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Abstract—Volunteer PC grids represent massive computation
capacity at a low cost, but are challenging to employ for parallel
computing because of variable and unpredictable performance
and availability. A communicating parallel program must employ
explicit redundancy, or implicit redundancy with uncoordinated
checkpoint-restart to make continuous forward progress in such
an unreliable environment. A communication model based on
one-sided Put/Get calls to an abstract global shared space is a
good match as processes can execute their communication oper-
ations independently and asynchronously. However, no existing
system is designed for redundant communicating processes. The
key problem is that a single logical operation that impacts the
global program state may be executed by different instances
of the same process at different times leading to semantic
inconsistency. This paper presents the design, execution model,
implementation, and usage of Volpex, a communication layer for
robust execution on volunteer PC grids. The research leads to
a practical way to employ idle PCs for latency tolerant parallel
computing applications.
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I. INTRODUCTION

In recent years ordinary desktops and PCs have been em-
ployed successfully for large scale scientific computing, most
commonly using Condor [1] or BOINC [2] as middleware. The
Condor scheduler enables ordinary desktops to be employed
for compute intensive applications. It is deployed at over 850
known sites with at least 125,000 hosts around the world. The
BOINC middleware uses volunteered public PCs for scientific
applications when idle. It has been remarkably successful,
managing over half a million nodes and over 30 scientific
research projects since its release in 2004. However, the target
applications for BOINC and CONDOR are generally limited
to master-slave or bag-of-tasks parallelism.

We will refer to PCs made available for scientific comput-
ing when idle as volunteer nodes or PCs and an execution
environment composed of volunteer nodes connected by a
LAN or Internet as a volunteer computing environment (even
if the PCs are in an organization with no actual volunteering).
Volunteer nodes represent a potentially immense but volatile
resource, i.e., they are heterogeneous and their availability to
execute guest scientific applications can change suddenly and
frequently based on the desktop owner’s actions. Execution
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of communicating parallel applications on volunteer nodes is
extremely challenging because process failures and slowdowns
are frequent and the failure or slowdown of a single process
impacts the entire application. Hence, a mechanism for fault
tolerance is practically a requirement. If a checkpoint-restart
approach is used, the checkpoints must be taken independently
and asynchronously, because of the potential overhead of
global synchronization. For this approach, the communica-
tion framework must be able to respond to communication
requests during recovery, which may be duplicate requests
corresponding to a communication operation that was executed
in a past state of program execution. Similar functionality is
required when redundancy is employed for fault tolerance,
an approach that becomes more attractive in high failure
scenarios [3]. With redundancy, multiple physical processes
in different states co-exist for a single logical process, and
the communication framework must be able to respond to
redundant communication requests from process replicas.

Implementation of MPI style message passing, the dominant
paradigm for parallel programming today, is problematic in
such scenarios because of the synchronous nature of mes-
sage transfers. Put/Get style asynchronous communication pio-
neered by Linda [4] is potentially a good fit for communication
on volunteer nodes as it provides an abstract global shared
space that processes can use for information exchange without
a temporal or spatial coupling. However, redundant processes
or asynchronous recovery from checkpoints, is not supported
in existing systems that provide an abstract global shared
space.

This paper introduces the Volpex dataspace API for anony-
mous Put/Get style communication among processes. The
API and its execution model can support common message
passing and shared memory programming styles. The key
additional requirement is correct and efficient support for
multiple physical Put/Get requests corresponding to a sin-
gle logical Put/Get request. All requests corresponding to a
unique logical request are satisfied in the same manner with
identical data objects. This allows support of implicit (due
to checkpoint-restart) or explicit redundant execution with the
final results guaranteed to be identical to (one of the possible)
results with normal execution. Management of execution is
orthogonal to this process; the communication infrastructure



as well as application processes are unaware whether, and to
what extent, redundancy is being employed, or if it is implicit
or explicit. The core requirement is to be able to handle
asynchronous process replicas in any state of execution.

This dataspace communication API is a component of the
Volpex framework (Parallel Execution on Volunteer nodes)
that attempts to achieve seamless forward application progress
in the presence of routine failures by employing redundancy
and checkpointing. The primary goal is to transform ordinary
PCs into virtual clusters to run a variety of parallel codes.
However, the methods developed in the paper are potentially
applicable to other scenarios also, such as employing unused
process cores to run replicas to improve reliability. The Volpex
dataspace API is designed for applications with low to moder-
ate communication requirements. It is expected to scale to 100s
of nodes on institutional LANs. While many applications are
excellent candidates for Volpex, certainly not all applications
will run effectively on ordinary desktops under Volpex (or
any other framework) because of memory and communication
requirements that can only be met with dedicated clusters.

The paper presents the design, execution model, imple-
mentation, and usage results for the Volpex dataspace API.
Codes developed span different types of usage of dataspace
API and include an actively used Replica Exchange Molecular
Dynamics application. The dataspace API communication is
integrated with BOINC framework for a comprehensive solu-
tion to parallel computing on volunteer nodes.

II. RELATED WORK

Idle desktops are widely used for parallel and distributed
computing. The Berkeley Open Infrastructure for Network
Computing (BOINC) [2] is a middleware system widely used
for volunteer computing where people donate the use of
their computers to help scientific research. Condor [1], is
a workload management system that can effectively harness
wasted CPU power from otherwise idle desktop workstations.
Other systems that build desktop computing grids include
Entropia [5], iShare [6], and OurGrid [7]. Mechanisms applied
for fault tolerance in PC grids, such as redundancy in BOINC
and checkpointing in Condor [8] are important for long
running sequential and bag-of-task codes, but are generally
not sufficient for communicating parallel programs.

Linda [4] has been an active research topic for over two
decades. It represents a model of coordination and commu-
nication among parallel processes based on logically global
associative memory, called a tuplespace. There are a number
of variants of Linda available, such as TSpaces [9], JavaS-
paces [10], and SALSA [11], a Linda adaptation for molecular
dynamics applications.

There has been considerable work in fault tolerance in
Linda, but it has largely focused on making the Linda tu-
plespace itself resilient to failure. A replication based fault tol-
erant implementation of Linda tuplespace is discussed in [12].
FT-Linda [13] provides a stable tuple space that persists across
failures and atomic tuple space transactions that allow develop-
ment of some types of fault tolerant applications. PLinda [14]

provides transactional mechanisms to achieve atomic opera-
tions and process-private logging that processes can utilize
for checkpoint-restart mechanisms. We have employed some
of the ideas, in particular, atomic operations. However, none of
these (and other) frameworks provide transparent processing
of arbitrary replicated communication requests. The notion
of having a distributed shared memory programming model
using an abstract data space has also been explored in [15],
without however, support for fault tolerance. This paper reports
on development of fault tolerant parallel execution with an
abstract shared memory with support for replicated processes
and processes restarted from local checkpoints.

Several implementations of the MPI specification have
focused on deploying fault-tolerance mechanisms. The vast
majority of projects in that field rely on system level check-
pointing and automatic roll back of the application, often re-
lying on a third party system level library such as BLCR [16].
Representatives of these libraries include StarFish MPI [17],
Egida [18], Open MPI [19], MPICH-V [20], and Adaptive
MPI [21].

A smaller number of approaches have utilized process
replication to create robust MPI libraries, such as MPI/FT [22],
P2P-MPI [23], rMPI [24] and VolpexMPI [25], the latter being
developed as a complementary aspect of the work presented
in this paper. P2P-MPI and VolpexMPI are the only libraries
targeting volunteer computing within this group, with P2P-
MPI supporting only Java based applications, which is a major
restriction for many scientific applications.

Process replication is also deployed in the MOON frame-
work [26], which represents a robust model for MapReduce
applications for volunteer computing. MOON deploys a small
number of dedicated servers along with volunteer resources.
However, this solution is for applications that fit the MapRe-
duce model, in contrast to a general communication API and
execution environment developed by Volpex.

III. DATASPACE PROGRAMMING MODEL

The programming model developed consists of independent
processes communicating through an abstract dataspace. The
key objective was that the execution model allow multiple
and varying number of instances of each process with the
application execution state advancing with the fastest replica
for each process. The design was driven by simplicity and
ease of implementation with redundancy. We first present the
current dataspace API syntax and semantics, and then justify
and discuss the design considerations.

A. Dataspace API

The core API for the Volpex dataspace communication
library consists of calls to add, read and remove data objects
to/from an abstract global dataspace, with each object iden-
tified by a unique tag which is an index into the dataspace.
The concept of a dataspace is similar to that of a tuplespace
in Linda. The main communication calls are as follows:
Volpex_put(tag, data)
A Volpex put call writes the data object data into the abstract



dataspace identified with tag. Any existing data object with
the same tag is overwritten.
Volpex_read(tag)
A Volpex read call returns the data object that matches the
tag in the dataspace.
Volpex_get(tag)
A Volpex get call returns the data object that matches the tag
in the dataspace, and then removes that data object from the
dataspace.

Volpex read and Volpex get calls are identical except that
Volpex get also clears the matched data object from the datas-
pace. Both Volpex read and Volpex get are blocking calls: if
there is no matching data object in the dataspace, the calls
block until a matching data object is added to the dataspace.
A Volpex put call only blocks until the operation is completed.
Additional calls are available in the API to retrieve the process
Id and the the number of processes, and to initialize and
terminate communication with the dataspace server. The basic
API is outlined in Table I. In the rest of the paper we use put,
get, and read interchangeably with Volpex put, Volpex get,
and Volpex read.

int volpex put (const char* tag, int tagSize, const void* data, int dataSize)
int volpex get (const char* tag, int tagSize, void* data, int dataSize)
int volpex read (const char* tag, int tagSize, void* data, int dataSize)
int volpex getProcId (void)
int volpex getNumProc(void)
int volpex init(int argc, char* argv[])
void volpex finalize(void)

TABLE I
VOLPEX DATASPACE COMMUNICATION API

B. API design considerations

The set of calls in the dataspace API is minimal but is
sufficient to simulate basic message passing and shared mem-
ory style communication. A data object can be read multiple
times until it is removed, and data objects can be overwritten,
allowing shared memory style programming. Read and get
operations block when no object with a matching tag exists
and the get operation clears a data object. These can be used
to provide various flavors of synchronization, e.g., barriers,
blocking receives, and shared queues for dynamic distribution
of work.

The dataspace API is different from the well known Linda
system in some significant ways listed as follows:

1) Single tag: The parameters for dataspace API calls are
a data object and a tag. Data matching is based on a
designated tag and associative matching across multiple
tuples is not supported. This decision was made for sim-
plicity and efficiency of implementation, without, in our
experience, significantly affecting programmability. Our
implementation does provide a set of helper functions
to generate a unique tag from a set of tuples.

2) Blocking read calls: The read and get calls in the
dataspace API are blocking. It is well understood that

support for blocking calls is essential to support coor-
dination across processes. Non-blocking calls, where a
get or read returns with no action if no matching object
exists, make programming easier in some contexts. An
example is a master-worker scenario where a worker
checks multiple queues for tasks to execute. Additional
non-blocking read/get calls can be supported with re-
dundancy, and are being considered as an extension of
this work.

3) Single assignment puts: Some languages allow a data
object to be written only once and not overwritten. This
has some desirable properties from software design and
implementation perspectives. However, re-assigning to
the same tag is essential to easily simulate unstructured
shared memory programs. Hence, a multiple assignment
model was selected.

4) Process creation: There is no support for process cre-
ation analogous to Linda eval call as process creation
and management is done externally.

IV. EXECUTION MODEL

The basic semantics of the communication operations are
straightforward as listed in the discussion of the API above.
However, managing redundant communication requests is a
significant challenge. The key problem is that a logical call
(with side effects) may be executed repeatedly or executed
at a time when the state of the dataspace is not consistent
with canonical execution. For example, what action should be
taken if a late running process replica issues a get or read for
which the logically matching data object is not available in
the dataspace anymore, either because they were removed by
another get or overwritten by another put ?

The guiding principle for the execution model is that the
execution results with redundant communication calls must be
consistent with normal execution. We will refer to execution
with replicated/redundant communication calls, due to process
redundancy or process checkpoint-restarts, simply as redun-
dant execution, for brevity. If the parallel application is de-
terministic, then normal and redundant executions should give
the same results. If the parallel application is non-deterministic
but individual process execution is repeatable and deterministic
(i.e, non-determinism exists because different communication
orders are possible in an execution) then redundant execution
will return one possible result of normal execution without
replication. The major components of the execution model are
the following:

1) Atomicity rule: The basic put/read/get operations are
atomic and executed in some global serial order.

2) Single put rule: When multiple replicas of a process
issue a Volpex put, the first writer accomplishes a suc-
cessful operation. Subsequent corresponding Volpex put
operations are ignored.

3) Identical get rule: The first replica issuing a Volpex get
or a Volpex read receives the value stored at the time in
the dataspace. Subsequently, replicas of the correspond-



ing Volpex get or Volpex read receive the same value,
independent of the time at which they are executed.

The execution model can be explained as follows. The
process instances that execute the first instance of a logical
communication call create a leading front of execution repre-
senting normal execution without redundancy. The execution
model ensures that a) the trailing replica communication calls
have no side-effects (single put rule), hence they cannot
cause incorrect execution of leading replicas by corrupting
the dataspace and b) trailing replica communication calls are
guaranteed to receive the same data objects for read and get
calls as the corresponding first communication calls (identical
get rule). All process instances execute identically as the
effect of communication calls on the processes is identical
irrespective of their execution time and application state at
that time. Execution proceeds seamlessly in case of process
failures and slowdowns, so long as at least one instance of
each process exists. This is illustrated in Figure 1.

Fig. 1. Application progress is determined by the leading front created by
the fastest replica for each process

The fundamental result that we have developed informally
is as follows:
Lemma 1: Consider a program with multiple sequential pro-
cesses communicating exclusively with Volpex dataspace API.
Assume that the communication implementation follows the
atomicity, single put, and identical get rules. Then any result
produced by redundant execution is identical to one of the
possible results of normal non-replicated execution.

As discussed earlier, redundancy may be caused by ex-
plicit replicated processes or independent checkpoint-restarts
of processes. Non deterministic programs are allowed as
long as individual process replicas behave identically and
deterministically. Hence the result may not hold, for instance,
if a process employs random numbers or has an intermittent
software bug. Also, an implicit assumption is that the program
does not cause external side effects, e.g., as a result of file
or network I/O. No redundancy or checkpoint-restart scheme
can work without these conditions. However, in many cases
the programs can be rewritten to avoid such problems when
they exist, and the dataspace API can assist in the process
by providing synchronization mechanisms. A formal proof is
omitted for brevity.

V. IMPLEMENTATION

The communication API is implemented with the client
server paradigm. The processes connect to a dataspace server
that services communication requests. The main challenge is in
implementing the execution model with support for redundant
processes. We discuss the dataspace server design followed
by a discussion of some of the key implementation issues and
integration with the BOINC middleware.

A. Dataspace server design

The implementation of the Volpex dataspace API must
conform to the execution semantics discussed in Section III.
The atomicity rule is satisfied by a single threaded server
that processes one client request at a time. In order to satisfy
the single put and identical get rules of the execution model,
additional machinery is needed. Each logical communication
call (put, get, or read) is uniquely identified by the pair:
(process id, request number), where request number is the
current count in the sequence of requests from a process. When
a communication call is issued by a process, the process id
and request number are appended to the message sent to
the dataspace server to service the request. For replicated
calls corresponding to the same logical call, the (process id,
request number) pairs are identical. This allows the identifi-
cation of a new call and subsequent replicated calls.

The server implementation maintains the current re-
quest number for each process, which is the highest request
number served for that process so far. The server also main-
tains two logically different pools of storage as shown in
Figure 2.

• Dataspace table: This storage consists of the logically
“current” data objects indexed with tags.

• Read log buffer: This storage consists of data objects
recently delivered from the dataspace server to processes
in response to get and read calls. Each object is uniquely
identified by (process id, request number).

When a communication API call is executed in a process, a
message is sent to the dataspace server consisting of the type
and parameters of the call and (process id, request number)
information. A request handler at the server services the call
as follows:

• Put: If the request number of the call is greater than
the current request number for the process (a new put),
the data objected indexed with the tag is added to the
dataspace table. If the request number of the call is less
than or equal to the current request number (a replica
put for which the data object must already exist on the
server), no action is taken.

• Get or Read: If the request number of the call is greater
than the current request number for the process (a new
get), then i) the data object matching the tag is returned
from the dataspace storage, and ii) a copy of the data
object is placed in the read log buffer indexed with
(process id, request number). Additionally if the call is
a get, the data object is deleted from the dataspace table



(but retained in the read log buffer).
If the request number of the call is less than or equal to
the current request number (a replica get for which the
data object must exist in the read log), the data object
matching (process id, request number) is returned from
the read log buffer.

The design of the dataspace server is illustrated in Figure 2.
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Fig. 2. Volpex dataspace server design

B. Integration with BOINC

The BOINC middleware is widely used for distributed
scientific computing with a bag of tasks programming model.
BOINC runs well on volunteer nodes, because it offers a com-
bination of application-level checkpointing and redundancy to
handle failure and computation errors. However, the BOINC
platform does not support communicating parallel programs.

This project has leveraged BOINC for management of task
distribution and redundancy, while applying the Volpex datas-
pace API for inter-task communication. When an application
is compiled, it can be linked with the BOINC and Volpex
libraries. The BOINC redundancy mechanism is employed
to create the desired degree of process replication. However,
Volpex can also operate independent of BOINC if processes
are scheduled explicitly, e.g., with a cluster scheduler.

C. Optimistic logging

The design presented in section V-A is based on pessimistic
logging. Each time a data object is delivered as a result of a get
or a read call, the data object is copied to the log. An optimistic
approach to logging minimizes copying by taking advantage of
the fact that a copy to the log is only necessary if the location
with the corresponding tag is overwritten. Hence the following
procedure is followed. When an object is delivered from the
dataspace in response to a read, the corresponding object is
only flagged as having been read. The same action is taken on
a get, except that the object is flagged as logically removed
(but not actually removed). When the object is overwritten
with a put, only then the data object is copied to the log
before being overwritten. The replica read and get calls are
directed appropriately to the main dataspace or the log space.
Optimistic logging can lead to significant saving in memory

and copying overhead but the logic for directing a read or
get request correctly is somewhat more complex. We have
developed implementations for both optimistic and pessimistic
approaches. However, the results in this paper are based on
pessimistic logging and a study of the tradeoffs of the two
approaches is beyond the scope of this paper.

D. Log buffer management
An important consideration in the design of a dataspace

server is how long should an object be retained in the read
log buffer before it is overwritten? In theory a replica or
checkpoint restarted process can be arbitrarily out of date
with the current state of execution, and hence clearing any
old object from the log buffer can cause a communication
operation to fail. In practice, a very old copy is unlikely
to be needed. The current dataspace server has a circular
read log buffer whose size is specified as a parameter during
initialization. When the buffer is full, the oldest entry is
overwritten. To improve robustness, a simple scheme that
utilizes secondary memory space has also been developed.
Whenever the log buffer reaches the maximum limit, the
messages that are present in the older half of the buffer are
removed and written onto the secondary space. Since the
dataspace server implicitly tracks the status of all process
replicas, there is room for more sophisticated implementations.
For instance, a read buffer log entry could be retained until a
fixed number of replicas have accessed the object. In the case
of usage of checkpointing, log entries can be deleted once a
process checkpoint generation ensures that older log entries
will not be needed even in the case of a process failure.

E. Distributed and multithreaded implementations
The current dataspace server is a single-threaded server

which multiplexes between various requests from the clients.
The design allows a distributed implementation by partitioning
the abstract global address space whereby each process or
thread has exclusive access to a part of the tag address space.
The design for a multithreaded implementation, where threads
can service arbitrary requests but ensure consistency, has been
developed based on similar Linda implementations. As long as
concurrent threads are working on independent tags, the only
requirement is atomic access to data structures in some cases,
such as lists in the log buffers.

F. Implementation framework
Our communication library is built on C/C++ using TCP

Sockets. The data provided by the processes is stored in-
memory. The tag and data objects are stored in the form
of a hash table indexed with tags. The read log buffer is
implemented as a combination of hash table and lists. All data
transfers are realized as one-way communication initiated by
the client processes. The clients establish a connection with the
dataspace server using TCP Sockets before performing any op-
erations. This connection is retained until all the operations on
the dataspace are completed. If the connection is interrupted,
processes try to reestablish the connection with the server in
exponentially increasing time intervals.



VI. USAGE AND RESULTS

The Volpex dataspace communication library has been im-
plemented and deployed. It can be used to execute applications
with replicated processes for fault tolerance on clusters or on
volunteer nodes with the BOINC framework. Experimentation
and validation was done on compute clusters as well as ordi-
nary desktops that constitute a “Campus BOINC” installation
at University of Houston. In this section we present results
with various benchmarks and applications with two different
goals. First, document the usability of the dataspace API
for a variety of applications with differing communication
patterns, and second, understand the performance implications
of the Dataspace API design for execution on volunteer
environments. The benchmarks and codes that are used for
our results are the following:

1) Latency and bandwidth microbenchmarks.
2) Sieve of Eratosthenes (SoE), a well known algorithm for

finding prime numbers. The dataspace API was used to
broadcast a block of new prime number to all processes
in the parallel implementation.

3) Parallel Sorting by Regular Sampling (PSRS), a well
known sorting algorithm. The dataspace API was used
for all-to-all communication.

4) Replica Exchange for Molecular Dynamics (REMD),
a real world application used in protein folding re-
search [27]. Each node runs a piece of molecular sim-
ulation at a different temperature using the AMBER
program [28]. At certain time steps, temperature data
is exchanged between neighboring nodes based on the
Metropolis criterion, in case a given parameter is less
than or equal to zero. In our implementation of this
code, the dataspace API is used for i) storing process-
temperature mapping, ii) synchronization of the pro-
cesses at the end of each step, iii) identification and
retrieval of energy values from neighboring processes,
and iv) swapping of temperatures between processes
when needed.

Additionally a prototype implementation of MapReduce,
framework for distributed computing was also developed but is
not discussed further in this paper. The Dataspace API is used
as the intermediary for data exchange between the processors
executing the Map and Reduce phases.

The microbenchmarks, Sieve oF Eratosthenes (SoE), and
Parallel Sorting by Regular Sampling (PSRS) codes were
developed to understand system behavior when the dataspace
server is stressed. Replica Exchange Molecular Dynamics
(REMD) and MapReduce from Google represent applications
with low to moderate degree and volume of communication
that are considered suitable for Volpex. In all cases, fault
tolerance was achieved by replicating the computation. For
the results presented in this paper, the codes were executed on
two distinct environments, but with the same dataspace server.

a) Traditional Cluster:: A 300+ node “Atlantis” cluster
composed of Itanium2 1.3GHz dual core nodes with 4GB
of memory running RedHat Linux. A traditional scheduler

(Torque) is used that ensures that only one application runs
on a set of nodes and exactly 1 process executes on a node.

b) BOINC Volunteer environment:: A volunteer comput-
ing environment managed by BOINC middleware consisting
of a cluster, desktops from a UH Computer Science Lab,
desktops from a UH Physics Lab, and individual volunteer
nodes on campus. The nodes are in active use for other tasks
but available to BOINC/Volpex when idle. The cluster has
single core AMD MP2000 series nodes with 2GB memory
running Linux. The most common configuration of a lab PC
was a 1.86GHz Intel x86 processor with 2GB of memory.
Computer science lab PCs were running Windows XP and
most Physics Lab PCs were running Unix. The default client
side BOINC setting that allows up to 2 processes per node
was used. BOINC picks execution nodes randomly and it was
verified that virtually all experiments employed a mix of nodes
from the cluster and the two desktop PC pools.

The dataspace server was running on an AMD Athlon
2.4GHz dual core machine with 2GB memory running Ubuntu
9.01. The server and client nodes were on different subnets that
are part of a 100Mbps LAN on UH campus. This is the case
even for experiments with clients on the traditional cluster.

A. Benchmarking of API calls

In the first set of experiments, we recorded the time taken
to execute the different API calls with varying message sizes
and varying degree of replication. The effective bandwidth
delivered by the server in response to put operations from
a cluster node is presented in Figure 3(a). Note that the
bandwidth presented is the aggregate bandwidth delivered by
the server in response to all clients in case of replication.

We observe that the general bandwidth trend is typical
of a 100Mbps LAN environment. The effective bandwidth
increases with the size of the data object but flattens out around
12MBytes/sec (or 96Mbps), which is just below the network
capacity of 100Mbps. Hence, the system overhead is not
significant. The figure also shows that the effective bandwidth
with 2 and 4 replicated processes is virtually identical to that
without replication except for a very slight reduction in the
midrange of message sizes. It is instructive to recall how
replicated put operations work. The first put actually transfers
the data object over the network, and replica put calls are
returned without any data transfer. Thus, the total network
traffic does not increase significantly with replication. Hence,
it is not surprising that the effective bandwidth delivered by
the server is not significantly affected. The slight reduction is
attributed to the overhead of processing of put calls from other
replicas.

The results for the delivered bandwidth for get operations
on a cluster are presented in Figure 3(b). We omit the results
for read operation as they are virtually identical to those
for the get operation. Without replication, the performance
of get operations is very similar to the performance of put
operations and the same discussion applies. However, the
behavior with replicas is very different. It is instructive to



(a) PUTs (b) GETs

Fig. 3. Aggregate Bandwidth for PUT and GET operations with and without replicas on a cluster

(a) PUTs (b) GETs

Fig. 4. Aggregate Bandwidth for PUT and GET operations with and without replicas on a Volunteer environment

recall that replicated get operations are handled very differ-
ently from put operations. Each replicated get call leads to
the entire data object being transferred from the server to
a client replica. Hence, for a degree of replication of k the
network traffic for get calls increases by a degree of k while
it remains unchanged for put operations. Figure 3(b) shows
that the aggregate bandwidth delivered by the server increases
significantly with replication except for very high message
sizes where the bandwidth is limited by the network capacity.
The server is able to register a higher bandwidth as 2 and
4 replicas imply that the aggregate rate at which the data is
being demanded by the clients increases by a factor of 2 and
4, respectively.

Figure 4 presents results from the evaluation of performance
of put and get operations on volunteer environment nodes. The
results are virtually identical for put operations and slightly
lower on average and less predictable for get operations. The
fact that the results are not significantly different for cluster
and volunteer nodes is not surprising since the dataspace
server and the 100MBps LAN through which the clients and
the dataspace server are connected are identical. The key
difference that the cluster hosts are dedicated and faster is

not a major factor in this scenario.

B. Sieve of Eratosthenes

We study the SoE program to gain more understanding of
performance aspects of employing dataspace for computing. In
SoE, prime numbers are identified by eliminating the multiples
of discovered prime numbers. In the parallel implementation
employed, a block of newly identified prime numbers is
broadcast to all processors for elimination of all its multiples.
For broadcast with the dataspace API, one process executes a
put while all other processes issue a corresponding read. A low
block size of 10 prime numbers was selected for experiments;
a lower block size implies frequent put and read operations
of small objects interspersed with small computation blocks
making the application latency sensitive. However, a low block
size also minimizes the delay in the processing pipeline. The
results are shown in Figure 5.

We report a single execution time reading for cluster nodes,
but the max and min for 5 runs for the volunteer pool, as the
execution time can vary significantly on a volunteer pool. We
observe from Figure 5(a) that the execution time for volunteer
nodes is a factor of 2 or more higher than cluster nodes. The
reasons for this are i) volunteer nodes are somewhat slower
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Fig. 5. Performance of Sieve of Eratosthenes (SoE)

than cluster nodes, ii) cluster nodes are connected to each
other by a low latency high bandwidth network, and iii) up to
2 processes can execute on a single volunteer node while 1
process per node policy is enforced for cluster nodes by the
scheduler.

We also observe from Figure 5(a) that SoE scales well on
a cluster at least up to the maximum 64 processors tested.
However, the performance scales only up to 32 processors
on the volunteer pool and then deteriorates. The computation
work between consecutive read operations is lower for large
number of nodes making the execution more latency sensitive.
Cumulative impact of heterogeneity in a volunteer pool is also
higher for more processors.

Figure 5(b) shows performance of 8 process SoE with
replication for fault tolerance. We observe that the perfor-
mance on the cluster or the volunteer pool is not affected
significantly with replication. As the application is latency
bound, adding replicas does not impact performance much.
This would change if the increased traffic overwhelms the
dataspace server, which was observed at significantly higher
degrees of replication than what is reported here.

C. Parallel Sorting by Regular Sampling

The Parallel Sorting by Regular Sampling (PSRS) algorithm
provides parallel sort operations on distributed data sets. The
algorithms consists of three main steps: the selection of pivot
points, an all-to-all style communication redistributing the
data using the pivot, followed by a local sort operation. The
dataspace server is used as the intermediary for all-to-all
communication. PSRS is a communication intensive algorithm
that was included to investigate the limits of a volunteer pool.
PSRS was used to sort 64 million elements. The results in
Figure 6(a) show that PSRS scales up to 32 processes on a
cluster and 16 processes on the volunteer pool. Interestingly,
the performance on the volunteer pool and the cluster is very
similar for small numbers of processors. For PSRS, the perfor-
mance bottleneck is the single dataspace server and the LAN
of 100Mbps. Hence, the overall performance is less sensitive
to processor performance. The reason for limited scalability

is that the performance gain from parallelizing the local sort
operation does not match the increased communication costs
as the amount of data in each communication step is fixed
and the number of communication operations increases. The
deterioration in performance is much higher for the volunteer
environment for reasons discussed for the SoE code earlier
including the impact of heterogeneity for a larger system.

Process replication is our approach to overcoming the
volatile nature of nodes. The performance with replication for
an 8 process PSRS is demonstrated in Figure 6(b). There is
a steady increase in execution time with increasing degree of
redundancy. The reason is that the execution time for get and
read operations can increase significantly when the network
traffic and the workload overwhelm the server or the network.
The execution becomes slower and less predictable rapidly for
the volunteer environment above a replication degree of 3.

D. Application: Replica Exchange Molecular Dynamics

The Replica Exchange Molecular Dynamics (REMD) for-
mulation [27] tries to overcome the multiple-minima problem
by exchanging the temperature of non-interacting temperature
replicas of the system running at several temperatures.2

The context in which one of the authors of this paper
(Cheung) is applying REMD is “crowding” in cell like envi-
ronments [29, 30]. In REMD, each node runs a piece of molec-
ular simulation at a different temperature using the AMBER
program [28]. The number of nodes to simulate the system
depends on the system’s size and types of interactions. At
certain time steps, communication occurs between neighboring
nodes. An exchange is initiated based on the Metropolis
criterion, in case a given parameter is less than or equal to
zero. In our case, the data exchanged is the temperature.

In our implementation of this code, the dataspace API is
used for i) storing process-temperature mapping, ii) synchro-
nization of the processes at the end of each step, iii) identifica-
tion and retrieval of energy values from neighboring processes,
and iv) swapping of temperatures between processes when

2The term ‘temperature replica’ has an application specific meaning in the
context of REMD, unrelated to Volpex process replicas.
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Fig. 6. Performance of Parallel Sorting by Regular Sampling (PSRS)

needed. Prior to this collaboration, REMD was implemented
on clusters with data exchange performed using a shared file
system and file locking.

In the REMD experiments we conducted, each temperature
replica represents a process which starts running simulations
for a certain temperature. At the end of each step, neighboring
temperatures may be exchanged between processes based
on the Metropolis criterion. A snapshot of such exchange
of temperatures is presented in figure 7, from one of the
experiments. It shows how temperatures are exchanged for an
execution with 10 temperature replicas and 5 steps. In each
step, temperatures that are swapped are highlighted in bold
with the same background pattern.

Fig. 7. REMD Temperature(K) swaps: 10 temperature replicas for 5 steps

Figure 8 presents comparison of application execution time
between a volunteer environment with Volpex/BOINC versus
execution on a cluster (PERL & File locking) for a small
sample REMD run. Execution on volunteer nodes is modestly
slower than cluster execution. This application is compute
intensive with low communication and the performance differ-
ence simply reflects the difference in processing speed of the
cluster and volunteer nodes. Process level replication does not
impact performance - again an expected result as the low level
of communication will not stress the dataspace server. The
significant result is that the code can run reliably on ordinary
desktops with only a small decline in performance.

Fig. 8. REMD - Execution on cluster with PERL and on Volunteer nodes

E. Failure behavior

We also evaluated the impact of node failures for all bench-
marks and applications when replication was used. In all cases,
the application execution time was not negatively impacted
with failure of some replicas. In fact failure sometimes led to
a slight improvement in performance as it leads to a reduction
of communication traffic. Of course, multiple failures will
eventually cause the application to fail. Results are omitted
for brevity but available in [31].

VII. CONCLUSIONS

This paper introduces the Volpex dataspace API that allows
efficient Put/Get operations on an abstract global shared mem-
ory. An innovative communication model and implementation
ensure consistent execution results in the presence of multiple
asynchronous invocations of a single communication call
due to redundancy for fault tolerance. The system has been
integrated with BOINC middleware to provide, to the best of
our knowledge, the first comprehensive solution to the reliable
execution of communicating parallel codes on volunteer nodes.

The example codes developed make it clear that the frame-
work is applicable to a large class and configurations of
parallel applications. The results with primes and sorting
programs indicate that the framework can exploit modest



degree of parallelism even on application classes that are
considered communication intensive. The experiments and
experience with REMD indicates that Volpex can be employed
to run large scale practical codes with high computation to
communication ratio.

While dedicated compute clusters will always be prefer-
able for many latency sensitive applications, we believe this
work fundamentally expands the realm of computing on idle
desktops to a much larger class of parallel applications. If a
substantial fraction of HPC applications could be executed on
shared desktops, the impact will be significant as the clusters
can be dedicated to latency sensitive applications that they are
designed for.
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