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Abstract

In this paper, we describe Credence, a decentralized ob-
ject reputation and ranking system for large-scale peer-
to-peer filesharing networks. Credence counteracts pol-
lution in these networks by allowing honest peers to as-
sess the authenticity of online content through secure
tabulation and management of endorsements from other
peers. Our system enables peers to learn relationships
even in the absence of direct observations or interac-
tions through a novel, flow-based trust computation to
discover trustworthy peers. We have deployed Credence
as an overlay on top of the Gnutella filesharing network,
with more than 10,000 downloads of our client software
to date. We describe the system design, our experience
with its deployment, and results from a long-term study
of the trust network built by users. Data from the live de-
ployment shows that Credence’s flow-based trust compu-
tation enables users to avoid undesirable content. Honest
Credence clients can identify three quarters of the decoys
encountered when querying the Gnutella network.

1 Introduction

Establishing trust is a fundamental problem in distributed
systems. Peer-to-peer systems, in which service func-
tionality is distributed across clients, eliminate the cen-
tralized components that have traditionally functioned as
de facto trust brokers, and consequently exacerbate trust-
related problems. When peers lack meaningful measures
on which to base trust decisions, they end up receiving
services from untrustworthy peers, with effects that can
range from wasted resources on mislabeled content to
security compromises due to trojans. These problems
are particularly evident in current peer-to-peer fileshar-
ing networks, which are rife with corrupt and mislabeled
content [3]. Such content can waste network and client
resources, lead users to download content they do not
want, and aid the spread of viruses and other malware.
Recent research confirms the vulnerability of deployed
filesharing networks to corrupt and mislabeled content,
and indicates that much of this pollution can be attributed
to deliberate attacks [14].

The underlying problem facing clients of peer-to-peer
filesharing systems is that they must assess the trustwor-
thiness and intent of peers about which little is known.
A simple approach is to use past experience with a peer
to determine that peer’s trustworthiness. But when client

interactions are brief and span a large set of peers that
changes dynamically, the opportunity to reuse informa-
tion from past first-hand experience is limited. Another
conventional approach is to interpret a shared file as an
endorsement for that file’s contents, similar to the way
hyperlinks are interpreted as implicit votes by search en-
gine ranking algorithms. Our data indicates that sharing
is not a reliable indicator of a user’s judgment. Peer-to-
peer filesharing networks call for trustworthiness metrics
that are robust, predictive, and invariant under changing
network conditions and peer resource constraints.

In this paper, we describe Credence, a new distributed
reputation mechanism for peer-to-peer filesharing net-
works that enables honest, participating peers to confi-
dently determine object authenticity, the degree to which
an object’s data matches its advertised description. Cre-
dence allows clients to explicitly label files as authentic
or polluted, and to compute reputation scores for peers
based on a statistical measure of the reliability of the
peer’s past voting habits. Combined, these two tech-
niques provide relevant and reliable data so that clients
can make informed judgments of authenticity before
downloading unknown content. Credence’s mechanism
for computing peer reputations is fully decentralized,
is not affected by extraneous or transient properties of
peers, and is robust even when peers collude to misrep-
resent the authenticity of files in the network.

In order to gauge the trustworthiness of a peer in the
absence of direct interactions or observations, Credence
incorporates a flow-based trust computation. Conceptu-
ally similar to PageRank-style algorithms for propagat-
ing reputation through links on the Web [18], Credence’s
algorithm differs in fundamental ways from previous ap-
proaches. Credence is completely decentralized, and
does not assume consensus on a set of pre-chosen peers
from which trust flows in the network. Instead, each Cre-
dence client propagates trust from itself outwards into the
network, using local observations to compute reputations
in its immediate neighborhood, and input gathered from
its community to judge more distant peers.

We have built and deployed a fully functioning Cre-
dence client as an extension to the LimeWire [15] client
for the Gnutella filesharing network. We have been ac-
tively probing and monitoring the status of the Credence
network since its public release. In this paper, we present
a long-term study of the emerging properties of the Cre-



dence network using data collected over a period of nine
months. This data validates the underlying assumptions
used in the design of Credence, confirms that Credence’s
trust mechanism allows users to discover and maintain
useful trust relationships in the network, and provides
new insights into the behavior of filesharing users.

This paper describes the goals and assumptions of
Credence, details the design and implementation of our
Gnutella-based overlay, and presents the results of our
long-term study of the evolution and structure of the Cre-
dence network. We show that the collective actions of
Credence users have produced a robust network of peer
relationships that lets honest peers avoid a majority of
the pollution they encounter during typical queries. More
fundamentally, this work demonstrates that it is feasible
to construct an effective, fully decentralized reputation
system in a large-scale peer-to-peer network.

2 Approach

Participants in a peer-to-peer filesharing network cooper-
ate by routing queries from a client interested in an object
to a set of peers serving it. Each object consists of some
opaque content and, to facilitate searching, a formatted
object descriptor containing the object name, encoding,
content hash, and other descriptive meta-data. Clients is-
sue keyword queries to their peers in the network, receive
matching object descriptors in response, and then may
download selected objects from among the responses.

Pollution is a problem when clients cannot reliably
distinguish between descriptors for authentic objects,
malicious decoys, mislabeled content, and accidentally
damaged files. In an effort to identify authentic descrip-
tors, typical clients rank search results according to the
advertised file quality or the relative popularity of the
file among the search results received. Such measures
are easily manipulated by simple adversaries, rendering
them unreliable at best and deceptive at worst. Recent
work has shown that listing search results randomly is
substantially more reliable than these rankings [9].

In this paper, we focus on the problem of distinguish-
ing authentic objects from polluted ones. Other types
of attacks can, of course, disrupt networks, and clients
must use additional techniques to guard against them.
Since we abstract away the underlying peer-to-peer net-
work, our work is applicable to any file sharing net-
work in which a decentralized object reputation system
is called for and no pre-existing trust relationships can be
assumed.

2.1 Objectives

The design of Credence is guided by several goals that
are necessary requirements for a successful peer-to-peer
reputation mechanism:

e Relevance: The system must use only pertinent in-
formation when evaluating the authenticity of ob-
jects and the credibility of peers.

o Distribution and Decentralization: No participants
should be trusted a priori, and no central computa-
tion should be required during online operation.

o Robustness: The system must be robust to attacks
by large numbers of coordinated, malicious peers.

e Isolation: The decision to participate in the reputa-
tion system should be independent of decisions to
participate in unrelated activities, such as sharing
files, contributing bandwidth, or remaining online.

e Motivation: Users must have realistic incentives to
participate honestly in the reputation system.

To meet these objectives, the basic operation of a Cre-
dence client is organized around three main activities.
First, Credence users vote on objects based on their own
judgment of the object’s authenticity. Second, Credence
clients collect votes to evaluate the authenticity of ob-
jects they are querying. And third, clients evaluate votes
from their peers to determine the credibility of each peer
from the client’s own perspective. In the base case, peer
weights are computed by examining correlations in the
voting histories of a client and its peers. In the general
case, pairwise weights are combined to yield a trustwor-
thiness metric using a graph flow algorithm.

In Credence, clients express their judgments about the
authenticity of files using explicit voting, and the reputa-
tion system avoids any reliance on implicit indicators of a
client’s judgment. This is in sharp contrast with past sys-
tems that rely on sharing as an implicit endorsement of a
file. As we show later, honest users often share corrupt
or malicious files, files that they themselves were fooled
into downloading. Similarly, the decision not to share a
file is typically independent of the file’s authenticity.

A client collects votes in order to evaluate the authen-
ticity of prospective downloads. Credence uses a decen-
tralized algorithm for propagating votes from the peers
that cast them to the clients that seek them. Our imple-
mentation uses the underlying filesharing primitives to
perform vote routing and search services, and so does
not require any centralized coordination or computation.

Since deployed networks contain many unreliable and
malicious peers, a client needs robust methods for eval-
uating the credibility of its peers. By definition, a peer’s
credibility with respect to judging file authenticity de-
pends only on the votes it casts. In the absence of global
consensus on the correctness of past votes, each client
must decide from its own perspective if a peer’s past
votes were useful. Specifically, a client can compute the
degree to which each peer’s judgments match its own
past votes, and then preferentially rely on votes from
like-minded peers. In cases where direct pairwise eval-



uation is impossible due to insufficient overlap in vot-
ing activity, Credence employs a novel flow-based com-
putation which extends trust relationships transitively
through known peers to more distant peers.

The dependence on a client’s own voting record pro-
vides a natural incentive to participate by voting often
and carefully, since the client otherwise will find itself
relying on similarly careless peers. In contrast to previ-
ous systems that rely on characteristics of past interac-
tions, such as network bandwidth, peers in Credence are
judged only by the votes they have cast. This isolates the
reputation system from other decisions a filesharing peer
must make, such as which peers to interact with, or how
to allocate resources. Negative votes play an important
role in identifying honest peers since, even if user inter-
ests differ or there is little overlap in the authentic files
seen by different users, we expect near universal agree-
ment on negative votes for spam and decoys among hon-
est users. We show later that this is borne out in practice —
successful spam attacks on Gnutella help shape the Cre-
dence network, and help honest peers identify each other.

2.2 Vote Semantics

Credence works most effectively when a large fraction
of users essentially share a common evaluation function,
and so tend to agree when voting on objects in com-
mon. Widely accepted semantics for positive and neg-
ative votes will increase the chances of locating like-
minded peers to rely on when evaluating object authen-
ticity. We chose to base our system on file authenticity,
rather than more subjective issues of taste or quality, for
precisely this reason. This decision is in contrast to rec-
ommender systems, which try to identify a small number
of peers with similar taste from which to make recom-
mendations about new content. Recommender systems
face significant challenges when clients have widely di-
vergent tastes, and the need for a peer-to-peer approach
is unclear given the existence of successful centralized
recommender systems. Credence thus focuses solely on
determining whether a file matches its description.

2.3 Cryptographic Keys

Credence ensures the integrity of votes by equipping ev-
ery client with a cryptographic key pair K that is used to
sign votes. Signatures prevent attackers from modifying
existing votes or manufacturing new ones on behalf of
other peers. Credence limits Sybil attacks [8] by requir-
ing each client to possess a certificate certg signed by a
central authority that vouches for K’s validity. Our initial
implementation rate limited the generation of certificates
by requiring clients to download a large file for each re-
quested certificate. The current implementation requires
each client to solve a cryptographic puzzle, similar to the
scheme proposed in [2]. The certificate authority in the
download-for-key approach is entirely offline, while in

the puzzle-for-key approach, it is online but contacted
only once during initial installation. In either case, the
certificate authority plays no role in the filesharing net-
work itself, and could be distributed using well known
distributed authentication schemes if desired [29]. In all
cases, client keys are not bound to real-world identities,
but instead use randomly generated key pairs without any
identifying information. These keys provide anonymity
comparable to the anonymous pseudonyms found in ex-
isting filesharing networks.

We are now in a position to specify the actual proto-
col that Credence clients implement. In Section 3, we
will evaluate how the protocol behaves in a real network,
and examine evidence supporting the above assumptions
using our long-term study of the deployed system.

2.4 Voting on Objects

The underlying goal of Credence is to allow a user to
judge the authenticity of search results, each consist-
ing of a file content hash and meta data, including the
file’s name, size, and type. Each search result can be
viewed as a claim about the file’s attributes. For ex-
ample, (H: gettysburgCname, mp3=type, 128=bitrate)
makes the claim that the file with content hash H has the
specified attributes, where the symbol C is used to indi-
cate that gettysburg is one of possibly many valid names
for the file.

Credence clients express their observations by issuing
votes, with each vote naming a file content hash and mak-
ing specific claims about the file’s attributes or contents.
Other peers use these votes to evaluate the claims made
by search results, by comparing if the claims specified
the vote to those found in the search result. We say that
a vote applies to a search result, either negatively or pos-
itively, if it either refutes or supports the search result’s
claims. For instance, a vote specifying (H: mp3¢type)
applies negatively to the example search result above,
since the two are mutually incompatible. Note that a
vote’s application may differ somewhat from the voter’s
original intention, as for example a vote (H: jpgé¢type)
most likely intended to say something negative but would
not apply at all to the above search result.

Clients must agree on a common syntax and seman-
tics for making statements about objects. The language
must be simple enough that ordinary users can encode
their observations as votes, expressive enough to account
for different types of pollution, and the semantics must
be faithful to the user’s intentions when voting. The vot-
ing language described here, and implemented in the cur-
rent version of Credence, was carefully chosen to balance
these three often conflicting goals.

Formally, each vote is a signed tuple (H: S, T)x con-
taining a file content hash H, a statement S about the file,
and a timestamp T, together with the client’s key certifi-



cate certy. A statement is an attribute value pair, com-
bined with set operators C, =, ¢ and 2. The attribute and
value are arbitrary strings, though Credence clients cur-
rently recognize three globally defined attributes: name,
type, and bitrate. For efficiency, we allow multiple state-
ments to be concatenated using an implied logical con-
junction and signed together as a single vote.

The statements in votes enable users to designate par-
ticular values as valid or invalid for a given attribute,
as follows. The statement v C a says that v is a valid
value for attribute a, though a may take on other values
as well. Some attributes, most notably a file’s name, are
naturally multi-valued in the sense that many different
values may be appropriate and valid for given unique file
content hash. This operator can be used to specify one
of the possibly many names. In contrast, v = a says that
v is a valid value for attribute a and all other values are
invalid. Attributes, such as the fixed bitrate of an audio
file, can take on only a single possible value, and this
operator enables users to express that single value. A
negative statement v ¢ a says that v is an invalid value
for attribute a. This operator is used to refute specific file
advertisements, such as a single misleading file name or
type. Finally, v 2 a says that @ may not take on values
other than v. This operator allows clients to make strong,
broadly applicable negative statements, without commit-
ting positively to the specified value. Such statements
are particularly useful for thwarting relabeling attacks,
where malicious peers change a file’s metadata such that
existing negative votes, when evaluated in a new con-
text, might inadvertently apply positively to the modified
metadata. Overall, these four operators enable Credence
voters to express a wide range of statements through an
easy-to-use graphical interface.

The Credence user interface gives users the option of
voting in various ways on files that are shared locally,
were recently downloaded, or are about to be deleted.
The user can vote thumbs-up, which generates statements
for the file’s name, type, and bitrate, using C and = where
appropriate. The user can vote thumbs-down to indicate
that the file metadata was misleading, and select one or
more attributes to include in the vote. Negative state-
ments are generated using ¢ for the file’s name and type.
Since the true bitrate, by contrast, can be computed di-
rectly from the file, the vote can include a much broader
negative statement using the 2 operator for the bitrate.
Credence also supports an unconditional thumbs-down
vote that generates the statement (H: name = (), which
appropriately refutes any search result, since all valid
such results contain a non-null name. This unconditional
vote is meant to be used when the file contains a virus
or otherwise wholly inappropriate content, under the as-
sumption that no Credence user wishes to download a
virus even if it is correctly labeled as such.

The user interface and vote operators were carefully
designed with the goal of faithfulness in mind. In partic-
ular, thumbs-down votes do not ever support the claims
of a search result, even when the known correct bitrate is
included. Thus, a user that downloads a file with an in-
correct name and incorrect bitrate does not inadvertently
vote up the same file with a different incorrect name but
the correct bitrate. In contrast, positive votes can apply
negatively if the file’s attributes are altered to be incom-
patible, such as would happen if the file type were modi-
fied after a thumbs-up vote was generated.

Early versions of the Credence software allowed only
for an unconditional thumbs-down vote, as above, or an
unconditional thumbs-up vote. This thumbs-up vote is
handled as a special case and applies positively to any
search result with the specified file hash. Since much of
the data collected in our traces comes from our initially
deployed clients, the analysis in Section 3 considers only
the binary, up/down voting logic. Non-legacy votes are
simply translated to unconditional votes as necessary.

2.5 Collecting and Storing Votes

In Credence, a client evaluating an object’s authenticity
actively queries the network to find, collect, then aggre-
gate a sample of relevant votes. We implemented vote
collection using the existing query infrastructure by issu-
ing a vote-gather query, specifying the hash of the file
of interest, to the underlying Gnutella network. This
reactive, pull-based dissemination of votes is motivated
by the Zipf popularity distribution of objects, since any
given vote is unlikely to be of interest to many users.

The query is routed by Gnutella to peers sharing votes
for the object, who respond by sending their own match-
ing votes and any matching votes they have seen recently.
If a peer knows many votes for the given hash, it sends
only those with the most weight (from its own perspec-
tive), both in order to bound the overall cost of vote col-
lection, and to ensure that the most useful votes are dis-
seminated further in the network. Sending these addi-
tional votes improves vote availability and overall dis-
semination, and incurs little marginal cost. Specifically,
voters are not required to remain online, since their votes
can still be propagated by other peers.

In order to be able to respond to vote-gather queries as
they arrive from the network, each peer maintains a vote
database from which matching votes can be drawn. For
each file content hash, the database stores a row with a
timestamp, the peer’s own vote, if any, and a list of other
votes encountered recently for the object. Note that votes
are maintained in the database regardless of how the peer
voted on the file, or if the other votes agree with its own.
As older entries expire, the database is constantly re-
plenished from the peer’s own voting activity and from
votes the peer receives after issuing its own vote-gather



queries. The peer can further augment its database using
a straightforward gossip exchange with its peers. The
resulting database size is proportional to a peer’s gossip
rate and frequency of voting and estimation, and inde-
pendent of the number of files in the network.

2.6 Weighing Votes

After collecting a set of votes for an object, the client
verifies the signature and key certificate on each of the
votes, then aggregates the set into a single reputation es-
timate to present to the user. Simply tabulating the avail-
able votes using unweighted averaging would be prone
to manipulation, as attackers could simply flood the net-
work with votes. Instead, each Credence client computes
a trust metric for each vote, and uses weighted averaging
to compute an estimate of the object’s overall reputation.
The resulting score is interpreted as a personalized esti-
mate of the authenticity of the object, and can be used to
make a more informed decision to accept (and fetch) or
reject the object. In cases where no votes could be found,
the user must resort to ad hoc estimates of authenticity,
as used in past systems. Such cases are unavoidable dur-
ing the initial deployment of any reputation system that
does not rely on prior trust relationships.

The first step in aggregating votes is to evaluate how
the claims in each vote apply to the relevant search re-
sult. Votes that apply positively are given an initial value
of +1, and those that apply negatively —1. From the per-
spective of a client evaluating a set of votes, however, the
usefulness of a particular vote depends on the relation-
ship between the client and the peer that cast the vote,
and so each client weighs the initial vote values accord-
ing to the strength and bias of this relationship. Intu-
itively, peers that tend to vote identically (or inversely)
on objects should develop strong positive (or negative)
weights for each other’s votes over time, while a client
should disregard votes from peers that, from its perspec-
tive, appear to vote randomly.

2.7 Computing Correlations

Statistical correlation precisely captures this notion by
comparing the shared voting history of each pair of peers.
A Credence client determines, for each of its peers, a cor-
relation coefficient 6 to use as a weight during vote aggre-
gation, based on the files voted on in common between
the client and the peer. Conceptually, 6 is calculated
by examining the instances when both peers make state-
ments about some file, and taking into account whether
the statements have a positive or negative intention.
Normally, a single vote applies either positively, neg-
atively or not at all, depending on the search result in
question. The correlation computation takes place with-
out reference to any particular file or search result, how-
ever, and so uses the original intent of each vote to di-

rectly compare the voting history of the client and peer.
Specifically, we say that a pair of votes conflict if there is
a search result to which the votes apply oppositely. We
say the votes agree if they do not conflict and there is a
search result that both support or both refute.

The coeflicient 8 is computed by examining all pairs
of votes between two peers A and B that either con-
flict or agree with each other. Let a (respectively ) be
the fraction of such votes from peer A (respectively B)
with positive intention, and let p be the fraction of such
pairs that agree with both votes having positive intention.
Then 6 = (p — ab) / Va(1 — a)b(1 = b) is the coefficient
of correlation, taking on values in the range [—1, 1]. This
computation represents a standard technique for comput-
ing correlations on binary data. Positive values indicate
agreement between peers, negative values indicate dis-
agreement, and small || indicates the absence of any sig-
nificant relationship between the two voting histories.

Client A normally uses weight r45 = 6 for the votes
cast by a peer B. When peers lack sufficient voting his-
tory to establish a robust estimate of 6, or when the cor-
relation value itself is statistically insignificant, the client
sets r4p = 0 and so disregards votes from the peer. For
peers whose votes are all negative or all positive, 6 is
usually undefined even if the peers are mostly or com-
pletely in agreement. Such cases may be common for
clients newly joining the network, and so Credence uses
a heuristic to allow such clients to quickly begin es-
tablishing tentative relationships. When 6 is undefined,
the software resorts to a simple vote agreement count-
ing metric in the range 0 < |rqp| < 0.75. This range
was chosen to be below the majority of existing correla-
tion values, and reflects the decreased confidence in such
heuristics as compared to the correlation computation.
Clients may disable this heuristic, and it may be removed
altogether if users can be convinced of the importance of
voting both positively and negatively early on.

A client can only compute accurate and strong peer
correlations if it has itself cast a sufficient number of both
positive and negative votes. This restriction provides a
strong incentive for users to participate in voting, since
users that do not vote will find the quality of the esti-
mates they compute noticeably degraded. A user can still
benefit from Credence by voting honestly but privately,
suppressing the sharing and dissemination of their votes
to other users.

Credence clients use the information stored in their
vote databases to periodically compute correlations for
known peers. For each peer in the vote database, the
client determines the set of objects for which it knows
both the peer’s vote and its own, derives from this set
a peer correlation value, and caches any strong correla-
tions found in a correlation table. The correlation table
is consulted when weighing votes during the evaluation



of an object’s authenticity, and for selecting votes to send
in response to vote-gather queries from other clients.

2.8 Flow-based Peer Reputation

Computing correlations directly from the local vote
database works well for peers that vote on overlapping
sets of objects, and are thus well represented in the local
vote database. But pairwise correlations cannot robustly
evaluate the relationship between a client and peers hav-
ing only a few interests in common with the client. We
overcome this limitation by allowing clients to leverage
the correlations discovered by their peers, effectively ex-
panding their horizon along paths of correlated peers.
Credence incorporates a notion of transitive correlation
which enables strong correlations between a client and
a nearby peer, and again between this peer and a more
distant peer, to be combined into an estimate of the rela-
tionship between the client and the distant peer.

Transitive correlations are computed by building and
maintaining a local model of the pairwise trust relation-
ships between peers in the network, then periodically
executing a flow-based algorithm on the resulting trust
graph. Nodes in the trust graph represent peers in the
network, and a weighted edge between nodes represents
one peer’s correlation estimate for another. Initially, a
client populates the trust graph using locally computed
correlations from its local vote database. The remain-
der of the graph is built using a gossip protocol, where
each client randomly selects peers in the network and ex-
changes locally computed correlation coefficients. The
selection of these gossip partners is biased towards peers
with known positive correlations to preferentially expand
the most useful parts of the graph.

Intuitively, votes from peers distantly connected in
the graph can used to approximate the votes of peers
more closely connected, by emulating the weighted vot-
ing computation at each step along the path. Performing
a potentially large graph computation in this way dur-
ing every search result evaluation is likely too expen-
sive. We can approximate this computation by multi-
plying the weights along paths with strong weights in
the graph, and so precompute an approximate effective
weight to be used to weight the votes from each distantly
connected peer. As a simplification and optimization in
our implementation, each client periodically computes
only a single maximum weight path to every other peer
in its local graph, where path weight is the product of
weights along edges. This computation is constrained to
use paths where negative weights appear only on the last
edge in the path, since a client cannot trust a negatively
correlated peer to provide useful judgments about cor-
relations to more distant peers. The resulting transitive
correlations are cached for later use in weighting votes
when a local correlation is not available.

Credence proposes two strategies to protect the relia-
bility of its local trust graph against peers that lie about
correlations when exchanging information. First, be-
cause only locally computed correlations are exchanged,
a client can choose to audit the computation by request-
ing some or all of the inputs from its peer. Recall that in-
puts to the correlation computation are votes from peers,
signed to maintain integrity. Second, in practice, the
trust graph contains significant amounts of redundant in-
formation in the form of cycles and densely connected
cliques. Auditing the graph itself can help the client iden-
tify misbehavior in the form of inconsistent information,
and can also help guide decisions of which peers to au-
dit directly. Auditing is not currently implemented in the
deployed version of the Credence software.

The remainder of this paper presents our analysis of
data gathered from the deployed Credence network.

3 Evaluation

Credence is the first peer-to-peer reputation system to
be deployed widely on a live network, with over 10,000
downloads of our software since its initial public release
in March, 2005. In this section we present an analysis of
data collected in a long-term study of the deployed Cre-
dence network. The data presented here gives a unique
view into the individual and collective behavior of file-
sharing peers, and demonstrates the feasibility of a fully
distributed reputation system in real settings.

We collected data on Credence clients using a con-
tinuously running crawler and have compiled more than
200 daily snapshots of the structure of the network over
a span of nine months. Each snapshot contains the cu-
mulative set of votes discovered by the crawler. Clients
are identified in the data set only by their randomly cho-
sen public key. Since a vote identifies the file to which it
applies only by the file’s hash, our vote data set does not
contain the corresponding names of the files being voted
on. However, over a span of six months a second crawler
collected the names and hashes of files publicly shared
by Credence clients, enabling us to contrast the sharing
and voting habits of users. In order to compile a consis-
tent view of the network for analysis, both crawlers ran
simultaneously, and all analysis was performed off-line
after data collection was finished. Cumulatively, the data
contains over 39,000 votes cast and 84,000 files publicly
shared by over 1200 Credence clients.

Our dataset likely comprises only a portion of the Cre-
dence user population, since peers that join and leave the
network rapidly may be missed by our crawler. In gen-
eral, Credence clients do not make complete information
about their trust computations available, such as the list
of known transitive relationships. In the analysis below,
we simulate the perspective of clients in the network by
recomputing the pairwise and transitive correlations each
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Figure 1: A global view of the Credence reputation graph with
nodes and links shaded to reflect the number of votes cast by
a peer and the correlations between peers. The large set of
nodes in the center tend to correlate positively with each other,
while clusters around the periphery are internally coordinated
but conflict with the rest of the network.

peer normally computes, under the assumption that our
vote set is representative of the complete set of votes in
the network. This has the additional advantage of allow-
ing us to evaluate different parameters and thresholds for
the pairwise and transitive correlation computations.

In the next section we present a high level view of the
Credence reputation graph as it exists at the end of our
data collection, and in subsequent sections we evaluate
the effectiveness of the Credence approach, examine as-
sumptions behind the Credence design, and discuss the
underlying factors driving the evolution of the network.

3.1 Graph Structure

Central to the Credence protocol is the ability to discover
relationships between peers, so we begin with a global
view of the trust relationship graph, derived from the cu-
mulative set of votes collected by our crawler. Figure 1
presents the correlation values between any pair of peers
with overlapping vote histories, formatted to reflect the
clustering due to positive and negative correlations.

The most striking feature of the network is that, aside
from the completely isolated nodes at the right, the graph
is completely connected and has a very dense link struc-
ture. On average, each connected node is directly corre-
lated with 27 other peers in the network. When combined
with Credence’s flow-based algorithm, this enables peers
to derive reputations for a significant portion of the en-
tire network. The isolated clients have no correlations, a
result mainly of their very low voting activity. At the end
of our study, isolated clients had cast on average fewer
than 5 votes, compared with 82 votes on average for the
connected nodes. The isolated clients are typically new
clients, and make their way into the main cluster as they
produce a more substantial voting record.

Among the active, connected clients, several vote
completely oppositely as their peers, resulting in a neg-
ative correlation value for every incident edge. These
peers are placed at the left of the figure. The remain-
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Figure 2: Classification of Credence users. Isolated client have
no correlations to any other clients. Clients outside the main
cluster are further classified according to type: naive attacker
for those that achieve only negative correlations; uncoordinated
attacker for those that achieve some positive correlations but
appear to be acting independently; and coordinated attacker for
those that appear to have coordinated voting patterns different
from those in the main cluster.

ing peers have a mix of positive and negative correla-
tions with their peers. The large central component con-
tains nodes with mainly positive correlations among each
other. The smaller clusters of nodes that can be seen
around the periphery of the central cluster have largely
positive correlations internally, but mainly negative cor-
relations with the rest of the network. Note that we have
presented a global view of the graph structure, and do not
show how any particular client would view the network,
since each client uses its own votes to independently de-
cide which nodes it considers inside its own cluster (pos-
itively correlated) and outside its cluster (negatively cor-
related). We show in the next sections that users in the
main cluster can make such classifications accurately.

Coordination and Disagreements

Further examination of the reputation graph produced
by Credence voters reveals the overall level of coordina-
tion and disagreement in the reputation system. If many
users share a common notion of authenticity and pollu-
tion, then clients will more easily find correlated peers in
the network. Figure 2 provides a classification of Cre-
dence users based on clustering observed in the global
reputation graph. Some users vote so rarely or on such
obscure files that they cannot derive any correlations, and
are classified as isolated. A large majority of the remain-
ing users are members of the single central cluster, and
tend to agree on the authenticity of most files.

Approximately 3% of users are classified as naive at-
tackers, since they are easily identified as voting in direct
contradiction to all other connected nodes. We also find
an additional 10% of nodes that vote more often in con-
tradiction to the overall network than they vote in agree-
ment. More than half of these belong to a single large
cluster of coordinated attackers, which can be seen to
the right of the central cluster in Figure 1. The remaining
nodes either participate in smaller coordinated attacks, or
act as independent attackers.
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Figure 3: Number of local and transitive correlations com-
putable under varying correlation strength threshold.

The Credence network has no authoritative source of
content or a priori trusted peers. In particular, although
we have labeled nodes outside the main cluster as attack-
ers, it is not possible from our data to ascribe malicious
intent to these nodes. They may simply have a different
concept of file authenticity and pollution than the major-
ity of nodes, or may not understand the voting process.
From the perspective of the nodes in the central cluster,
however, peer intent is irrelevant and all outside nodes
can be fairly labeled as attackers. In Credence, however,
such attackers are not necessarily damaging to individ-
uals or the network as a whole. The votes from naive
attackers, for instance, are simply inverted by all other
clients in the system, and so actually provide a tangible
benefit to the system. Overall, the high level of agree-
ment indicates that file authenticity is a fairly universal
concept among filesharing users, justifying Credence’s
reliance on voting and correlation as a method of identi-
fying authentic files and credible peers.

Local and Transitive Relationships

The set of peer correlations computed by a client plays
a significant role in Credence, since it defines the set of
votes that are normally used by the client when evaluat-
ing objects in the network. In this section, we show that
clients participating in Credence’s reputation system are
able to identify both positively and negatively correlated
peers in the network, and so can take advantage of a large
fraction of the votes in the network.

Credence clients use direct, pairwise correlations to
peers when possible, and use transitive correlations to
propagate trust through these correlations to more dis-
tant peers in the network. Figure 3 shows the impact
of both pairwise and transitive correlation computations
on a client’s view of the network, under varying strength
criteria. We can see that the number of correlations com-
putable directly from local information is fairly small
on average, but that, depending on the choice of thresh-
old value, a much larger set of correlations can be com-
puted by clients using transitive information. The greater
number of positive correlations found is due mainly to
the overall trend toward agreement and cooperation ob-
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Figure 5: Number of votes cast according to client type. The
low voting rate of isolated clients can be attributed to users that
are either inactive, or have just recently joined the network.

served in the network, and in part to a bias against nega-
tive values in the transitive correlation computation.

Setting the correlation threshold allows a client to
make an important tradeoff: a larger number of peer cor-
relations could allow a client to take advantage of more
votes from the network, but can also decrease the quality
of estimates by including votes from weakly correlated
and frequently inconsistent peers. Figure 4 illustrates this
tradeoff by comparing the size of the set of usable votes
for a given correlation threshold, and the consistency of
this set of votes. To measure consistency, we compute
the number of pairs of votes in agreement divided by the
number of pairs in agreement or conflict. As a client in-
creases its correlation threshold, it will have fewer peer
correlations available, prompting both a decrease in the
number of votes that can be used, and an increase in the
consistency of the usable vote set.

Assimilation of New Clients

Clients newly joining the Credence network must be
able to quickly discover peers with which they are cor-
related, so that the accuracy of their authenticity calcula-
tions can quickly increase. Our previous work, based on
simulations, showed that transitive correlations play an
important role in allowing new clients to quickly join the
network [24]. After an initial period to establish a local
voting record and a few pairwise correlations, the flow-
based computation can immediately take advantage of
the correlation results computed by already established
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Figure 6: File popularity by number of times shared is approxi-
mately Zipf in the Credence network, but the most popular files
are nearly all either decoys or related to LimeWire, and are no-
ticeably overrepresented in the distribution.

peers. Figure 5 shows the number of votes cast by each
type of client at the end of our study, and highlights the
small number of votes necessary to become connected,
and the relative inactivity of clients that are not yet con-
nected. Looking at the data over time, 70% of connected
clients discover their first peer correlation after casting
fewer than 18 votes, which is the median for honest
clients in the figure above.

3.2 Filesin Credence

In this section we examine the overall distribution of files
in the network, estimate the extent of pollution in our
data set and its impact on clients, and examine how this
pollution helps shape the overall structure of the Cre-
dence trust network. In Section 3.3, we show that clients
are able to avoid this pollution using Credence’s object
authenticity rankings.

We collected lists of shared files from a set of 681 Cre-
dence clients. These users advertise a total of 84,838
files, of which 67,794 are unique, roughly following a
Zipf popularity distribution as shown in Figure 6.

Decoys and Artifacts

The most frequently shared files are noticeably over-
represented, and are shared an order of magnitude more
often than would be predicted by a strict Zipf distribu-
tion. Here we show that this deviation is due almost en-
tirely to the effect of decoy attacks, demonstrating the
substantial impact of pollution on the overall character-
istics of the filesharing network. The remaining discrep-
ancy can be explained by several files that appear to be
widely, but inadvertently, shared by Credence users.

We manually examined all files shared under at least
nine distinct names, and found all to be clear examples
of decoy attacks — typically, movies or pictures contain-
ing advertisements (not surprisingly, the advertisements
were often misleading; a movie containing an ad for
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Figure 7: File popularity by number of hosts sharing a file is
Zipf over the entire range, with the exception of certain files
included in our software distribution.

a “free” iPod giveaway is highly prevalent, in part be-
cause a set of nodes on the Gnutella network sends it
in response to every query and leads inattentive users to
download it). Some of the other highly prevalent files
are artifacts of the LimeWire and Credence software dis-
tributions, such as icons, source files, and software up-
dates. Figure 6 labels all known decoy and LimeWire
related files, discovered through manual examination of
the 100 most frequently encountered files. These cases
account for nearly all of the deviation from a strict Zipf
popularity distribution.

The apparent popularity of many decoy files does not
come from wide distribution in the network, but rather
from a small number of hosts sharing the decoy files
many times under different names. We can more accu-
rately see the effects of decoy attacks on the network by
measuring file popularity as the number of hosts shar-
ing the file, shown in Figure 7, rather than as the num-
ber of replicas of the file. The figure shows two distinct
types of decoy files. Those decoys that remain at the
left of the distribution have spread to several peers in
the network. The remaining decoys are shifted to the
low end of the popularity distribution, meaning that they
are shared by only a few peers. This shows that the ap-
parently high popularity of some decoy files observed in
Figure 6 is due to large-scale replication on a small num-
ber of clients, and provides clear evidence of malicious
pollution in the underlying network.

Overall, our sharing data provides strong evidence that
ongoing decoy attacks are targeting Credence clients,
and that some of these decoy files are propagating suc-
cessfully through the network. Other decoys rely on
large scale replication by only a small number of clients,
and these files do not propagate widely. We account for
the difference in propagation in Section 3.3, showing that
the larger decoy attacks are being suppressed by voting
from honest Credence participants.
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100000

File Voting Popularity

Our voting data set comprises 39,761 votes cast on
35,690 unique files. The file most often voted on had
30 votes, while 33,530 files received only a single vote.
The distribution of votes among files follows a Zipf pop-
ularity distribution, as shown in Figure 8, with the ex-
ception of the most popular files which are slightly un-
derrepresented. Also shown is a breakdown of positive
and negative voting frequency for each popularity level.
This data shows that positive votes are spread across files
fairly evenly, without regard to the popularity of the file.
Negative votes, however, have a more skewed distribu-
tion, with many negative votes concentrated on a small
fraction of all files.

These results indicate that many Credence users are
encountering the same polluted files, consistent with a
deliberate decoy attack. We observe in our data set that
a few particular decoys are extremely common in search
results, and these files are precisely those shown as the
most popular in Figure 6, indicating that users are voting
on those decoys that most affect them.

Voting is Independent of Sharing

A key design goal of Credence is to ensure that users
can control the factors that influence their network rep-
utation, and that users rely only on relevant data when
judging the authenticity of files. Past systems have re-
lied on sharing as proxy for users’ explicit evaluations of
files. We show in this section that not only are sharing
and voting behavior largely independent of each other in
our data set, but that they are often contradictory as well.
This validates our reliance on explicit voting rather than
implicit sharing indicators, and confirms that many users
do not effectively monitor their sharing behavior.
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Figure 9: Credence user voting and sharing rate are largely in-
dependent, with users outside the main cluster found mainly
along the x axis with no voting activity, and in the lower right
of the graph with less voting activity than sharing activity.

Comparing the sharing and voting activity of individ-
ual users in Figure 9 shows that there is little correlation
between the number of files voted on and the number of
files shared, especially among the users in the large cen-
tral cluster. Notably, nearly all Credence users outside
the central cluster display much more sharing than voting
behavior, whether the user is disconnected, or connected
to the central cluster through purely or mostly negative
correlations. This confirms that users who vote infre-
quently will tend to find themselves isolated in the rep-
utation network, and provides incentive for honest users
to participate in voting.

Voting Can Contradict Sharing

There is some overlap in voting and sharing activity
of individual clients, but we find that a client’s explicit
votes often directly contradict the implicit indicators that
sharing would have given. From our data, we can extract
some 1754 instances spread over 123 users of a single
user sharing and voting on the same file. A rational, hon-
est user would only share files they vote positively on.
This behavior accounts for roughly two thirds of the ob-
served files. The remaining third of cases represent con-
tradictory behavior, where a client has voted down a file
they are also sharing. Interestingly, strictly rational be-
havior is observed on less than half (46%) of the users
in the set. More surprising however is that nearly three
quarters (72%) of the users display at least one case of
inconsistent behavior, actively sharing files they explic-
itly voted against. This justifies our reliance on explicit
voting rather than implicit sharing as an indicator of a
user’s judgment of file authenticity.

3.3 End-to-End Performance

As an end-to-end test of the effectiveness and utility of
Credence, we examine how Credence performs when
users execute typical queries in the Gnutella network,



and how the Credence algorithms modify the relative or-
dering of the search results returned to the user. We used
a load generator to repeatedly query the Gnutella net-
work for typical keywords over a 24 hour period, and
logged the search results returned. Query strings were
generated from our earlier data set by extracting the four
longest words from each file name shared by a Credence
user. We selected terms in this way to mimic the inter-
ests of actual Credence users. This should not bias our
query results, as sharing and voting behavior within Cre-
dence clients are essentially unrelated to each other, as
our previous analysis has shown.

Queries that returned no search results were discarded.
Each search result returned to our server consists of a file
hash, a file name, various quality metrics, and a set of
network addresses for the file. Using our voting data set,
we matched the file hits returned to votes found in the
data set generated by our crawler.

In all, Credence was able to provide some input to the
search result ordering for 50.2% of the queries. Of the
queries for which Credence could provide no input, the
majority (79%) matched two or fewer files in the net-
work. Of all the query replies received, more than a
third were for files that had been voted on by Credence
users. This result is quite encouraging, considering the
very small number of Credence voters in comparison to
the size of Gnutella network being queried.

Resistance to Decoy Attacks
In the above analysis, the distribution of query replies

is skewed due to the popularity of certain files. Here,
we examine the impact of decoy attacks on our query re-
sults and the ability of Credence clients to identify the
decoy attacks encountered by our load generator. The
specificity and scale of decoy attacks vary: some decoys
are returned only for specific queries, while others are
encountered for nearly all queries, and in both cases the
number of responses naming the decoy can range from
just one to several hundred. Thus, among the entire set
of search results returned to our engine, only 12% con-
tained unique file hashes, and only 1% of these are files
for which Credence users have cast votes. In other words,
although Credence users voted on only a small fraction
of files encountered, less than 80 in all, these files rep-
resent more than a third of the total query replies. In
previous sections we showed that Credence users tend to
vote negatively more often on a small fraction of files.
This suggests that many Credence users are likely being
affected by a few very large decoy attacks, and are re-
sponding by voting negatively on them.

Using the list of decoy files identified by hand from
our earlier analysis, we examine the impact of decoy at-
tacks on filesharing search results, and characterize Cre-
dence’s ability to identify such files when they are en-
countered. For this experiment, we selected individual
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Figure 10: Distribution of the size of decoy attacks encoun-
tered, showing fraction of attacks successfully identified as pol-
lution and those missed by Credence clients in the main clus-
ter. Error bars are not visible, because these clients show nearly
identical performance in identifying the decoys encountered.

clients in the central cluster to serve as vantage points,
and computed how the clients would score each search
result. In all cases where a decoy was encountered during
a query, the clients were able to successfully identify 246
(75%) as pollution on average. The clients were not able
to identify as pollution the remaining 82 (25%) decoy at-
tacks, since no one appears to have voted on them. The
deviation in results between clients was near zero, be-
cause the negative votes for the decoys come from peers
that are weighted positively by honest clients.

Resistance to Collusion

Not all decoy attacks have equal impact on Credence
users. In this section, we show that the decoys missed by
Credence are those that have little impact on users in any
case. Figure 10 shows the distribution of the sizes of each
decoy result encountered, measured in terms of the num-
ber of locations purportedly offering the file. The data
shows that any decoy offered by three or more peers is
successfully identified. Credence misses several smaller
decoy attacks, but even at these low levels still identifies
nearly twice as many as it misses.

When Credence fails to identify some search results
as polluted or authentic, it sorts these results according
to their apparent popularity, just as non-Credence clients
do. Larger attacks are more likely to rise to the top of
such rankings, attracting the attention and negative votes
of honest users, while the smaller attacks are more likely
to be ignored by users. This tendency accounts for the
lack of votes for such small decoy attacks.

We can conclude from these results that Credence
users in the large central cluster of honest users are able
to identify most decoy files as pollution by virtue of their
own negative votes, or by the negative votes of other
honest users, and that Credence is especially successful
when attacks become sufficiently damaging to draw the
attention of typical users.
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Figure 11: CDF of the normalized number of inversions in the
search result rankings due to Credence. Credence considers
legacy ordering at least 15% incorrect for half of the queries.

Ranking Performance

In addition to searching for and collecting votes for
individual search results selected by the user, Credence
is able to estimate file authenticity based on votes in the
client’s local vote database, and modify the sorting order
of the results accordingly. Here we show that Credence’s
authenticity estimates have a significant impact on the
presentation of typical search results. Specifically, we
look at how the ordering in a non-Credence client, rank-
ing files by the number of peers sharing the file, differs
from the ordering in a Credence client, ranking files us-
ing known votes weighted by known peer correlations.

We use the number of inversions required to transform
one sorted listing to the other, normalized to the range
[0, 1], as a measure of difference. A score of 0 would in-
dicate that Credence’s result ordering coincides exactly
with the non-Credence ordering, a score of 1 indicates
that the Credence client orders the list exactly backwards
compared to the legacy ranking, and a score of 0.5 would
result if the legacy ranking were purely random with re-
spect to Credence’s ranking. Credence’s default behavior
of sorting according to the legacy ordering when no votes
are available introduces a conservative bias towards zero
in this difference metric. Figure 11 shows a CDF of the
normalized number of inversions due to Credence, show-
ing that the legacy ordering is no better than purely ran-
dom, with respect to Credence’s order, in about 10% of
cases. We conclude that Credence can provide users with
substantial credibility rankings in most cases.

3.4 Response to Attack

The design of Credence promotes subtle feedback loops
and incentives that give rise to the resilience and overall
dynamics shown in the previous sections. In our data set,
we observe that polluted files that begin with an apparent
high popularity, and a correspondingly high legacy rank-
ing, are quickly discovered and voted down sufficiently
often by honest users so as to put them at the bottom of
the sorting order. An attacker’s positive votes in this case

will serve only to induce additional negative votes from
honest participants, and more importantly, reveals the at-
tacking peer to not be credible. This effect can be seen
as the nodes in main cluster of the network identify peers
with consistently strong negative correlations.

A client’s correlation values play a key role in its re-
sistance to attack, and renders many attacks ineffective.
A naive attacker that votes consistently in opposition to
honest clients will find itself cut off from the main clus-
ter of honest nodes. At the other extreme, an attacker
that votes randomly also becomes isolated, since it will
generate no correlations with other peers. A rational at-
tacker must carefully trade off honest votes on some files
with dishonest votes on others, and so is required to leak
a certain amount of correct information to the network.

The strongest attack we have explored is a whitewash-
ing attack, in which the attacker first votes honestly on a
large set of sacrificial files before voting dishonestly on
a smaller target set. In our study, we find that such at-
tackers may be included or excluded depending on each
client’s perspective. An individual client excludes the
attacker if, from the clients own perspective, the infor-
mation gained from the attacker’s honest votes is out-
weighed by the damage from the dishonest votes. In
other instances, clients find that the attacker’s negative
votes does so little damage and provides so much hon-
est information as to make it worthwhile to include the
attacker as a partially credible peer. Client perspectives
vary, making it more difficult for attackers to select the
sacrificial files on which to vote honestly. Further, mul-
tiple independent attacks of this form can easily cancel
each other, and lead to an overall net gain of honest in-
formation in the system.

A more complete discussion of this and other potential
attack scenarios can be found in a previous work [24],
based on simulations of the Credence protocol.

3.5 Credence Overhead

Credence performs various operations in the background,
and so requires some processing and network resources
on client machines. A client representative of the most
active existing users, having cast 250 votes and having
learned over time of an additional ten thousand votes, can
expect to receive approximately 100 bytes per second of
additional background traffic due to Credence. This is in
comparison to LimeWire’s approximately 60 bytes per
second of incoming background traffic. Outbound traffic
depends strongly on the popularity of the client’s votes,
the client’s reputation, and Gnutella connectivity. Ongo-
ing background processing of additional Gnutella queries
and Credence gossip requests in the same scenario de-
mands less than 1% of a 1.7GHz processor, while a com-
plete recomputation of all correlations can be completed
in under three seconds.



4 Related Work

Deployed peer-to-peer systems are known to be vul-
nerable to many forms of malicious activity. A recent
study [3] gives clear evidence of intentional pollution at-
tacks in four large filesharing networks, and discusses
the lack of reliable tools available for peers to avoid this
pollution. Similarly, Ross [14] finds evidence of rampant
pollution in the decentralized Kazaa network.

Distributed Peer Reputation: Past work on peer-to-
peer reputation focuses mainly on service differentiation,
which refers to the ability of clients to make intelligent
decisions about which peer among many to select for ser-
vice. Typically, the goal of such systems is to discourage
freeloaders by excluding them from the network, or opti-
mize download performance by selecting high perform-
ing peers. Thus, past work relies mainly on peer reputa-
tion based on performance measures of peers, rather than
object reputation as we propose.

Eigentrust [13] computes a single performance score
for each peer, reflecting their past behavior in pairwise
interactions. Although the protocol is distributed, it ulti-
mately relies on a fixed set of trusted nodes at which it
roots the computation of trust. Collusion can also disrupt
straightforward eigenvalue computations, and techniques
to make eigenvalue-based systems more resistant to col-
lusion [28] rely heavily on centralized computation.

Other approaches [1, 25, 7, 4] enable each client to
compute a personalized, rather than global, performance
score for peers in the network, and also distinguish peer
performance and peer credibility. A client considers a
peer credible if the client and peer tend to agree on most
performance observations made in the past. However,
peers in such a system are unlikely to be found credible
due simply to the wide variation in network perspectives,
changing performance characteristics over time, locality-
based peer selection, and the high degree of object repli-
cation in typical filesharing networks.

XRep [6] and XzRep [5] extend the work in [4]
by additionally computing object reputations based on
weighted peer voting, with the weights based on past vot-
ing behavior of peers. These protocols require peers to
be online during each object evaluation phase in order
to compute and transmit their votes, and do not share
the computed weights among peers. Information sharing
and offline operation are critical features for a peer-to-
peer reputation system due to the sparse workloads and
session lengths observed in peer-to-peer networks [21].

Alternative approaches to the freeloader problem have
been proposed without resort to peer reputation. Gupta,
Judge, and Ammar propose an economic model [12]
where peers earn credits for participation and pay credits
to gain service, and explore the tradeoffs between relia-
bility and overhead when accounting is distributed in the

network. Micropayments can be used to induce coop-
eration (e.g. [23, 26, 17]). Fair exchange systems [10]
provide similar properties and incentives, but without re-
lying on currency. These schemes do not address content
pollution, and so are complementary to our approach.

Credence does not address freeloading or service dif-
ferentiation problems, but rather content pollution. In a
broad study of denial-of-service vulnerabilities in peer-
to-peer networks, Dumitriu et al. [9] discuss pollution
based attacks and factors that make them successful in
existing networks, and note the tendency of clients to
inadvertently share corrupted files. The authors esti-
mate the potential impact of a general class of peer-based
reputations systems, and find them to be insufficient to
counter pollution-based attacks. Using simulation and
epidemiological models of the spread of pollution in file-
sharing networks, Thommes and Coates [22] show that
Credence’s object-based approach can have a significant
impact on network-wide pollution levels, even when only
a fraction of participants use Credence.

Centralized Pollution Control: Problems similar to
filesharing pollution have long been recognized in other
domains, prior to the emergence of modern peer-to-
peer networks. For instance, recommender systems
(e.g. [20]) aim to distinguish wanted and unwanted con-
tent in Usenet and in other domains, and online market-
places often provide some form of reputation system so
buyers can avoid untrustworthy sellers. Although Cre-
dence is not a recommender system, our distributed flow-
based correlation computations resemble the centralized
recommender algorithms in [27] for use in online mar-
ketplaces. Guha et al. [11] examine how both positive
and negative evaluations might be propagated through
a web of pairwise observations, and we share a similar
model of information propagation in Credence. In gen-
eral, however, past approaches to pollution-like problems
rely heavily on centralized components and are not di-
rectly applicable to peer-to-peer networks.

BitTorrent has remained relatively free of pollution,
partly due to human moderation of BitTorrent lists and
tight binding of trackers to nodes [19]. Recent trends
indicate that decentralized tracking and auto-generated
torrent lists are opening BitTorrent up to pollution [16].
Credence techniques can be applicable in such contexts.

5 Conclusions

Credence is a new approach for combating the
widespread presence of decoys, malware, and other ma-
licious content in peer-to-peer filesharing systems. The
system provides incentives for peers to participate hon-
estly in voting, enables peers to compute object reputa-
tions that reflect their authenticity, and is robust to co-
ordinated attacks. We have made a complete Credence



implementation, with source code, freely available. Data
from a long-term study of the emerging properties of the
deployed network suggests that Credence users are able
to identify malicious filesharing activity and mitigate the
impact of dishonest peers in the Credence reputation sys-
tem.

The techniques we have developed in Credence are not
specific to the Gnutella network in which they are cur-
rently deployed, but are applicable to a broader class of
distributed systems. These systems are characterized by
the need for users to make local trust decisions about net-
worked objects and services, without a priori trust rela-
tionships imposed by a central authority. As critical net-
work infrastructure services become more decentralized,
conventional centralized trust decisions will necessarily
become unsuitable. Such systems can benefit from the
Credence approach.

Acknowledgments

This work was supported in part by NSF Career grant 0546568,
and TRUST (The Team for Research in Ubiquitous Secure
Technology), which receives support from the National Sci-
ence Foundation (CCF-0424422) and the following organiza-
tions: Cisco, ESCHER, HP, IBM, Intel, Microsoft, ORNL,
Qualcomm, Pirelli, Sun and Symantec.

References

[1] S. Buchegger and J.-Y. L. Boudec. A Robust Reputation Sys-
tem for P2P and Mobile Ad-hoc Networks. In Workshop on the
Economics of Peer-to-Peer Systems, Boston, MA, June 2004.

[2] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure Routing for Structured Peer-to-Peer Overlay Net-
works. In Symposium on Operating Systems Design and Imple-
mentation, Boston, MA, December 2002.

[3] N. Christin, A. S. Weigend, and J. Chuang. Content Availabil-
ity, Pollution and Poisoning in File Sharing Peer-to-Peer Net-
works. In ACM Conference on Electronic Commerce, Vancouver,
Canada, June 2005.

[4] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Choosing Reputable Servents in a P2P Network. In
International World Wide Web Conference, Honolulu, HI, May
2002.

[5] N. Curtis, R. Safavi-Naini, and W. Susilo. XzRep: Enhanced
Trust Semantics for the XRep Protocol. In Applied Cryptography
and Network Security, Yellow Mountain, China, June 2004.

[6] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante. A Reputation-Based Approach for Choosing Re-
liable Resources in Peer-to-Peer Networks. In ACM Conference
on Computers and Communications Security, Washington, DC,
October 2002.

[7]1 R. Dingledine, M. Freedman, and D. Molnar. The Free Haven
Project: Distributed Anonymous Storage Service. In Workshop
on Design Issues in Anonymity and Unobservability, Berkeley,
CA, July 2000.

[8] J. R. Douceur. The Sybil Attack. In International Workshop on
Peer-to-Peer Systems, Cambridge, MA, March 2002.

[9] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel. Denial-of-Service Resilience in Peer-to-Peer
File Sharing Systems. In ACM SIGMETRICS, Banff, Canada,
June 2005.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. Gauthier, B. Bershad, and S. D. Gribble. Dealing with Cheaters
in Anonymous Peer-to-Peer Networks. Technical Report 04-01-
03, University of Washington, January 2004. Computer Science
and Engineering.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of
Trust and Distrust. In International World Wide Web Conference,
New York, NY, May 2004.

M. Gupta, P. Judge, and M. Ammar. A Reputation System for
Peer-to-Peer Networks. In ACM Intl. Workshop on Network and
Operating System Support for Digital Audio and Video, Mon-
terey, CA, June 2003.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigen-
Trust Algorithm for Reputation Management in P2P Networks. In
International World Wide Web Conference, Budapest, Hungary,
May 2003.

J. Liang, R. Kumar, Y. Xi, and K. W. Ross. Pollution in P2P File
Sharing Systems. In /JEEE INFOCOM, Miami, FL, March 2005.

LimeWire. http://www.limewire.com/.

T. Mennecke. New Breed of Corrupt Torrent Infiltrates BitTor-
rent, September 2005. http://slyck.com/news.php?story=296.

MojoNation. http://www.mojonation.net;/.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank ci-
tation ranking: Bringing order to the web, 1998. Stanford Digital
Libraries Working Paper.

J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. A Measure-
ment Study of the BitTorrent Peer-to-Peer File-Sharing System.
Technical Report PDS-2004-003, Delft University of Technol-
ogy, April 2004.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
GroupLens: An Open Architecture for Collaborative Filtering of
Netnews. In ACM Conference on Computer Supported Coopera-
tive Work, Chapel Hill, NC, October 1994.

S. Saroiu, K. P. Gummadi, and S. D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. In Multimedia Com-
puting and Networking, San Jose, CA, January 2002.

R. Thommes and M. Coates. Epidemiological Models of Peer-to-
Peer Viruses and Pollution. Technical report, McGill University,
June 2005. Department of Electrical and Computer Engineering.

V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA:
A Secure Economic Framework for P2P Resource Sharing. In
Workshop on the Economics of Peer-to-Peer Systems, Berkeley,
CA, June 2003.

K. Walsh and E. G. Sirer. Fighting Peer-to-Peer SPAM and De-
coys with Object Reputation. In Workshop on the Economics of
Peer-to-Peer Systems, Philadelphia, PA, August 2005.

L. Xiong and L. Liu. PeerTrust: Supporting Reputation-Based
Trust in Peer-to-Peer Communities. IEEE Transactions on
Knowledge and Data Engineering, Special Issue on Peer-to-Peer
Based Data Management, 16(7), July 2004.

B. Yang and H. Garcia-Molina. PPay: Micropayments for Peer-
to-Peer Systems. In ACM Conference on Computers and Com-
munications Security, Washington, DC, October 2003.

G. Zacharia, A. Moukas, and P. Maes. Collaborative Reputation
Mechanisms in Electronic Marketplaces. In Hawaii International
Conference on System Sciences, Maui, HI, January 1999.

H. Zhang, A. Goel, R. Govindan, K. Mason, and B. V. Roy.
Making Eigenvector-Based Reputation Systems Robust To Collu-
sion. In Workshop on Algorithms and Models for the Web-Graph,
Rome, Italy, October 2004.

L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A Secure
Distributed On-line Certification Authority. ACM Transactions
on Computer Systems, 20(4):329-368, 2002.



