is guaranteed to discover the Additional machinery is necessary to ensure that results

longest span loop in a string at every step, but not necstaWithin thg bounds disc;ussed are always achieved wh(_an asserie
the most compact loop nest overall. The two definitions & 100PS is reduced with the greedy approach. Specificaley, t
optimality are different although they lead to the same tes@reedy algorithm is modified as follows:
except in in pathological cases. Further discussion is hetyo e« l00ps with 3 or fewer iterations are not reduced.
the scope of this paper. More interesting to us is how the loope the loop elementa of a newly discovered loop is
nest discovered by the greedy algorithm may differ from this compared against the loop elements of all previously
optimal algorithm. In general, the following result holds: discovered loops. In case the loop elemeri$ a rotation
The early reduction of inner loops corresponding to a fixed ~©Of the loop element of an existing loop, say then a
loop body can impact the identification of a longer span outer ~modified version of the new loop with loop elemehts
loop only as follows: the body of the discovered loop may be a reduced, possibly with one fewer loop iteration.
reordering of the body of the original loop, and the number of With these changes the near optimality of the greedy algo-

VIl. ALGORITHMIC RESULTS

rithm can be retained in general. For the above example, the REFERENCES

final LOOp negt dls%overeg IS: o4 3 3 5 [1] J. Ziv and A. Lempel, “A universal algorithm for sequeaitidata
(abe)? ((dbe)?(dac)?(dab)?c(abe)?)* (dbe)? (dac)? (dab)? d compression.IEEE Transactions on Information Theowol. 23, no. 3,

The discovered outer loop has one less iteration than optima[12] 29-537,H3"\;‘3» 1977. 4 1 Witten. “Seauitur. hito/SEGTUR info
. evill-ivianning an . iten, equitur. . E.Q .INT0.
A version of the algorithm with these additions is not™" [oniine]. A\,a”amg: http:,,SEQUWUR_ir?fO P

implemented yet, and detailed analysis is omitted due t@] —, “Identifying hierarchical structure in sequences: linear-time
lack of space. However, we have not seen any instances in agorithm,” Journal of Artificial Intelligence Researchol. 7, pp. 67-82,
actual traces where this machinery is necessary to keep the ¢~ Nevil-Manning, I. Witen, and D. Maulsby, “Comprésa

compressed greedy traces withing the stated bounds. by induction of hierarchical grammars,’ irData Compression
Conference Snowbird, UT, Mar 1994, pp. 244-253. [Online].
Available: citeseer.ist.psu.edu/129141.html
VIIl. CONCLUSION [5] M. Noeth, F. Mueller, M. Schulz, and B. Supinski, “Scakatcom-
pression and replay of communication traces in massivehallpa

. .. . environments,” in21th IEEE International Parallel and Distributed
This paper has presented an efficient and effective frame- processing Symposium (IPDPS 200zpng Beach, CA, April 2007.

work to identify complete loop nests in execution traces[6] M. Crochemore, “An optimal algorithm for computing thepetitions in

The methodology constructs a loop nest from the repeatin[g] g‘WQLd"'J"”‘;Egﬁﬁ)ekss's'.-%‘s’g'- :ﬁa o ghgﬁézﬁfggig’” Zlagtisolf; o

patterns implicitly identified by Crochemore’s algorithi. munication traces from parallel execution,” 2009 |EEE International
fast greedy approach is also developed. Experimentaltsesul ~ Symposium on Workload Characterizatiokustin, TX, Oct 2009.

i e in i i\ [8] Q. Xu and J. Subhlok, “Construction and evaluation of rclimated per-
demOnStrate that _the_approach is effective |n_|dent|fym1gpl formance skeletons,” iithe 15th annual IEEE International Conference
nests in communication traces. Both the optimal and greedy), High Performance Computing (HIPC 200@angalore, India, Dec
approaches discover similar loop nests and deliver similar 2008.
compression results. However, the processing time rises [X- G20, A Snavely, and L. Carter, “Path grammar guidegércompres-
h ith th ti | d f dest | th t f sion _and trace apprOX|r_'r1at_|0n, ih5th IEE_E International _Symposmm

ours wi € opumal procedure Tor modest leng races or o, High Performance Distributed Computing (HPDC-1Baris, France,
1000s of MPI calls. The greedy approach provides virtually June 2006.
identical compression at a fraction of the execution timénhef [10] Eé%’emeryl"'-li?ear pattern matching algorithms,” FOCS October

. . . . , pp. 1-11.
optlmal method. The maximum compression time for our teﬁ.tl] E. McCreight, “A space-economical suffix tree constiarc algorithm.”
suite was around one minute with the greedy procedure. Most J. ACM vol. 23, no. 2, pp. 262-272, 1976.
importantly, unlike most compression heuristics, the gyee [12] E. Ukkonen, “On-line construction of suffix treeé\fgorithmicg vol. 14,
. . . " no. 3, pp. 249-260, 1995.

approaCh deve|0ped IS theoret'ca”y proven to y'eld ne"f’f3] J. Stoye and D. Gusfield, “Simple and flexible detectidrcantiguous
optlmal” results. repeats using a suffix treeTheoretical Computer Scienceol. 270, no.

i i ; i i~ 1-2, pp. 843-856, 2002.
While many compression algorithms exist, the efficie 4] D. Gusfield and J. Stoye, “Linear time algorithms for fimgl and

_discovery of_Iong range repeating_ patterns due to outersloop representing all the tandem repeats in a stridg.Comput. Syst. Sgi.
in an execution trace remains a significant challenge. Egrth vol. 69, no. 4, pp. 525-546, 2004. _
an important objective in trace analysis is to identify tkeetp [15] A. Apostolico and S. Lonardi, “Some theory and practégreedy off-

. . . line textual substitution.” inData Compression Conferenc&nowbird,
of the trace corresponding to execution loops, and not_sq_mpl UT, Mar 1998, pp. 119-128.
to compress the trace. To the best of our knowledge, thiis 6] D. Gusfield, Algorithms on Strings, Trees, and Sequences - Computer
first effort to discover the optimal loop nest in executicaces. Science and Computational BiolagfCambridge University Press, 1997.
The algorithms developed in this work have already been
applied as a module in generation of executable performance
skeletons from parallel application traces by identifyig Impact of inner loop reduction on discovery of an outer loop

dominant execution and communication patterns. Howeer, t present a set of results that will be employed to prove
procedures developed are general and can be applied 0 U@k the early reduction of an inner loop can impact the
compression and similar problems in a variety of scenariq§entification of a longer span outer loop only as follows:
We believe this paper makes an important fundamental algfg pody of the discovered loop may be a reordering of the
rithmic contribution and represents a concrete step fatwas,qy of the original loop, and the number of iterations in the
in analyzing execution traces for performance modeling apgk-overed loop may be up to 2 fewer than the number of
performance prediction. iterations in the original longest span outer loop. Redadit t
the notation(j, o, m) representing a PM-triple means that the
IX. ACKNOWLEDGMENTS corresponding PM-repeats start at locatjom the string, the
repeating substring i& and the number of repeatsis.

Support for this work was provided by the National Sci- Lemma A.1:Suppose PM-tripld. represented a§j, o, m)
ence Foundation under Award No. CNS-0410797 and CNB-leftmostmeaning that there are no PM-repeats of lerjgth
0834750. Any opinions, findings, and conclusions or recoratarting left of L, from locationi — 1. Let A = |o| — 1 and
mendations expressed in this material are those of the gafhoassumem > 2. Then there exist PM-triple§i + 1, 31, k1),
and do not necessarily reflect the views of the National S&ien(i + 2, 52, k2), ...(i + A, Ba, ka) such that; is a rotation of
Foundation. o andk; is eitherm or m — 1.

APPENDIX

We refer to this group as the family of PM-triples correthat cannot be true.
sponding to leftmost PM-tripléd.. Suppose the length of span & > FE; in contradiction
Proof: This result is stating the direct observation thatp the result to be proved. Then one instance Ff will
for every repeating sequence, starting with a forward offseross the boundary between instancesFyf as shown in
smaller than the size of the repeating string yields anothigigure 2. (Since the first instance BY, is an interior instance,
repeating sequence with at most one fewer number of repeat®llowing instance must exist.) We split this instanceFgf
and with a rotated repeating string. B in two substringse and b at the boundary as illustrated in
Lemma A.2:Let S be a string of symbols. Suppose therEigure 2, i.e.,Fs = ab. Now the left instance of; starts
exist strings A and B such thatt = AB = BA. Then there with Es = ab, while the right instance oF; starts withba.
must be another string C such tht= [C]*. One implication But since they are repeats, they must be identical.
is that,S cannot be the repeating substring in a PM-repeat asHence we havély = ab = ba.

it is not primal. From Lemma A.2,Es = [z]* for somez and k, which
Proof: means thab is not aprimitive repeat. Hence, by contradiction,
1) If |A| = 1, then it can be easily shown that= [A]*, the span of5 cannot exceed’;. Therefore, the span ¢f must
wherek = |S|. Same holds if B| = 1. be strictly smaller thanE |. [
2) If |A| = |B|, thenS is of the form[A]?. We now present the main result formally.
If either of the above cases holds, the result holds. Theorem A.4:Consider PM-triple L. represented as

3) Otherwise, without loss of generality, l&l| < |B|. (j,«,m) with |a] > 2. Let 5 be another substring with
Then we can define a stririf such thatB = TA. Now, |a| > |3|. Suppose every PM-triple witly as the repeating
we haveS = AB = AT A, andS = BA = TAA. This substring is identified and reduced to a symbol. As a result

implies thatS = ATA = TAA. of these reductions, if. is not identified as a PM-triple, then
We defineS = S’A, with S’ = AT = T A. We again another PM-tripleL’ (j’, o/, m’) will be identified where,
have: j' is betweenj andj + |a — 1],
a) If [T| = 1, thenS’ = [T]¥, wherek’ is || o' and « are identical strings or one is a rotation of the
Hence,S = [T]*, wherek is | S|. Hence the result €lements of the other,
holds. m' is betweenn andm — 2.
b) If |T| = |A|, thenS’ = [T]*> = [A]?, and S = Proof:.
S’A = [A]*. Hence, the result holds. Let S be a PM-triple with repeating substring that
c) Otherwise,S’ can again be split a§ was split in overlaps with an interior instance of corresponding tol.
the previous level. We initially assume that no other PM-triple with repeating

The size of the string decreases by at least 1 in eve%;bstring@ overlaps with this instance ef. From Lemma A.3

new level. The result is proved based on the princip}@e know that the entire span of must be _smaller than
of induction |a|. Further we assume for now that the entire sparb aé

contained within a single instance af

Under the above scenarios, every instancevah L will
containS as part of the substring at the same location, which
(—}{Yi" be replaced by the same symbol. Hence the identification
of the PM-triple corresponding td. will be unaffected by
reductions ofS.

Now suppose the span 6fis not contained within a single
instance ofa and crosses two instances. In that case the

Without loss of generality, we assume that overlappin pove re_sult can be prov_ed for anoth(_er membgr of the f"?‘m"y
instances ofE., and S are aligned at the left boundary a PM-triples corresponding to PM-triplé as dlscu§sed n
shown in Figure 2. If that is not the case, then the proo1j|semma A.L, although the number of repeats (or iterations)

generated with an aligned member of the family of PM-tripIe@aY be reduced by 1.
corresponding to PM-triplé. as discussed in Lemma A.1 Finally, there can be multiple PM-triples with repeating
" substrings that overlap with the same instancecafHowever

Lemma A.3:Given two PM-triplesL and S, with repeating
substringsE;, and Eg, respectively, wheréE| > |Eg|.
If there is an overlap between any interior instance (i.ke.
instances except the first and the last)[)f and the span of
S, then the length of the span &f cannot equal or exceed
[EL.

Proof:

these instances themselves cannot be overlapping - oeerwi
%/ /‘% it can be shown that they are not PM-repeats based on
Es | Es | ... Es'| Es | ... Lemma A.2. The impact of non-overlapping PM-triples can be
2 b 3 ib a b : serialized leading to the same result as for a single oveirtgp
PM-triple above.
Fig. 2. Overlapping PM repeats The final result is that the number of repeats in the recog-

nized PM-triples can be up to 2 less tharsince none of the
If span of S = E, then clearly PM-tripleS is not maximal results applies to the first or the last instancexah . ®
as repeats oFs continue in the next instance @f;. Hence

