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Abstract. Emerging MPI libraries, such as VolpexMPI and P2P MPI,
allow message passing parallel programs to execute effectively in het-
erogeneous volunteer environments despite frequent failures. However,
the performance of message passing codes varies widely in a volunteer
environment, depending on the application characteristics and the com-
putation and communication characteristics of the nodes and the in-
terconnection network. This paper has the dual goal of developing and
validating a tool chain to estimate performance of MPI codes in a vol-
unteer environment and analyzing the suitability of the class of compu-
tations represented by NAS benchmarks for volunteer computing. The
framework is deployed to estimate performance in a variety of possible
volunteer configurations, including some based on the measured param-
eters of a campus volunteer pool. The results show slowdowns by factors
between 2 and 10 for different NAS benchmark codes for execution on a
realistic volunteer campus pool as compared to dedicated clusters.

1 Introduction

Most desktop computers and workstations are virtually idle as much as 90%
of the time, representing what the volunteer computing community sees as an
attractive "free” platform for parallel computations. Idle desktops have been
successfully used to run sequential and master-slave task parallel codes, most
notably under Condor [1] and BOINC [2]. Extending the classes of applica-
tion that can be executed in a volunteer environment is challenging, since the
compute resources are heterogeneous, have varying compute, memory and net-
work capacity, and become unavailable for computation frequently and without
warning. The Volpex project team, that includes the authors of this paper, has
developed middleware for executing communicating parallel programs on vol-
unteer nodes with orchestrated use of redundancy and communication logging.
Volpex Dataspace API [3] provides a mechanism for applications to communi-
cate through anonymous, asynchronous Put/Get operations. VolpexMPI [4] and
P2P MPT [5] are MPI implemetations customized for volunteer environments.

Porting a large scale application to a volunteer environment presents numer-
ous challenges even for MPI, a portable Message Passing Interface, examples of
which are as follows:



— A modest effort and some expertise is necessary to deploy applications in a
BOINC or CONDOR execution management environment.

— As volunteer nodes may have limited memory, a memory intensive applica-
tion may have to be recast, e.g., on a higher number of parallel processes, to
run correctly and efficiently.

— Communication intensive applications may require some customization for
scheduling, such as limiting execution to nodes on a campus network.

— For applications employing licensed software, arrangements have to be made
that the applications can run correctly and legally on volunteer nodes.

The reasons that make parallel computing in a volunteer environment chal-
lenging - primarily heterogeneity, variable compute and communication capacity,
and high rates of failure - also make performance prediction on such environ-
ments challenging. Hence it is often unclear if a parallel message passing code
will run effectively in a volunteer environment. Given that porting to a volun-
teer environment represents a significant investment, it is highly desirable that
an estimate of the expected performance in a volunteer environment be available
before the actual porting. The key objective of this research is to build a frame-
work for estimating the performance of message passing MPI codes on volunteer
environments. The paper also specifically characterizes the performance of NAS
benchmarks in volunteer environments.

Performance on a volunteer environment depends on the computation and
communication characteristics of the volunteer environment. This research em-
ploys the Dimemas framework to predict application performance in different
types of volunteer environments. The high failure rates in volunteer environments
can add an additional overhead, if, e.g., checkpoint restart is used for recovery.
This overhead is dependent on a large set of parameters such as failure char-
acteristics, degree of redundancy, and checkpointing frequency and overheads.
These are not the subject of this paper and are partially addressed in related
work. The main subject of this work is to estimate the performance of a given
MPI application under a variety of scenarios including scenarios representing
measured characteristics of a campus LAN.

2 Related Work

This work is in the context of fault tolerant MPI libraries. Several MPI libraries
incorporate checkpoint-restart for fault-tolerance, with MPICH-V [6] being prob-
ably the best known example. This library is based on uncoordinated check-
pointing and pessimistic message logging. MPI/FT [7] and P2P-MPI [5] are
based on process replication techniques. Volpex MPI [4], which is the context
of this work, employs checkpointing as well as replication. The focus of this
work is estimating the performance of an MPI library in a volunteer computing
environment in general.

Dimemas [8] is a performance analysis tool that allows the user to predict
the performance of a parallel application on a simulated target architecture.
Dimemas is the basis of of the simulations employed in this work and is discussed



in more detail in the following sections. Dimemas has been used in heterogeneous
environments to predict the performance of applications for resource selection [9].

SimBOINC [10] is a simulator designed to test new scheduling strategies in
BOINC and other desktop and volunteer systems. SimBOINC simulates a client-
server platform where multiple clients request work from a central server. The
characteristics of the client, the workload and the network connecting the client
and server can be specified as simulation inputs. The results provide sched-
uler performance metrics, such as effective resource shares, and task deadline
misses. EmBOINC [11] (Emulator of BOINC Projects) is a trace-driven emula-
tor that models heterogeneous hosts and their interaction with a real BOINC
server. EmBOINC uses statistical information obtained from real BOINC traces
to characterize volatile, heterogeneous, and error-prone hosts. Both the above
tools (SimBOINC and EmBOINC) are focused on scheduling and node selection
and do not provide a way to simulate the performance of communicating parallel
applications on desktop grids.

3 Simulation framework
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Fig. 1. Dimemas based simulation framework

The main goal of this research is to estimate the performance of an MPI
application under volunteer environments with different execution characteris-
tics. The simulation framework is based on the Dimemas tool chain developed
at Barcelona Supercomputing Center. Dimemas [8] simulates the performance
of an application on a user-defined virtual architecture. Dimemas has an exten-
sive suite of parameters that can be used to customize a virtual environment to
mimic a real-life environment. The following important properties of an execu-
tion environment can be defined with Dimemas:

— Simulated Node Architecture including the number of CPUs per node, rela-
tive processor speed, memory bandwidth, file system parameters, and num-
ber of parallel network links.



— Simulated Network Architecture including LAN/WAN configuration, maxi-
mum bandwidth on network links, latency on network links, external network
traffic model, and network sharing model.

In addition to the the Dimemas simulator, the framework employs tools to
record and merge execution traces. MPIDTRACE program traces the applica-
tion execution and generates a trace file (one per process) containing the run
time actions of the application including communication calls and computation
blocks, along with details such as elapsed times and the source and destination
processes for communication calls. MPI2TRF program is used to merge the per-
process trace files generated by the MPIDTRACE program into a single file
that can be read by Dimemas. Estimating the performance of a given applica-
tion on a volunteer environment consists of the following steps: i) Execute the
application linked with MPIDTRACE on a reliable execution platform like a
cluster and collect the trace, ii) combine the individual process traces into a
single trace with MPI2TRF, iii) configure Dimemas to reflect the desired vol-
unteer computing environment, and iv) perform the simulation with Dimemas to
obtain the predicted execution time. The simulation steps are also summarized
in Figure 1.

4 Experiments and results

4.1 Simulation configuration

The simulation is performed on two types of network configurations. We refer to
the first configuration as the Desktops over Internet (DOI) configuration, and
to the second as the Collection of Networked Computers (CNC) configuration.
These configurations are illustrated in Figure 2.

The DOI configuration consists of desktop PCs connected with an institu-
tional LAN or Wide Area Network/Internet. This environment is characterized
by the latency and bandwidth between individual nodes and the network. There
are no shared network resources that would represent a fundamental bottleneck.
The assumption is that the switch that connects the PCs in a LAN environment
offers full bisection bandwidth. For nodes connected by the Internet, it is im-
plicitly assumed that the PCs in different regions do not share the same route
in the Internet, and if they do, the traffic generated by the nodes is negligible as
compared to the rest of the Internet traffic on shared routes.

The CNC configuration on the other hand, is a two stage hierarchy of net-
works of computers. Individual groups of computers, representing separate labs
or computation centers physically, are connected to each other over a LAN within
the lab. Then these groups/labs communicate with others through WAN /Internet.
In contrast to the DOI configuration discussed above, the connections between
PCs in one lab communicating to PCs in another lab have to share a single link.

Both configurations apply a linear model for access to a shared network
implying that only one node accesses a shared LAN/WAN at a given time. In
general, DOI has the relative advantage over CNC that no links to the WAN



are shared, while CNC has the relative advantage over DOI that there is a
reduced possibility of delays at the central WAN as some communication can be
completed within the local LANs. The latter is most significant for all-all type
communication patterns.

Fig. 2. Graphical representations of the Desktops over Internet configuration (left) and
Collection of Networked Computers configuration (right).

All traces for the simulations were generated on the “Shark” cluster at the
University of Houston. The Shark is a heterogeneous cluster consisting of 24 Sun
X2100 nodes, each with a 2.2 GHz dual core AMD Opteron processor and 2 GB
main memory, and 5 Sun X2200 nodes, each with two 2.2 GHz quad core AMD
Opteron processors (8 cores total) and 8 GB main memory. The network inter-
connect of Shark cluster comprises of a 4xInfiniBand network interconnect and
a Gigabit Ethernet network. For results presented, the Gigabit Ethernet net-
work has been used. This cluster also serves as a reference cluster for estimating
relative performance on volunteer nodes.

Four NAS benchmarks are used for evaluation: The CG, IS, SP, and FT
represent diversity in terms of communication volume and communication pat-
tern. The CG and the IS benchmarks are considered communication intensive
for different reasons. CG sends a large number of point-to-point messages be-
tween processes. IS is dominated by an all-to-all communication pattern with
relatively few large messages. The FT benchmark also uses an all-to-all commu-
nication pattern, but with smaller messages and more frequent operations. Due
to the complexity of the compute operations involved in the FT benchmark the
ratio of computation to communication in FT is lower than in IS. The dominant
communication pattern of the SP benchmark is a 5-point stencil communication,
which leads to a ’localized’ communication behavior of the code.

4.2 Desktop over Internet configuration results

We report on experiments carried out on the DOI configuration. Execution of
NAS Class B benchmarks CG, FT, IS and SP on 16 and 32/36 processes was
simulated with a range of (synthetic) bandwidth and latency values for the net-
work. The reference execution simulated a cluster with 128MBps bandwidth and



0.05 seconds latency. Simulations were performed for bandwidths {12.5 MBps,
1.25MBps, 0.125 MBps} and latencies {0.1ms, 1 ms and 10 ms} spanning the
range from clusters to very slow Internet connected nodes. The goal is to esti-
mate the impact on execution time of reduced bandwidth and increased latency
that represent various flavors of volunteer computing environments. The results
are plotted in Figure 3.

Figure 3 (a) shows expected increase in execution time for a comprehensive
set of scenarios as compared to cluster execution. We omit detailed comments for
brevity, and instead focus on specific scenarios in Figure 3 (b) and (c). Figure 3
(b) simulates the expected slowdown when the available bandwidth is reduced
from the reference cluster level value of 128 MBps while the latency is fixed at .1
msecs. We limit our discussion to the case of 16 nodes as the patterns for 32/36
nodes are qualitatively similar.

We notice that the slowdown for reduction of bandwidth to 12.5 MBps is
relatively modest, ranging from a low of 17% for FT to a high of 265% for IS.
Reduction of bandwidth to 1.25MBps has a far more dramatic effect: from a
roughly 2fold slowdown (190%) for FT and up to a 30fold slowdown (2913%)
for IS. The conclusion is that for NAS benchmarks, the impact of reduction in
bandwidth is specific to the computation/benchmark in question, and relatively
modest (say around or below a factor of 2) in many interesting scenarios.

We now focus on Figure 3(c) that shows the sensitivity of the benchmarks
to latency. Here, the bandwidth is fixed at 128 MBps and comparisons are made
for various latency values against a reference latency value of 0.1 milliseconds.
The graph shows that the impact is very low, below a 15% slowdown, for most
scenarios. The notable exception is CG, where the slodown is 43% for a latency
of 1 msecs and over 600% for a latency of 10 msecs. The slowdown of SP rises
to 190% for a latency of 10 msecs.

4.3 Collection of Networked computers configuration results

Simulations were conducted using the CNC configuration with the same set
of benchmarks, problem sizes and number of processors. Selected results are
presented in fig. 4. The key difference between DOI and CNC configuration is
that in CNC configuration groups of nodes share a link to the backbone network.
For this reason, CNC configuration is generally slower for a uniform setting of
latency and bandwidth, but can be faster as fewer connections access the central
WAN.

Figure 4 (a) simulates the expected slowdown when the available bandwidth
is reduced with the same parameters as those for Figure 3 (b) for the DOI
configuration. Similarly Figure 4 (b) shows the sensitivity of performance to
latency for a fixed bandwidth with parameters same as Figure 3 (¢) for the DOI
configuration.

The general pattern of results is the same as for the DOI configuration but
with generally higher slowdowns due to sharing. An interesting case is the FT
benchmark which is far more sensitive to available bandwidth in CNC configura-
tion as compared to its performance in DOI configuration. The probable reason
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is that the all-all communication in FT saturates the bandwidth of the links
connecting LAN groups to WAN/Internet connection which cannot happen in
the DOI configuration. The overall slowdown numbers underline the potential of
LAN to WAN bottlenecks to impact performance: for bandwidth reduced to a
worst case of 1.25Mbps, the slowdown approximately ranges between 30fold to60
fold for the CNC configuration. In comparison, the DOI configuration exhibited
up to a 30fold slowdown.

4.4 Simulation on Real-Life Environments

For this set of experiments, we measured the actual latency and bandwidth in
the following scenarios in our computing environment. For the Shark cluster; the
measured point to point bandwidth was 95MBps and latency 0.05 milliseconds.



Between the desktops in a single lab in our building, the measured point to
point bandwidth was 12MBps and latency .4 milliseconds. Between lab desktops
connected across a LAN, the measured point to point bandwidth was 7TMBps
and latency .8 milliseconds.

First this data was used to validate and parameterize simulations as shown in
Figure 5(a). While the absolute measured and predicted performance varies up
to around 25%, the accuacy was judged sufficient for our purposes as the relative
comparison of different configuratios is still meaningful. Next, the performance
of the cluster environment was compared with our PC lab environment with 3
groups of nodes; the nodes within a group are connected at measured LAN specs
of 12MBps and latency .4 milliseconds, while the WAN latency and bandwidth
across the groups of nodes are .8 msecs and 7TMBps respectively. The results are
presented in Figure 5(b). The results show 2fold to 10fold slowdowns.
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Fig. 5. Validation and performance in realistic environments

5 Conclusions

This paper has presented a methodology based on Dimemas toolkit that allows
the estimation of performance of MPI codes on heterogeneous volunteer nodes.
The methodology was employed to estimate the performance of selected NAS
benchmarks on a large number of scenarios including those that are typical of
a volunteer environment built from idle desktops. The result also provide sig-
nificant insight into likely performance of NAS benchmarks on realistic desktop
PC environment. NAS benchmarks executing on volunteer nodes connected by
commodity LAN network is a factor of 2 to 10 slower than a dedicated cluster.
While a volunteer environment is not expected to compete with a dedicated
cluster in performance for a fixed number of nodes, the results show that it of-
fers a practical ‘free’ alternative that may be satisfactory for many application
scenarios.
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