
1

CoolStreaming/DONet: A Data-Driven Overlay
Network for Efficient Live Media Streaming

Xinyan Zhang∗, Jiangchuan Liu†, Bo Li‡, and Tak-Shing Peter Yum∗

∗Department of Information Engineering
The Chinese University of Hong Kong,Shatin, N.T., Hong Kong

{xyzhang2,tsyum}@ie.cuhk.edu.hk

†School of Computing Science
Simon Fraser University,Vancouver, BC, Canada

jcliu@cs.sfu.ca

‡Department of Computer Science
Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

bli@cs.ust.hk

Abstract— This paper presents DONet, a Data-driven
Overlay Network for live media streaming. The core
operations in DONet are very simple: every node peri-
odically exchanges data availability information with a set
of partners, and retrieves unavailable data from one or
more partners, or supplies available data to partners. We
emphasize three salient features of this data-driven design:
1) easy to implement, as it does not have to construct and
maintain a complex global structure; 2) efficient, as data
forwarding is dynamically determined according to data
availability while not restricted by specific directions; and
3) robust and resilient, as the partnerships enable adaptive
and quick switching among multi-suppliers. We show
through analysis that DONet is scalable with bounded
delay. We also address a set of practical challenges for
realizing DONet, and propose an efficient member- and
partnership management algorithm, together with an in-
telligent scheduling algorithm that achieves real-time and
continuous distribution of streaming contents.

We have extensively evaluated the performance of
DONet over the PlanetLab. Our experiments, involving
almost all the active PlanetLab nodes, demonstrate that
DONet achieves quite good streaming quality even under
formidable network conditions. Moreover, its control over-
head and transmission delay are both kept at low levels.

An Internet-based DONet implementation, calledCool-
Streaming v.0.9, was released on May 30, 2004, which has
attracted over 30000 distinct users with more than 4000
simultaneously being online at some peak times. We discuss
the key issues toward designingCoolStreaming in this
paper, and present several interesting observations from
these large-scale tests; in particular, the larger the overlay
size, the better the streaming quality it can deliver.

I. I NTRODUCTION

With the widespread penetration of broadband ac-
cesses, multimedia services are getting increasingly pop-

ular among users and have contributed to a significant
amount of today’s Internet traffic. Many multimedia
applications, such as NetTV and news broadcast, involve
live media streaming from a source to a large population
of users [18]. For these applications, IP Multicast is
probably the most efficient vehicle; its deployment how-
ever remains confined due to many practical and political
issues, such as the lack of incentives to install multicast-
capable routers and to carry multicast traffic. Researchers
thus have resorted to application-level solutions, which
build an overlay network out of unicast tunnels across
cooperative participating users, calledoverlay nodes, and
multicast is then achieved through data relaying among
these nodes.

Initially as remedies to IP multicast, many overlay
construction algorithms also advocate a tree structure
for data delivering. While this works well with dedi-
cated infrastructure routers as in IP multicast, it often
mismatches an application-level overlay with dynamic
nodes. As the autonomous overlay nodes can easily crash
or leave at will, a tree is highly vulnerable, which is
further aggravated with streaming applications that have
high bandwidth and stringent continuity demands. So-
phisticated structures like mesh and forest can partially
solve the problem, but they are much more complex and
often less scalable.

On the other hand, migrating the multicast function-
alities to application-layer also leads to greater flexibil-
ities; in particular, all the nodes have strong buffering
capabilities and can adaptively and intelligently deter-
mine the data forwarding directions. We thus envision
a data-centricdesign of a streaming overlay, where a
node always forwards data to others that are expecting
the data, with no prescribed roles like father/child, in-
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ternal/external, and upstreaming/downstreaming, etc. In
other words, it is the availability of data that guides the
flow directions, while not a specific overlay structure
that restricts the flow directions. We believe that this
data-centric design is more suitable for overlay with
high dynamic nodes, particularly considering that a semi-
static structure, no matter how efficient, is constantly
rendered to suboptimal due to node dynamics.

To this end, we design DONet, a Data-driven Overlay
Network. The core operations in DONet are very simple:
every node periodically exchanges data availability infor-
mation with a set of partners, and retrieves unavailable
data from one or more partners, or supplies available
data to partners. We emphasize three salient features
of this data-driven design: 1)easy to implement, as
it does not have to construct and maintain a complex
global structure; 2)efficient, as data forwarding is dy-
namically determined according to data availability while
not restricted by specific directions; and 3)robust and
resilient, as the partnerships as well as the periodically
updated data availability information enable adaptive and
quick switching among multi-suppliers. Moreover, our
analytical result reveals a logarithmic relation between
the overlay radius and its size, implying that DONet can
scale to large networks with limited delay.

To realize the data-driven overlay for live media
streaming, a set of practical challenges have to be
addressed. In this paper, we discuss the key design issues
of DONet, including how the partnerships are formed;
how the data availability information are encoded and
exchanged; and how the video data are supplied and
retrieved among partners. We propose a scalable mem-
bership and partnership management algorithm together
with an intelligent scheduling algorithm, which enable
efficient and continuous streaming of medium- to high-
bandwidth contents with low control overhead. They
also evenly distribute the forwarding load among the
participating nodes, and accommodate nodes with het-
erogeneous capabilities.

We have built a prototype of DONet, and have ex-
tensively evaluated its performance over the PlanetLab
testbed [30]. Our experiments involve almost all the
active PlanetLab nodes1 across 5 continents. The results
demonstrate that DONet achieves high streaming quality
in terms of streaming rate and playback continuity.
Meanwhile, its transmission delay and control overhead
are both kept at low levels. To our knowledge, Planet-
based experiments on a par scale have seldom been re-
ported in the literature. We thus list the typical issues we

1PlanetLab currently has over 400 participating nodes. Since not
all the nodes are obligated to be online, the number of the nodes
available for our experiments, oractive nodes, typically ranges from
200 to 300.

have encountered in the experiments, and discuss their
implications to the experimental results and, possibly, to
the future development of the PlanetLab.

Finally, a public Internet-based DONet implementa-
tion, calledCoolStreaming v.0.92, was released on May
30, 2004, which has been used to lively broadcast
sports programs offered by a free video server. While
initially attracted only 20 users, till the submission of this
paper, over 30000 distinct users (in terms of unique IP
addresses) have tested this streaming system, and more
than 4000 users have been simultaneously online at some
peak times. The preliminary statistical results as well
as the feedbacks from the users are quite encouraging,
which also reveal two interesting facts: first, the current
Internet has enough available bandwidth to support TV-
quality streaming (450 Kbps); and second, the larger the
data-driven overlay is, the better the streaming quality
it can deliver. Both reaffirm that the proposed data-
driven overlay network is a promising practical solution
to multicast video distribution.

II. RELATED WORK

There have been significant studies on video over
IP multicast in the past decade; see a survey in [18].
Recently, numerous overlay multicast systems have been
proposed, which can be broadly classified into two
categories [11], [27]:proxy-assistedand peer-to-peer
based . In the former, a set of servers or application-
level proxies are strategically placed, and a high-quality
overlay can then be constructed with the assistance of
these anchor nodes [1], [2], [24], [26], [28]. Our DONet,
however, belongs to the second category, which does
not rely on dedicated nodes, but build an overlay out
of self-organized autonomous nodes. In this section, we
give a brief overview of the existing overlay streaming
protocols, with a focus on those following the pure peer-
to-peer paradigm.

A. Tree-based Protocols and Extensions

As mentioned previously, many overlay streaming
systems employ a tree structure, stemmed from IP mul-
ticast. Constructing and maintaining an efficient distri-
bution tree among the overlay nodes is a key issue to
these systems. In CoopNet [3], the video source, as
the root of the tree, collects the information of all the
nodes for tree construction and maintenance. Such a

2We decide to use two different names: DONet and CoolStreaming,
because the former is technically sound and the latter is ”commer-
cially” sound – currently, a majority of CoolStreaming users are
non-networking researchers, or even non-researchers. It happens that
CoolStreaming also has a technical meaning: Cooperative overlay
Streaming.
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centralized algorithm can be very efficient, but relies
on a powerful and dedicated root node. To the contrary,
distributed algorithms, such as SpreadIt [10], NICE [12],
and ZIGZAG [11], perform the constructing and routing
functions across a series of nodes. For a large-scale
network, these algorithms adopt hierarchical clustering
to achieve minimized transmission delay (in terms of
tree height) as well as bounded node workload (in
terms of fanout degree). Still, an internal node in a tree
has a higher load and its leave or crash often causes
buffer underflow in a large population of descendants.
Several tree repairing algorithms have been devised to
accommodate node dynamics [12], [11], [23]; yet the
tree structure may still experience frequent breaks in the
highly dynamic Internet environment.

There are many other solutions addressing the unbal-
anced load or vulnerability of the tree structure. Exam-
ples include building mesh-based tree (Narada and its
extensions [14], and Bullet [20]), maintaining multiple
distribution trees (SplitStream [19]), and leveraging lay-
ered coding (PALS [29]) or multiple description coding
(CoopNet [3]). DONet complements them by introducing
a simpler and straightforward data-driven design, which
does not maintain an even more complex structure, nor
relies on an advanced coding scheme, though the latter
might be helpful in our system as well.

B. Gossip-based Protocols

Gossip (or epidemic) algorithms have recently become
popular solutions to multicast message dissemination
in peer-to-peer systems [13], [22]. In a typical gossip
algorithm, a node sends a newly generated message
to a set of randomly selected nodes; these nodes do
similarly in the next round, and so do other nodes until
the message is spread to all. The random choice of
gossip targets achieves resilience to random failures and
enables decentralized operations. Similar to [16], we
employ a gossiping protocol in DONet for membership
management. The data delivery method in DONet is also
partially motivated by the gossip concept. Nevertheless,
the use of gossip for streaming is not straightforward
because its random push may cause significant redun-
dancy, which is particularly severe for high-bandwidth
streaming applications. In DONet, we devise a smart
partner selection algorithm and a low-overhead schedul-
ing algorithm to intelligently pull data from multiple
partners, which greatly reduces redundancy.

Several pioneering works on peer-to-peer on-demand
streaming (e.g., [4], [5], [6], [7], [9], [8]) are closely
related to gossip, and hence to DONet as well. In such a
scenario, the video data provided by some seeding nodes
are spread among nodes of asynchronous demands, and

one or more nodes can collectively supply buffered data
to a new demand, thus amplifying the system capacity
with increasing suppliers over time. DONet targets live
media streaming with semi-synchronized nodes, which
calls for different solutions. Yet, we have also observed
strong capacity amplification in our real Internet imple-
mentation, which indirectly supports the arguments in
these studies on peer-to-peer on-demand streaming.

III. D ESIGN AND OPTIMIZATION OF DONET
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Fig. 1. A generic system diagram for a DONet node.

Figure 1 depicts the system diagram of a DONet node.
There are three key modules: (1) membership manager,
which helps the node maintain a partial view of other
overlay nodes; (2) partnership manager, which estab-
lishes and maintains the partnership with other nodes;
(3) scheduler, which schedules the transmission of video
data. For each segment of a video stream, a DONet node
can be either a receiver or a supplier, or both, depending
dynamically on this segment’s availability information,
which is periodically exchanged between the node and
its partners. An exception is the source node, which is
always a supplier, and is referred to as theorigin node. It
could be a dedicated video server, or simply an overlay
node that has a live video program to distribute.

In this section, we discuss the interactions among
the modules and their design issues, and present our
solutions that have been employed in the PlanetLab-
based prototype as well as the real Internet-based im-
plementation.

A. Node Join and Membership Management

Each DONet node has a unique identifier, such as its
IP address, and maintains a membership cache (mCache)
containing a partial list of the identifiers for the active
nodes in the DONet. In a basic node joining algorithm, a
newly joined node first contacts the origin node, which
randomly selects a deputy node from its mCache and
redirects the new node to the deputy. The new node can
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then obtain a list of partner candidates from the deputy,
and contacts these candidates to establish its partners in
the overlay.

This process is generally viable because the origin
node persists during the lifetime of streaming and its
identifier/address is universally known. The redirection
enables more uniform partner selections for newly joined
nodes, and greatly minimized the origin node’s load. We
will discuss several further enhancements to this basic
algorithm in the end of this section.

A key practical issue here is how to create and
update the mCache. To accommodate overlay dynamics,
each node periodically generates a membership message
to announce it existence; each message is a 4-tuple
<seq num, id, num partner, time to live>, where
seqnum is a sequence number of the message,id is
the node’s identifier,numpartner is its current number
of partners, andtime to live records the remaining valid
time of the message. We employ the Scalable Gossip
Membership protocol, SCAM, to distribute membership
messages among DONet nodes. A detailed description
of SCAM can be found in [21]. Here we only high-
light its three desired properties: scalable, light-weight,
and uniform partial view at each node. Upon receiv-
ing a message of a newseqnum, the DONet node
updates its mCache entry for nodeid, or create the
entry if not existing. The entry is a 5-tuple<seq num,
id, num partner, time to live, last update time>,
where the first four components are copied from the
received membership message, and the fifth is the local
time of the last update for the entry.

The following two events also trigger updates of an
mCache entry: (1) the membership message is to be
forwarded to other nodes through gossiping; and (2) the
node serves as a deputy and the entry is to be included in
the partner candidate list. In either case,time to live is
decreased bycurrent local time-lastupdatetime. If the
new value is less than or equal to zero, the entry will be
removed while not forwarded or included in the partner
list; otherwise,numpartner will be increased by one in
the deputy case.

B. Buffer Map Representation and Exchange

An example of the partnership in DONet is shown
in Fig. 2 As said, neither the partnerships nor the
data transmission directions are fixed in DONet. More
explicitly, a video stream is divided into segments of
uniform length, and the availability of the segments in
the buffer of a node can be represented by a Buffer Map
(BM). Each node continuously exchange its BM with
the partners, and then schedules which segment is to be
fetched from which partner accordingly.
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Fig. 2. Illustration of the partnership in DONet (origin node: A).

As we target live media streaming, the playback pro-
gresses of the DONet nodes are semi-synchronized. Our
analytical results demonstrate that the average segment
delivery latency is bounded in DONet, and the experi-
mental results further suggest that the time lags between
nodes are unlikely higher than 1 minute. Assume each
segment contains 1-second video, a sliding window of
120-segment can effectively represent the buffer map of a
node, because a partner is not interested in the segments
that are outside of the window. As such, in our prototype,
we use 120 bits to record a BM, with bit 1 indicating that
a segment is available and 0 otherwise. The sequence
number of the first segment in the sliding window is
record by another two bytes, which can be rolled back
for extra long video programs (>24 hours).

C. Scheduling Algorithm

Given the BMs of a node and that of its partners, a
schedule is to be generated for fetching the expected
segments from the partners. For a homogenous and
static network, a simple round-robin scheduler may work
well, but for a dynamic and heterogeneous network, a
more intelligent scheduler is necessary. Specifically, the
scheduling algorithm strikes to meet two constraints:
the playback deadline for each segment, and the hetero-
geneous streaming bandwidth from the partners. If the
first constraint cannot be satisfied, then the number of
segments missing deadlines should be kept minimum.
This problem is a variation of theParallel machine
scheduling, which is known NP-hard [25]. It is thus not
easy to find an optimal solution, particularly considering
that the algorithm must quickly adapt to the highly
dynamic network conditions. Therefore, we resort to a
simple heuristic of fast response time.

Our heuristic algorithm first calculates the number of
potential suppliers for each segment (i.e., the partners
containing in their buffers). Since a segment with less
potential suppliers is more difficult to meet the deadline
constraints, the algorithm determines the supplier of each
segment starting from those with only one potential
supplier, then those with two, and so forth. Among the
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multiple potential suppliers, the one with the highest
bandwidth and enough available time is selected. A
pseudo code of the scheduling algorithm at each node is
shown in Fig. 3. Its complexity is bounded byO(W ·B ·
M) , and in our implementation, each execution requires
15ms only, implying that the computation overhead is
quite low. The algorithm thus can be frequently executed
to update the schedule.

Input:
band(k) : bandwidth from partnerk;
bm[k] : buffer map of partnerk;
deadlin[i] : deadline of segmenti;
seg size : segment size;
num partners : number of partners of the node;
set partners : set of partners of the node;
expected set : set of segments to be fetched.

Scheduling:
for segmenti ∈ expected set do

n ← 0
for j to num partners do

T [j, i] ← deadline[i]− current time;
//available time for transmitting segments tilli;

n ← n + bm[j, i];
//number of potential suppliers for segmenti;

end for j;
if n = 1 then //segments with only one potential supplier;

k ← argr{bm[r, i] = 1};
supplier[i] ← k;
for j ∈ expect set, j > k do

t[k, j] ← t[k, j]− seg size/band[k];
end for j;

else
dup set[n] ← dup set[n] ∪ {i};
supplier[n] ← null;

end if;
end for i;

for n = 2 to num partners do
for eachi ∈ dup set[n] do

//segments withn potential suppliers;
k ←

argr

{
band(r) > band(r′)|t[r, i] > seg size/band[r],

t[r′, i] > seg size/band[r′], r, r′ ∈ set partners
}

;

if k 6= null then
supplier[i] ← k;
for j ∈ expected set, j > k do

t[k, j] ← t[k, j]− seg size/band[k];
end for j;

end if;
end for i;

end for n;

Output:
supplier[i] :supplier for unavailable segmenti ∈ expected set.

Fig. 3. Scheduling algorithm at a DONet node.

Given a schedule, the segments to be fetched from
the same supplier are marked in a BM-like bit sequence,
which is sent to that supplier, and these segments are
then delivered in order through a real-time transport

protocol. DONet does not specify a particular protocol;
currently, we adopted the TCP-Friendly Rate Control
(TFRC) protocol [31], as in many other systems. The BM
and scheduling results can also be piggybacked by the
data packets to achieve fast and low-overhead updates.

Note that the origin node severs as a supplier only,
and it always has all the segments available. Provided
the adaptive scheduling algorithm, it will not be over-
whelmed by requests from its partners . If needed,
it can also proactively control its load by advertising
conservative buffer maps. For example, assume there are
M partners, the origin node can set its BM advertising
to thek-th partner as

BM [idorigin node, i] =

{
0, if i mod M 6= k
1, if i mod M = k

that is, only the(i modM)th partners will request seg-
menti from the origin node, and the remaining segments
will then be retrieved from other partners.

D. Failure Recovery and Partnership Refinement

In DONet, a node can depart either gracefully or
accidentally due to crash. In either case, the departure
can be easily detected after an idle time of TFRC or
BM exchange, and, as the probability of concurrent
departures is rather small, an affected node can quickly
react through re-scheduling using the BM information
of the remaining partners. Besides this built-in recovery
mechanism, we propose the following operations to
further enhance resilience:

Graceful departure: the departing node should issue
a departure message, which has the same format as the
membership message, except that thenum partner filed
is set to -1.

Node failure: a partner that detects the failure will
issue the departure message on behalf the failed node.

The departure message is gossiped similarly to the
membership message. In the node failure case, dupli-
cated departure messages may be generated by different
partners, but only the first received will be gossiped by a
node and others will be suppressed. Each node receiving
the message will flush the entry for the departing node,
if available, from its mCache.

Finally, we let each node periodically establish new
partnerships with nodes randomly selected from its
mCache. This operation serves two purposes: first, it
helps each node maintain a stable number of partners
in the presence of node departures; second, it helps
each node explore partners of better quality. In our
implementation, a nodei calculates a score for its partner
nodej using functionmax{s̄i,j , s̄j,i}, where s̄i,j is the
average number of segments that nodei retrieved from
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node j per unit time. Intuitively, a higher outbound
bandwidth and more available segments of a partner lead
to a better score, and, as the partner can be either a
supplier or a receiver, we shall take the maximum of both
directions. After exploring new partners, the one with the
lowest score can be rejected to keep a stable number
of partners. This number,M , is an important design
parameter, and its impact will be examined through both
analysis and experiments.

IV. A NALYSIS OF OVERLAY RADIUS

In this section, we analyze the radius of DONet, i.e.,
the average distance for delivering a segment from the
origin node to all destinations. As in many other studies
[11], [12], [27], we measure the distance by the number
of overlay hops, which partially reflects the end-to-end
delivering latency. Our analytical model is necessarily
simplistic, yet the results reveal a logarithmic relation
between the overlay radius and its size, which implies
that the end-to-end latency in DONet is not excessive,
and is thus suitable for live media streaming.

In DONet, the paths for propagating the availability
of a segment can be modeled by a Breath-First Search
(BFS) tree. The origin node is the root at level 0, and a
node at levelk can be reached ink hops from the origin
node. Note that the logarithmic relation between overlay
radius and size is trivial for a tree-based overlay, but
not for DONet, as DONet does not maintain an explicit
structure and each of its nodes can appear several times
in the BFS tree.

For ease of exposition, we refer to a BFS tree node
as an s-node in the following discussions. The s-nodes
are indexed according to their appearances in the breath-
first search, with the root being 1. For s-nodet, the
identifier of its associated DONet node is denoted aspt.
We assume homogenous bandwidths between partners
and a segment delivered to a node follows the path from
the root to its first appearance in the BFS tree. As an
illustration, Figure 4 presents a BFS tree (till level 3)
for the DONet shown Figure 2.

We define an auxiliary functionδ(t) as

δ(t) =

{
1, if πt 6= πt′ , 0 < t′ < t
0, otherwise

That is, δ(t) is 1 only if s-nodet corresponds to the
first appearance of its associated DONet node. As our
membership and partnership protocols employ random
partner selection, for an overlay of sizeN , we have

Pr[δ(t) = 1] =
N − f(t− 1)

N
. (1)

wheref(t) denotes the total number of unique DONet
identifiers associated with s-nodes 1 throught. Since
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Fig. 4. A Breath-First Search (BFS) tree till level 3. Dark nodes:
δ(t) = 1 (first appearance); White nodes:δ(t) = 0.

f(t)− f(t− 1) = δ(t), taking expectation on both sides
of (1), we have

E[f(t)− f(t− 1)] = E[δ(t)] =
N − E[f(t− 1)]

N
, (2)

which follows that

E[f(t)] = 1 +
N − 1

N
E[f(t− 1)]. (3)

Sincef(1) = 1, iteratively solving Eq. (3) leads to

E[f(t)] = N [1− (
N − 1

N
)t] > N(1− e−

t

N ). (4)

This relation gives the coverage of DONet nodes as a
function of the s-node index. Lettk denote the index of
the last s-node at levelk of the BFS tree. The average
distance between the origin node and all other DONet
nodes, or the overlay radius, is simply

d =
1
N

∞∑

k=1

k · E[f(tk)− f(tk−1)]. (5)

Note thatlimk→∞ k(1− E[f(tk)]
N ) = 0 for a connected

overlay. We thus have

d =
∞∑

k=1

k ·
[(

1− E[f(tk−1)]
N

)
−

(
1− E[f(tk)]

N

)]

=
∞∑

k=0

(
1− E[f(tk)]

N

)
(6)

<
∞∑

k=0

e−
tk
N .

Consider a stable status where each DONet node has
M partners, an internal s-node in the BFS tree thus
hasM − 1 children, except for the root, which hasM
children. It follows that

tk =
M · (M − 1)k − 2

M − 2
. (7)
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We can then divide the summation in Eq. (6) into two
parts: the first part is fromk = 0 to k = logM−1 N , and
the second fromk = 1 + logM−1 N to infinity, that is,

d <

logM−1 N∑

k=0

e
−M·(M−1)k−2

(M−2)N +
∞∑

k=1+logM−1 N

e
−M·(M−1)k−2

(M−2)N

< logM−1 N + 1 +
∞∑

k=0

e
−MN(M−1)k−2

(M−2)N

≤ logM−1 N + 1 +
∞∑

k=0

e−(M−1)k

.

For M ≥ 3, we have(M−1)k ≥ (M−1)k and hence
e−(M−1)k ≤ e−(M−1)k , which follows that,

d < logM−1 N + 1 +
∞∑

k=0

e−(M−1)k

= logM−1 N + 1 +
1

(1− e−(M−1))
(8)

< logM−1 N + 3.

As a result, the average distance from the origin node
to a destination node is bounded byO(log N) . From
Eqs. (4) and (8), it is also easy to conclude that the

coverage ratio at a given distancek is 1− e
−M·(M−1)k−2

(M−2)N .
As an example, for a DONet of 500 nodes andM = 4,
almost 95% of the nodes can be reached within 6 hops.

V. PLANET-BASED PERFORMANCEEVALUATION

We have conducted extensive experiments with our
DONet prototype. In this section, we first show the de-
sign of the experiment system in the PlanetLab environ-
ment [30], and present a set of representative results. We
then identify some typical issues we have encountered
and discuss their implications to the experimental results.

 

Fig. 5. A snapshot of the geographical node distribution.

A. Design of the Experiment System

Our experiments involve almost all the active nodes
of PlanetLab, with the total number ranging from 200 to
300 during our experiment period (May to June, 2004).
Each active PlanetLab node runs a copy of the prototyped
program, acting as a DONet node. The origin node is
located in the United States (planetlab2.lcs.mit.edu, IP:
128.31.1.12), and, through remote logins, we control
the whole system at our own node in Hong Kong
(planetlab2.ie.cuhk.edu.hk, IP: 137.189.97.18), which is
in fact the first Asian node connected to PlanetLab (since
January 2003), and is referred to as themonitoring node.
A snap short of the geographical node distribution for an
experiment in May is shown in Fig. 5.

Given the scale of this distributed testbed, effec-
tively controlling nodes and collecting reports becomes
a challenging issue, because both launching/updating the
program and collecting the experimental results involve
intensive login, upload, and download operations across
all nodes. It is thus necessary to design an automatic
control system, and the system should be highly scalable
and extensible so as to easily add new nodes or new
features. Interestingly, the above objectives can also be
accomplished by an overlay mechanism with assistance
from the tools provided PlanetLab.

We now briefly describe the major modules of the
experiment system, as depicted in Fig. 6.

 

Command Dispatcher

DONet System

Console

Command
  Queue

Automaton Report Collector

Fig. 6. A modular architecture of the experiment system.

DONet Module: We implement the DONet module
using Python, the programming language for Planet.
Instead of maintaining multiple threads for concurrent
events, we use an event queue with non-blocking sockets
to emulate concurrent operations. Since the program
is single-threaded, most difficulties related to synchro-
nization in multi-thread programming are avoided. This
makes the implementation and debug much easier, and
hence enables fast prototyping.

Console and Automaton Module: The console is
for interactive commanding to control the whole sys-
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tem. Possible commands include joining DONet, leaving
DONet, and tuning parameters, etc. A salient feature of
Python is its support for dynamic command executions.
Thus, new features or functions can be plugged in
without rewriting or reloading the whole program. We
have also designed an automaton in the console to au-
tomatically launch experiments and execute commands
predefined in a queue. It not only achieves precisely time
control, but also greatly simplifies the monitoring work
for long-lasting experiments (a series of experiments
often exceeds 5 hours).

Command Dispatching and Report Collecting
Module: While the monitoring node can maintain a
connection to each participating node to dispatch com-
mands and collect reports, such a design is nonscalable.
To mitigate this problem, we use another overlay for
command dispatching. Specifically, each command mes-
sage contains a unique sequence number; upon receiving
a new message, a node simply sends it to a list of
known nodes, which is obtained from the mCache in
DONet module as well as a predefined list. As the
command messages are limited and sensitive to delay,
such a flooding is a reasonable choice for broadcasting
commands. It also helps the construction of a reverse
path tree for report collection, in which such reports as
losses and path lengths can be classified and merged
at some junction nodes before forwarding back to the
monitoring node. Consequently, we can conduct online
statistics without overwhelming the monitoring node.

Given the automatic control system, it is easy to
generate stable (with persistent nodes) or dynamic envi-
ronments (with dynamically joining, leaving, or failing
nodes). We now present a set of representative results
to demonstrate the performance of DONet under these
environments and to identify the key influential factors.

B. Performance under Stable Environment

In the first set of experiments, all the nodes join in an
initialization period (around 1 min) and then persist in
the lifetime of the streaming (120 min, a typical length
for a movie). The default streaming rate is 500 Kbps and
each segment contains one second of the stream. Each
DONet node maintains a sliding window of 60 segments,
or 60 seconds of the streaming data, and the playback
starts 10 seconds after receiving the first segment.

Control overhead: As the membership management
employs a light-weight gossip protocol, most control
messages in DONet are for exchanging data availability
information. The number of partners thus becomes a key
factor to the control overhead. Fig. 7 depicts the normal-
ized control traffic as functions of the average number of
partners. Not surprising, the overhead increases with an
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Fig. 7. Control overhead as a function of the number of partners
for different overlay sizes. (Control overhead= Control traffic vol-
ume/Video traffic volume at each node).

increase of the number of partners, but as compared to
video traffic, the control traffic is essentially minor, even
with over 5-6 partners (less than 2% of the total traffic).
This is intuitive given that the availability of each video
segment is represent by a single bit only.
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Fig. 8. Continuity index as a function of the number of partners.

Playback continuity: Maintaining continuous play-
back is a primary objective for streaming applications.
To evaluate continuity, we define acontinuity index,
which is the number of segments that arrive before or
on playback deadlines over the total number segments.
Fig. 8 shows the continuity index as a function ofM ,
the number of partners. We can see that the continuity
improves with increasingM , because each node may
have more choices for suppliers. The improvements with
more than 4 partners are marginal. We have also shown
the continuity index as function of different streaming
rates in Fig. 9. Again, the use of 4 partners is reasonably
good even under high rates. Considering that the control
overhead increases with more partners, we believe that
M=4 is a good practical choice, which is adopted in the
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Fig. 9. Continuity index as a function of the streaming rate. Overlay
size = 200 nodes.

following experiments.
Scalability: From Fig. 7, it can be seen that the control

overhead at each node is almost independent of the
overlay size. This is because the availability information
(BM) are only locally exchanged. In addition, as shown
in Fig. 8, the continuity index is also kept low even
with large overlay sizes. In fact, we will show later
that a larger overlay often leads to better playback
continuity due to the increasing degree of cooperations.
As summary, DONet is scalable in terms of both overlay
size and streaming rate.

C. Performance under Dynamic Environment

We now examine the performance of DONet with dy-
namic node joining, leaving, and failing. Most parameter
settings are similar to that in the previous experiments,
except that each node changes its status following an
ON/OFF model: the node actively participates the over-
lay during an ON period, and leaves (or fails) during an
OFF period. Both ON and OFF periods are exponentially
distributed with an average ofT seconds.
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Fig. 10. Control overhead as a function of the average ON/OFF
period for different overlay sizes.

Fig. 10 shows the control overhead as a function of
the ON/OFF period for different overlay size. We can see
that the control overhead is slightly higher with a shorter
ON/OFF period (i.e., more dynamic node behaviors).
Such extra control traffic is mainly contributed by the
leave/failure notifications, which is only a minor part in
the control traffic, as previously mentioned.
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Fig. 11. Continuity index as a function of the average ON/OFF
period for different overlay sizes.

The continuity indices under different ON/OFF peri-
ods are shown in Fig. 11. Clearly, a shorter ON/OFF
period leads to poorer continuity, but the drop is in-
significant. With the intrinsic recovery mechanism, the
continuity index of DONet remains acceptable even
under highly dynamic networks (alternating in less than
1 minutes).

D. Comparison with Tree-based Overlay

We now compared the performance of DONet with
that of tree-based overlays. To achieve a fair comparison,
the degree of each tree node is limited to 3; that is, except
for the origin node which can have 4 children, each
internal node can have a maximum of 3 children (plus
one parent node, the total degree is thus 4, which is equal
to the degree of a DONet node). Given the heterogeneous
capability and bandwidth constraints, however, it is not
always practical for a node to support 3 children; in this
case, some children are moved to lower levels until the
constraint is satisfied. We also employ a tree repairing
method to graft downstream nodes to an upstream node
when a node fails.

We first compare the end-to-end delays of DONet
and the tree-based overlay. As the clocks of the Plant-
Lab nodes are not perfectly synchronized, it is difficult
to calculate the exact end-to-end delay for delivering
each segment. We thus to resort an easier measure that
partially reflect the delay performance, namely, overlay
hop-count. The results for this measure is are presented
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Fig. 12. A snapshot of a tree-based overlay with 231 nodes.
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Fig. 13. Average overly hop-count of DONet and tree-based overlay.

in Fig. 13. Though it is often believed that a tree
achieves shorter delay, our results show that, under both
stable and dynamic environments, the delay measures
of the tree-based overlay are slightly worse. This is
because the previously motioned out-bound bandwidth
constraints can noticeably increase the height of the tree.
For illustration, Fig. 12 shows a snapshot of a tree in our
experiment. The total number of nodes is 231, but height
is 19 - recall that a full and balanced 3-ary tree of 231
nodes has a height of 5 only.

Moreover, as compared in Fig. 14, the continuity index
of the tree topology is remarkably lower than that of
DONet, particularly with dynamic and large overlays.
This is because a tree structure is very vulnerable to
internal node failures. As shown in Fig. 12, some internal
nodes are really crucial in the tree, e.g., the rightmost
child of the root as well as its own single child - either
of them fails may cause buffer underflow in all the
downstream nodes, which constitute more than 3/4 of
the total number of nodes in the overlay. To further
illustrate the vulnerability of the tree topology, we show
the continuity index over time in an experiment of 200
nodes in Fig. 15. Clearly, the continuity index of the
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Fig. 14. Comparison of continuity indices for DONet and the tree-
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size of 50 and 200).
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Fig. 15. Samples of continuity indices for DONet and a tree-based
overlay in a experiment (from 10 min to 20 min).

tree overlay is not only lower than that of the DONet,
but also highly fluctuated. As an example, between 800s
and 900s, there is a drop of continuity index reaching
0.4, which, according to our traces, is caused by a leave
of a child of the root. Such a problem seldom happens in
DONet, as the loads of the nodes are evenly distributed
and delivering paths are dynamically set according to
data availability.

Note that, even if the tree is full and balanced, it
is still more vulnerable in a dynamic environment as
compared to the DONet. To understand this, we offer
a simple analysis on the playback discontinuity caused
by node departures and crashes. For ease of exposition,
we refer to both cases asnode failures, and assume
the failure probability isPf . We also introducePo,
the probability that a dependent node (a child in a
tree-based overlay or a partner in DONet) cannot find
an alternative supplier within∆t time, and Ps, the
probability that a node can support full-rate streaming for
a dependent node once needed. BothPo andPs depend
on the overlay maintenance algorithms and network/node
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capabilities, such as the repairing algorithm, buffer size,
and outbound bandwidth, and can be instantiated given
specific parameters. In particular, recall that most non-
leaf nodes are assumed to serveM − 1 children in a
tree-based overlay; thusPs can be reasonably high, say
0.5.

In DONet, each node hasM partners and any of them
could provide streaming contents to the node. Assume
that only one alternative supplier is to be located, the
probability that a non-failure node suffers from discon-
tinuity in ∆t time is bounded by

Po ·
[

M∑

i=1

(
M

i

)
(1− Pf )m−iP i

f · (1− Ps)M−i

]

= Po ·
[

M∑

i=0

(
M

i

)
((1− Pf )(1− Ps))M−i(R∆t)i

−((1− Ps)(1− Pf ))M

]

= Po ·
[
(1− Ps + Ps · Pf )M − (1− Ps)M (1− Pf )M

]

The expected number of nodes suffering from discon-
tinuity thus

DDONet = N · Po ·
[
(1− Ps + Ps · Pf )M

−(1− Ps)M (1− Pf )M
]

(9)

The above result is indeed overestimated, because
we have ignored the possibility that the active partners
can collaboratively serve a node, as discussed in the
scheduling algorithm. We have also derived the expect
number of nodes suffering from discontinuity for a tree-
based overlay (see Appendix for details):

DTree =
Mh −M2

M − 1
+

(
N−Mh − 1

M − 1

)
·[1−(1−Po·Pf )h−1]

−M2(1− Po · Pf )
[M(1− Po · Pf )]h−2 − 1

M(1− Po · Pf )− 1
(10)

whereh is the height of the full and balanced tree.
Figure 16 presents some numerical results for the

two overlays, which clearly show that DONet achieves
much better playback continuity, even if the tree is full
and balanced. The gap is particular remarkable with
larger overlays and higher node failure probability. It is
worth noting that similar derivation and hence results
for DONet can be applied to overlays using mesh or
multiple trees; yet the management complexities of these
approaches are considerably higher than that of DONet.

E. Summary and Caveats

In summary, the performance of DONet is quite ac-
ceptable for live media streaming. Its control overhead is
reasonably low, which is around 1% of the video traffic,
and this ratio remains unchanged with an increase of the
overlay size. As compared to a tree-based overlay, the
playback continuity of DONet is much better, particu-
larly under highly dynamic environments, and its end-to-
end delay is comparable to that of the tree-based overlay.

Our experience also shows that it is easy to prototype
DONet, due both to its intrinsic simplicity and the
excellent support from the PlanetLab. Nevertheless, the
PlanetLab is still evolving and is far from mature. We
now briefly discuss some representative issues as well as
their implications to our experimental results.

Scalability: As we have developed an automatic com-
mand dispatching and report collecting system, it is
easy to launch the DONet program to more nodes if
needed. The current scale however is limited by that
of the PlanetLab. In addition, as shown in Fig. 7, most
PlanetLab nodes are distributed in North America and
Europe. While this partially reflects the real penetration
status of the Internet, we expect a diverse environment
with more nodes being deployed in other continents.

Reproducibility: Our PlanetLab-based experiments
encounter the same reproducibility problem as most
experimental studies that are in anot-fully-controlled
environment. Nevertheless, the PlanetLab are reasonably
stable on a time scale of several hours; the problem is
thus not very severe, and we found that the results of
consecutive experiments are generally comparable.

Representability: The stable network condition of the
PlanetLab is partly due to less applications and hence
cross traffic. In our experiments, to emulate the real
Internet environment, we have intentionally added some
cross traffic and throttled the injection rate in case the
bandwidth is over provisioned. Another concern is about
the location of the origin node. In current experiments,
we selected origin nodes mainly in the United States, for
a majority of PlanetLab nodes resident there. We have
also tried our own node in Hong Kong; though being
remote from others, given the excellent connections be-
tween Hong Kong and North America/Europe, we have
observed similar results. We are currently conducting
more experiments with the origin node located in other
continents as well.

VI. COOLSTREAMING: A PRACTICAL DONET

IMPLEMENTATION AND ITS DEPLOYMENT STATUS

We have implemented a public Internet based DONet
package, calledCoolStreaming, and released the first
version (v.0.9) on May 30, 2004.CoolStreaming v.0.9
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Fig. 16. Expected percentage of nodes suffering from playback discontinuity in∆t time.

contains 2000 lines of Python source codes, and is
exported from the PlanetLab-based prototype in less than
2 weeks, which reaffirms the simplicity of DONet. It cur-
rently streams Real Video and Windows Media formats,
but can accommodate other streaming formats as long as
they are supported by user-side players. Furthermore, its
implementation is platform-independent, and thus can be
used under Unix, Windows, or other operating systems
supporting Python and the corresponding video decoder.

Like other Internet applications, the success of Cool-
Streaming strongly relies on the content it delivers.
However, unlike traditional client/server systems, an
overlay system does not have a dedicated server with rich
contents updated by its owners. There are other issues
like copyright, and an in-depth study of them is indeed
out of the scope of this research. More importantly,
we have no any intention, nor ability, to become a
content provider. Instead, we resort to a practical and
instant solution:DONet (CoolStreaming) as a capacity
amplifier between a content provider and its clients. In
other words, it virtually becomes a part of the network
infrastructure.

To this end, we have used CoolStreaming for broad-
casting live sports programs (450Kbps - 755Kbps Re-
alVideo/Windows Media format), which are offered by
a free video server. This server is happy to accept any
anonymous accesses, but its capacity is very limited.
Consequently, in a rush hour, most belated users cannot
set up a connection directly to the server, resulting in bad
experiences both to users and to the server operator. Now,
by installing CoolStreaming and redirecting RealPlayer
to CoolStreaming, the users can enjoy the video without
connecting to and overloading the server, though with
some delay, and with all the contents including the

source icon and advertisements intact.3

While initially attracted only 20 users, till the submis-
sion of this paper, over 30000 distinct users (in terms of
unique IP addresses) have installed CoolStreaming v0.9,
and more than 4000 users have been simultaneously on-
line during some peak times. If the server were directly
serving these users, it would require a 3 Gbps outbound
bandwidth, which is unbelievably difficult for state-of-
the-art access technologies.

TABLE I

USER IP DISTRIBUTION OF COOLSTREAMING V.0.9.

(APPROXIMATION)

Time Total CN HK US Other
June 17 1500 300 400 250 50
June 22 2400 400 1000 900 100
June 25 3000 600 1300 1000 100
June 27 4000 1000 1500 1400 100

In Table I, we summary the distribution of the IP
addresses of the CoolStreaming users. Some statistics of
the number of nodes and continuity index over time in a
broadcasting on July 21 are shown in Fig. 17. It can be
seen that CoolStreaming achieves quite smooth playback
in most of the time. More importantly, our preliminary
results reveal two interesting facts:

1. The current Internet has enough available band-
width to support TV-quality streaming (≥ 450 Kbps).
As a matter of fact, over 80% of the CoolStreaming
users have reported (either by emails to us or through

3We do not claim that our current scheme totally solves the
issues of providing copyright-protected contents. For commercial
content providers, authorizations are necessary and we are currently
contacting with some major TV stations on such issues.
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Fig. 17. Number of users and Continuity index over time.

our online statistics) that the streaming is generally
smooth. It confirms the speculation that the limited pro-
cessing capabilities and outbound bandwidths of video
servers, while not necessarily the backbone network,
are slowing down the deployment of streaming services
over the Internet, and overlay-based streaming, such as
DONet/CoolStreaming, is a promising solution to this
problem.

2. The larger the data-driven overlay is, the bet-
ter the streaming quality it delivers. After releasing
the first version of CoolStreaming, we did not make
major updates. Interestingly, with increasing users, the
statistical results as well as personal feedbacks become
even better than that in the initial period. In addition, as
shown in Fig. 17, the average continuity index with a
higher number of nodes are generally better, though it
remains over 0.95 most of the time. We conjecture that it
is because the degree of cooperation increase with larger
overlays, as each node has more flexibilities to locate
better partners using our partner refinement algorithm.
We are interest in a question on whether there is an
optimal size of the data-driven overlay, and are currently
examining it.

There are many other practical issues in the real
Internet environment. In particular, while Network Ad-
dress Translation (NAT) partially solves the address
exhaustion problem of IPv4, it creates many challenges
to peer-to-peer overlay applications. In existing peer-to-
peer tools, the nodes behind a NAT gateway are often
restricted to serve as receivers only, while not suppliers.
As our log indicates, around 30% CoolStreaming users
are behind NAT; if the above simple policy is applied, the
effectiveness of CoolStreaming becomes questionable. In
our implementation, we solve this problem by employ a
TCP connection in this case. Since TCP connection is
bidirectional, as long as one of the nodes in a partnership
is not behind NAT, both of them can act as either supplier
or receiver, even another partner is behind NAT. Our

statistical results show that more than 95% of the nodes
can become relaying nodes with this solution.

Other issues include how to accommodate VBR video
and VCR-like functions. In our data-driven design, VBR
video can be delivered with no extra effort as long
as the video server supports VBR encoding. We have
not implemented VCR-like functions as yet. However,
we are aware that, in a data-driven overlay, the data
availability information can effectively help a node locate
the appropriate partners for such VCR operations as fast-
forward, backward, or random-seek. Embedding these
functions in CoolStreaming thus could be easier than in
a structure-based overlay.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we presented the design of DONet, a
Data-driven Overlay Network for live media streaming.
DONet does not maintain an explicit overlay structure,
but adaptively forwards data according to data availabil-
ity and demanding information. We discussed the key
design issues of DONet, and proposed a scalable mem-
bership and partnership management algorithm together
with an intelligent scheduling algorithm, which enables
efficient streaming for medium- to high-bandwidth con-
tents with low control overhead.

We extensively evaluated the performance of DONet
over the PlanetLab testbed. Our experiments, involving
almost all active PlanetLab nodes, demonstrated that
DONet delivers quite good playback quality even under
formidable network conditions. As compared with a
tree-based overlay, it achieves much more continuous
streaming with comparable delay.

A public Internet-based DONet implementation, called
CoolStreaming v.0.9, was also released for broadcasting
live sports programs, and has attracted over 30000 dis-
tinct users with more than 4000 simultaneously being
online at some peak times.

Inspired by the positive statistics and feedbacks from
these users, we are currently improving our implemen-
tation and preparing for its next version. We expect to
identify more potential issues and derive solutions in
the future development of this project. As a matter of
fact, we have recently found that the membership man-
agement and the scheduling algorithms can be greatly
simplified, yielding almost the same playback continuity
but much lower overhead, and the robustness and adapt-
ability of the system can be improved by splitting the
streaming into several sub-streams.
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APPENDIX

PLAYBACK DISCONTINUITY IN TREE TOPOLOGY

In a tree topology, assume a node hask ancestors, and
B(k, i) is the event that exactlyi(0 ≤ i ≤ k) ancestors
fail, we have

Pr[B(k, i)] =

(
k

i

)
· P i

f · (1− Pf )k−i

Let W (i) represent the event that discontinuity occurs
at the node wheni ancestors of it fail. As a discontinuity
at any ancestor will cause discontinuity at its descen-
dants, we have

Pr[W (i)] = 1− (1− Po)i

Hence, the probability that a node ofk ancestors
suffers from a playback discontinuity within∆t time is

k∑

i=0

Pr[B(k, i)] · Pr[W (i)]

=
k∑

i=0

(
k

i

)
· P i

f (1− Pf )k−i · [1− (1− Po)i]

=
k∑

i=0

(
k

i

)
· P i

f · (1− Pf )k−i −
k∑

i=0

(
k

i

)
· [Pf · (1− Po)]

i · (1− Pf )k−i

= 1− (1− Po · Pf )k

Consider the ideal scenario of full and balanced(M−
1)-ary tree, the expected number of nodes suffering from
discontinuity can then be derived by summing up the
probabilities of the nodes at different levels (note that a
node at levelk hask ancestors),

DTree

=
h−1∑

i=2

M i · [1− (1− Po · Pf )k−1]

+(N − Mh − 1
M − 1

) · [1− (1− Po · Pf )h−1]

=
Mh −M2

M − 1
+

(
N − Mh − 1

M − 1

)
· [1− (1− Po · Pf )h−1]

−M2(1− Po · Pf )
[M(1− Po · Pf )]h−2 − 1

M(1− Po · Pf )− 1


