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Abstract

Online content distribution has increasingly gained pop-
ularity among the entertainment industry and the con-
sumers alike. A key challenge in online content distribution
is a cost-efficient solution to handle demand peaks. To ad-
dress this challenge, we propose Dandelion, a system for ro-
bustly cooperative (peer-to-peer) content distribution.Dan-
delion explicitly addresses two crucial issues in coopera-
tive content distribution. First, it provides robust incentives
for clients who possess content to serve others. A client
that honestly serves other clients is rewarded with credit
that can be redeemed for future downloads at the content
server. Second, Dandelion discourages unauthorized con-
tent distribution. A client that uploads to another client is
rewarded for its service only after the server has verified
the other client’s legitimacy. Our preliminary evaluationof
a prototype system running on commodity hardware with
1 Mbps uplink and 1 Mbps downlink indicates that Dan-
delion can achieve aggregate client download throughput
three orders of magnitude higher than the one achieved by
an HTTP/FTP-like server.

1 Introduction
Content distribution via the Internet is becoming increas-
ingly popular among the industry and the consumers alike.
A survey showed that Apple’s iTunes music store sold more
music than Tower Records and Borders in the US in the
summer of 2005 [21]. A number of key content produc-
ers, (e.g. CBS, Disney, Universal), are now selling films
online [3, 4, 7].

A challenging issue for online content distribution is a
cost-effective solution to handle peak usage by promotions
or new releases. A 45-minute DVD-quality episode easily
exceeds one GB. Even if each user is provisioned with a
1 Mbps, it takes more than two hours to download 1 GB.
Overprovisioning for one additional user during peak usage
may require at least an additional 1Mbps bandwidth, which
often costs up to $100 per month [6, 15]. However, a TV

episode is commonly sold at less than two dollars. One
solution is to purchase service from a content distribution
network (CDN) such as Akamai. Yet, CDNs’ services are
costly too, and free CDNs such as Coral, CoDeen, and Cob-
Web [13, 24, 30, 36] lack a viable economic model to scale.

This work explores a cost-effective approach for han-
dling flashcrowds. We present the design and a preliminary
evaluation of Dandelion, a cooperative content distribution
system. Rather than using a third party service, a Dande-
lion server utilizes its clients’ bandwidth. During a flash
crowd event, a server redirects a request from a client to
the clients that have already downloaded the same content.
This approach is similar in spirit to previous work on co-
operative content distribution [14, 18, 22, 28, 31, 32], most
notably BitTorrent [10]. However, with the exception of
BitTorrent, the above approaches do not provide incentives
for a client to upload to other clients. BitTorrent employs
rate-based tit-for-tat incentives, but these are susceptible to
manipulation [17, 20, 29] and do not motivate clients to up-
load content after the completion of their download (i.e.,
seeding).

The primary contribution of our work is that we pro-
vide robust incentives for clients to upload to others. By
robust, we mean that the incentive mechanism does not rely
on clients being altruistic or honest. Its secondary contri-
bution is that Dandelion discourages unauthorized content
sharing. Our design gives no incentives to clients to up-
load to unauthorized clients, but provides explicit rewards
for them to upload to authorized clients, e.g., clients that
have purchased content at a server.

Dandelion’s incentive mechanism is based on a crypto-
graphic fair exchange mechanism, which uses only efficient
symmetric cryptography. A client uploads content to other
clients in exchange of virtual credit. The credit can be re-
deemed for future service by other clients, or for service by
the server itself, or other rewards. This incentive mecha-
nism discourages unauthorized content exchange, because
a client is rewarded for its service only after the server has
verified that the client has uploaded to an authorized client.

We have implemented a prototype of a Dandelion client
and server and conducted a preliminary evaluation on Plan-
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etLab [9]. We compare the throughput of a Dandelion
server with a server that runs a simple request-response pro-
tocol, such as HTTP. Our preliminary evaluation shows that
Dandelion can improve the throughput of a commodity PC
server with 1 Mbps uplink and 1 Mbps downlink bandwidth
by three orders of magnitude. However, as a trade-off for
providing robust incentives and discouraging unauthorized
content distribution, a Dandelion server is less efficient than
a BitTorrent tracker. As a result, a Dandelion system is less
scalable than BitTorrent, with respect to the number of ac-
tive clients supported by a single server/tracker.

The rest of this paper is organized as follows. Section 2
describes the design of Dandelion. Section 3 briefly dis-
cusses our implementation and its performance. Section 4
compares our work with related work. We conclude in Sec-
tion 5. In the Appendix we provide a detailed description of
our protocol and discuss its security.

2 Design
This section describes the design of Dandelion at a high-
level. In Appendix, we describe the protocol in more detail.

2.1 Overview
The premise of our design is that a low cost server may
have limited outgoing bandwidth but sufficient CPU power,
and memory to execute many short cryptographic opera-
tions and maintain TCP connection state with its clients un-
der a flash crowd event.

A Dandelion server can be used to distribute both small
and large static files, depending on the specifics of its de-
ployment. It behaves similar to a web/ftp server under nor-
mal work load, responding to clients’ requests with content.
When a Dandelion server is overloaded, it enters apeer-
servingmode. Upon receiving a request, the server redirects
the client to clients that are able to serve the request.

A Dandelion server maintains a virtual economy. It re-
wards cooperative clients that upload to others with virtual
credit to provide robust incentives. The credit is used as
“virtual money” to purchase future downloads from other
clients or from the server itself (at a high credit cost when
the server is overloaded), or used as other types of rewards.
The Dandelion server and the credit bank are logical mod-
ules and could be distributed over multiple trusted nodes to
improve scalability.

Similar to BitTorrent, a Dandelion server splits a large
file into multiple chunks, and disseminates them indepen-
dently. This allows clients to participate in uploading
chunks as soon as they receive a small portion of the file,
increasing the efficiency of the distribution pipeline. Fur-
thermore, this incentivizes clients to upload chunks to oth-
ers, as they need credit to acquire the missing ones.

Figure 1: The peer-serving protocol. The numbers on the
arrows correspond to the listed protocol messages. The
messages are sent in the order they are numbered.

2.2 Robust incentives
A key challenge in designing a credit system is to prevent
client cheating, while keeping both a server and a client’s
processing and bandwidth costs low. A dishonest client
that does not upload to others or uploads garbage may at-
tempt to claim credit at the server, and to be robust, the
server must not award credit to such cheating behavior. To
address this challenge, Dandelion employs a cryptographic
fair exchange mechanism. A Dandelion server serves as the
trusted third party mediating the exchanges of content for
credit among its clients. When a clientA uploads to a client
B, it sends encrypted content to clientB. To decrypt,B must
request keys from the server. The requests for keys serve as
the “proof” thatA has uploaded some content toB. Thus,
when the server receives a key request, it creditsA for up-
loading toB, and chargesB for the content.

A problem occurs if a malicious clientA sends invalid
content toB. B can discover that the content is invalid only
after receiving the decryption key and being charged. To
address this problem, our design includes a non-repudiable
complaint mechanism. IfA intentionally sents garbage to
B, A cannot deny it. In addition,B is prevented from falsely
claiming thatA has sent it garbage. For clarity, we describe
the complaint mechanism after we describe the normal mes-
sage exchange in a Dandelion system.

Figure 1 shows how messages are exchanged in a Dan-
delion system. We assume that each client has a password-
protected account with the server and that it establishes a
secure channel (e.g. SSL), over which it obtains shared
session keys with the server. During a flash crowd event,
the Dandelion server keeps track of the clients that are cur-
rently downloading or seeding offered files. The message
exchange proceeds as follows:
Step 1:A client (B in Figure 1) sends a request for a file to
the server.
Step 2:When the server receives the request, it returns di-
gests of the file chunks for integrity checking [10], a ran-
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dom list of other clients that can serve the file, and crypto-
graphic authorizations, namely tickets that enableB to re-
quest chunks from these clients.
Step 3:Upon receiving the server’s response,B connects to
the listed clients to request the file. We use clientA as an
example in Figure 1.
Step 4:If B’s tickets verify that the server has authorizedB
to request chunks fromA, B andA will run a chunk selection
protocol similar to that in BitTorrent [10].A reports period-
ically to B what chunks it has.B determines which chunks
it wishes to download and from which peers according to a
chunk scheduling algorithm such asrarest first.
Step 5:B sends a request for the chunk toA.
Step 6: If B’s ticket verifies,A chooses a random keyk,
and encrypts it with the session keyKSA, it shares with the
server. ClientA sends toB the chunk encrypted withk,
the encryption of the keyk, and its cryptographic commit-
ment to the encrypted chunk.A generates the commitment
by computing a message authentication code (MAC), keyed
with the shared session keyKSA, over the digest of the en-
crypted chunk and the encryption ofk
Step 7: To retrievek, B sends a decryption key request to
the server. The request contains the encryption of the keyk,
a digest of the encrypted chunk, andA’s commitment.
Step 8: Upon receivingB’s request, the server checks
whetherA’s commitment matches the one computed over
B’s digest of the encrypted chunk and the encryption of key
k, usingKSA. If the commitment verifies andB has suffi-
cient credit, the server sends the key toB. At the same time,
it rewardsA with credit and chargesB.

If A’s commitment does not verify, the server cannot de-
termine whether the discrepancy is caused by a transmission
error, or clientA or B is misbehaving. The server simply
warnsB of the discrepancy, and does not return the encryp-
tion key k. It updates neitherA’s or B’s credit. B can re-
request the chunk fromA or try another client.

If B repeatedly receives invalid commitments fromA, it
should disconnect fromA and blacklist it. Similarly, if the
server repeatedly receives decryption requests fromB with
invalid commitments from a specificA, the server knows
thatB is misbehaving becauseB should have blacklistedA.
The server will blacklistB.

Next, we explain the complaint mechanism. AfterB re-
ceives the keyk, it decrypts the chunk and validates its in-
tegrity. If the chunk is invalid,B can complain to the server,
andA cannot repudiate it. This is becauseB’s complaint
message containsA’s commitment, the digest of the en-
crypted chunk, and the encryption of keyk, all received in
the message fromA in Step 6. The server can easily validate
whetherA has sent the commitment, as the commitment is
a MAC computed with the session keyKSA shared between
the server andA. B cannot forge a valid commitment. If
the commitment fails, the server knows thatB is misbehav-

ing, since it should have abandoned the transaction in step
8. If the commitment verifies,A cannot repudiate that it has
sent the commitment toB. All the server needs to check
is whetherA has computed the commitment over a valid
chunk. To verify this, the server retrieves and encrypts the
chunk thatB complains about, using the keyk and computes
the MAC using the shared keyKSA. If this recomputed com-
mitment matchesA’s commitment, it proves thatA has sent
the valid content, andB is framingA; otherwise, it proves
thatA has sent invalid content toB. A misbehaving client
is blacklisted by the server and its peers. Requests involv-
ing the misbehaving client are no longer processed. Future
complains concerning the misbehaver are ruled against it.

2.3 Credit Management
Dandelion’s incentive mechanism creates a virtual econ-
omy that may enable a broad application scenarios. Clients
spend∆c > 0 credit units for each chunk they download
from a client and earn∆r > 0 credit units for each chunk
they upload to a client. A client can acquire a file chunk
only if its credit is greater or equal to the chunk’s cost. To
prevent collusions we set∆c = ∆r , so that two colluders can-
not increase the sum of their credit.

Dandelion’s incentive mechanism is specifically de-
signed for the case in which users maintain paid accounts
with the content provider, such as in iTunes. In this case,
a client can be rewarded sufficient initial credit to down-
load the content from the server. The content provider may
redeem a client’s credit for monetary rewards, such as dis-
counts on content prices or service membership fees, sim-
ilar to the mileage programs of airline companies. This
would motivate a client to upload to others and earn credit.

Dandelion can also be used in the case users do not per-
form monetary transactions with the content provider, e.g.,
the distribution of a free Linux Distro. In this scenario, a
content provider might not be able to provide monetary in-
centives for cooperation. We imagine that a creative con-
tent provider can use the credit system in multiple ways to
motivate cooperation. For instance, the provider may give
new clients only a portiona of the credit needed to down-
load the complete content. This initial credit enables a new
client to download a portion of the content upon joining the
Dandelion swarm. Thereafter, a client is incented to upload
to others in order to accumulate credit to be used towards
downloading the complete content.

A user may attempt to boost its credit by registering mul-
tiple Dandelion IDs and claiming to have uploaded to the
faked IDs. This will not be a problem in case the user
maintains a paid account with the provider, because the
user essentially purchases its initial credit, and the net sum
in a upload-download transaction between two IDs is zero.
However, it may pose a problem in case the user does not
pay the content provider, as each ID is given an initial credit.
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In this case, the content distributor may require during the
registration process a valid mailing address or an internal
organization identifier (such as student ID).

2.4 Discouraging Unauthorized Content dis-
tribution

If a client participates in cooperative content distribution
and is interested in its peer’s content, the client can be
incented to upload to a peer through the use of a tit-for-
tat-based incentive mechanism, regardless of whether the
peer is authorized by the content provider. On the other
hand, a Dandelion client that is not interested in an unau-
thorized peer’s content isdiscouragedfrom uploading to
that peer. This is because such client has no strong incen-
tive to upload to the unauthorized peer other than the credit
he could earn through the use of Dandelion’s cryptographic
fair-exchange protocol. However, the Dandelion server me-
diates all transactions that use the fair-exchange protocol.
Hence, the server can refrain from rewarding with credit a
client that serves unauthorized peers.

For example, selfish seeders have no incentive to facil-
itate unauthorized content distribution. Our scheme moti-
vates seeders to behave selfishly and not altruistically. That
is, seeders are reluctant to waste bandwidth to upload to
unauthorized users because they can use their bandwidth
to upload to authorized users and earn monetary rewards.
Clients are able to verify the legitimacy of requests for ser-
vice (step 4 in Section 2.2), hence they can avoid wasting
bandwidth to serve unauthorized clients. Furthermore, pre-
cisely because of this ability, clients can be held liable if
they choose to send content to unauthorized clients. These
properties discourage users from using Dandelion for ille-
gal content replication and make our solution appealing to
distributors of copyright-protected digital goods.

3 Preliminary Evaluation
We implemented a prototype of Dandelion in C under
Linux, and conducted a preliminary evaluation of its per-
formance on PlanetLab. This section describes our imple-
mentation and the results of our PlanetLab experiments.

3.1 Prototype Implementation
We implemented Dandelion’s cryptographic operations us-
ing theopensslC library and the credit management system
using the lightweight database engine of thesqlite library.

Our server implementation draws from the Flash [23]
web server’s Asymmetric Multi Process Event Driven Ar-
chitecture and the Staged Event Driven Architecture [12].
Both architectures assign thread pools to specific tasks.

When a disk read or a database operation is required by
a request, Dandelion’s main thread reads requests from the
network and dispatches them to a synchronized producer-
consumer queue served by a pool ofdisk accessor database

Dandelion Server
Dandelion Operation Size Time (ms)
Verify decryption key request 125 bytes 0.018
ticket (MAC)
Decrypt decryption key 40 bytes 0.087
Transmit decryption key response 92 bytes ∼ 1.36
Receive decryption key request 148 bytes ∼ 1.81
Query and update credit base N/A 1.08
(SQLite)
Receive chunk request 56 bytes ∼ 1.07
Transmit chunk 256 KB ∼ 2105

Dandelion Client
Dandelion Operation Size Time (ms)
Encrypt/decrypt chunk 256 KB 4.1
Encrypt/decrypt chunk 16 KB 0.35
Commit to encrypted chunk 256 KB 1.45
(hash and MAC)

Table 1: Timings of per-chunk Dandelion operations. The
server and client is rate-limited to emulate Ethernet II 1
Mbps uplink and 1 Mbps downlink.

accesshelper threads, respectively. When a helper thread
finishes its operations, it dispatches the request to another
thread pool (next stage) for subsequent processing. For
chunk transmission we use the zero-copysendfile()system
call, which is called by thedisk accessthreads. The network
operations use TCP, are asynchronous and are executed by
the thread responsible for the last stage of request process-
ing.

This design exploits parallelism and maintains good per-
formance when both small and cached files or large disk-
residing files are requested from the server itself. In addi-
tion, it does not bind the number of concurrent connections
or pending requests to the number of processes/threads that
the OS can efficiently accomodate simultaneously.

3.2 Experimental Results
We first evaluate the computational costs of a Dandelion
server. In a flash crowd event, the main task of a Dande-
lion server is to process key decryption requests and send
short responses to those requests. To process one decryp-
tion request, a server performs one HMAC operation and
one block cipher decryption on small messages. Further-
more, it performs one query and two update operations on a
credit database. Lastly, it transmits the decryption key.

In our experiments, we deployed a Dandelion system
with one server and 100 clients. The server runs on Linux
2.6.14 on a 1.7 GHZ/2 MB Pentium M CPU and 1 GB
RAM. To stress our design and emulate a typical resource-
limited server with Ethernet II 1 Mbps uplink and 1 Mbps
downlink, we rate-limited our server at the application
layer..

We let the Dandelion clients send the following two
types of requests to the server and benchmarked the client
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Figure 2: They axis shows the achievable aggregate down-
load throughput of Dandelion clients when the server re-
sponds to: a) requests for keys used to decrypt 256 KB en-
crypted chunks; b) requests for keys used to decrypt 16 KB
encrypted chunks; and c) requests for chunks. Thex axis is
the specified aggregate client request rate.

download throughput along with the processing costs. The
first type was requests for decryption keys, which emulate
the load on the server during peer-serving. The second type
was requests for file chunks directly from the server. The
file resided in memory in its entirety for the duration of the
experiment. Each client sent requests at a rate ranging from
0.001 to 10 requests/sec. As the request rate increased, the
client would send a new request prior to receiving the com-
plete response from the server. Also, as the request rate in-
creases and the server’s receiver buffers become full, clients
would not send new requests at the specified rate due to TCP
flow control. For each rate, the experiment duration was 10
minutes and the results were averaged over 10 experiments.

Table 1 shows the cost for each operation. As can be
seen, the cryptographic operations of Dandelion are highly
efficient, as only symmetric cryptography is involved. From
these results we conclude that in our experimental configu-
ration the server’s bottleneck is most likely to be its down-
load link. A Dandelion client can encrypt and decrypt a 256
KB chunk much faster than download it or transmit it at 1
Mbps.This result suggests that the client’s processing over-
head does not affect its upload or download throughput.

Figure 2 compares the case in which Dandelion clients
send decryption key requests to a server, as if they peer-
serve each other, with the case in which clients request the
file directly from the server, i.e., the HTTP/FTP-like down-
loading. The curves show that a Dandelion server running
on a commodity PC with a 1 Mbps Ethernet uplink and 1
Mbps downlink can process up to∼420 decryption key re-
quests per second, effectively serving up to∼1680 clients
that download 256 KB chunks at 64 KB/s from other clients.
They also show that with a chunk size of 256 KB, the Dan-

delion clients’ download throughput would be almost 990
times higher than the throughput yielded when the clients
request the file directly from the server. A smaller chunk
size reduces the performance gain and induces more load
at the server, as a server must process more decryption key
requests.

The cost of a complaint is higher because it involves
reading a chunk, encrypting it with the sender client’s key
and hashing the encrypted chunk. However, the server
blacklists misbehavers, thus it does not repeatedly incur the
cost of complaints sent by them.

4 Related Work
This section briefly compares our work with related work.

Swarm file downloading protocols.Dandelion is in-
spired by swarm downloading protocols such as Bittor-
rent [10] and Slurpie [28]. A key difference of our work
is its robust incentive mechanism. Slurpie does not provide
incentives for peer-serving. Although Bittorrent employs
rate-based “tit-for-tat” incentives, these do not punish free
riders [17] due to the specifics of its unchoking mechanism.
In addition, a free rider can enhance its advantage by obtain-
ing a larger than normal initial partial view of the BitTorrent
network. In this way, a peer can discover many seeders and
choose to connect to them only [20], increasing his down-
load rate. It can also increase the frequency with which it
gets optimistically unchoked by connecting to all leechers
in its large view [29]. We argue that even if piece-level tit-
for-tat [17] is employed, a large view would enable a selfish
peer to download large amount of content without needing
to reciprocate, taking advantage of the initial barter slack
that such a scheme would require.

Furthermore, as there is no robust mechanism to moti-
vate seeding in BitTorrent, the number of clients that seed
for long periods of times is very small [25]. In contrast,
credit in a Dandelion system provides robust incentives for
clients to seed files, which will improve file availability and
download completion times.

Lastly, Dandelion has the desirable feature that rational
clients have no incentives to serve unauthorized peers, as in
such case the server will not reward them. In some BitTor-
rent deployments, content access policies are enforced by
requiring password-based authentication with the tracker.
However, an unauthorized peer can join the network simply
by finding a single colluding peer that is willing to share
its swarm view with it. The unauthorized peers can then
download content from authorized peers, which have the
incentives to serve them as long as the unauthorized peer
is tit-for-tat compliant. As a result, a single authorized but
misbehaving peer can facilitate illegal content replication at
a large scale. In an upcoming BitTorrent version, access
policies are implemented by accelerating legitimate con-
tent transfers through the use of strategically placed caches,
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which can be accessed only by authorized clients [2, 5]. Our
scheme does not require third party infrastructure.

Escrow services in peer to peer networks. Horne
et al. [16] proposed an encryption-based fair-exchange
scheme for peer-to-peer file exchanges. Dandelion shares
similarities regarding motivation and the general approach
with their work, but differs in specific protocol design.
Their scheme divides and transmits a file in chunks to en-
able erasure-code-based techniques for detecting cheaters
that upload invalid content, whereas we divide files to
support efficient and incentivized peer-to-peer distribution.
Their scheme detects cheating with probabilistic guaran-
tees, whereas Dandelion deterministically detects and pun-
ishes cheaters. In addition, their scheme requires that all
chunks for a given file come from a single peer, which ren-
ders the distribution pipeline inefficient.

Fair-exchange schemes.Among the proposed solutions
for the classic cryptographic fair-exchange problem, our
scheme bears the most similarity with the one by Zhou et
al. [37]. Their scheme also encrypts the content to be ex-
changed and uses an online trusted third party (TTP) to re-
lay the decryption key. A key difference is that Zhou et
al.’s scheme uses public key cryptography for encryption
and for committing to messages, and both of the exchange
parties need to communicate with the TTP for each transac-
tion. In contrast, our scheme uses efficient symmetric key
encryption, and only one client needs to communicate with
the TTP per transaction. The technique they use to deter-
mine whether a message originates from a party is similar
to the one used by our complaint mechanism, but our work
also addresses the specifics of determining the validity of
the message.

Pairwise credit-based incentives.Swift [33] introduces
a pairwise credit-based trading mechanism (barter) for peer-
to-peer file sharing networks and examines the available
peer strategies. Scrivener [11] is also an architecture in
which peers maintain pairwise credit balances to regulate
content exchanges among each other. In contrast, a Dande-
lion server maintains a central credit bank for all clients.

Global credit-based incentives.Similar to Dandelion,
Karma [34] employs a global credit bank, with which
clients maintain accounts. It distributes the credit auditor
set of a peer among the peer’sk closest neighbors in a DHT
overlay [26]. Karma uses certified-mail-based [27] fair ex-
change of content for reception proofs, which requires both
peers to communicate with the mediating auditor set for
each exchange. Unlike Dandelion, Karma requires public
key cryptographic operations at the peer side. Karma pro-
vides probabilistic guarantees with respect to the integrity
of the credit-base. In the presence of numerous malicious
bank nodes or in a highly dynamic network, the credit-base
becomes difficult to maintain reliably.

5 Conclusion and Future Work
This paper describes a cooperative content distribution sys-
tem: Dandelion. Dandelion’s primary function is to offload
a server during a flash crowd event, effectively increasing
availability without overprovisioning. A server delegates a
client with available resources to serve other clients. We
use a cryptographic fair-exchange technique to provide ro-
bust incentives for client cooperation. The server rewards
a client that honestly serves other clients with credit. A
client can redeem its credit for further service or mone-
tary rewards. In addition, the design of Dandelion discour-
ages unauthorized content exchange. Since a server medi-
ates all fair exchanges, clients who serve unauthorized re-
quests are not rewarded, therefore it is in their best interests
not to waste their upload bandwidth to serve unauthorized
clients. A preliminary evaluation shows that Dandelion has
low processing and bandwidth costs on the server side. A
resource-limited server may support a few thousand simul-
taneous clients. We are currently fine-tuning Dandelion’s
prototype implementation on PlanetLab.
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A Appendix

A.1 Detailed Protocol Description

This section describes in detail Dandelion’s cryptographic
fair-exchange-based protocol.

A.1.1 System Model

We describe the system model under which Dandelion is de-
signed to operate. We assume three types of clients, which
we define as follows:

• Maliciousclients aim at harming the system. They misbe-
have as follows: a) they may attempt to cause other clients
to be blacklisted or charged for chunks they did not ob-
tain; b) they may attempt to perform a Denial of Service
(DoS) attack against the server or selected clients (this at-
tack would involve only protocol messages, as we consider
bandwidth or connection flooding attacks outside the scope
of this work); and c) they may upload invalid chunks aiming
at disrupting the distribution of content.

• Selfish(rational) clients share a utility function. This
function describes the cost they incur when they upload a
chunk to their peers and when they pay virtual currency
to download a chunk. It also describes the benefit they
gain when they are rewarded in virtual currency for correct
chunks they upload and when they obtain chunks they wish
to download. A selfish client aims at maximizing its util-
ity. We assume that the content provider prices the content
and the accumulated virtual currency of each peer appropri-
ately: the benefit that a selfish client gains from acquiring
virtual currency for content it uploads exceeds the cost of
utilizing its uplink to upload it.

A selfish client may consider manipulating the system
in order to maximize its utility by misbehaving as follows:
a) it may not upload chunks to a peer, yet claim credit for
them; b) it may upload garbage either on purpose or due
to communication failure, and yet claim credit; c) it may
obtain chunks from selfish clients, and yet attempt to avoid
being charged; d) it may attempt to download content from
selfish peers without having sufficient credit; and e) it may
attempt to boost its credit by colluding with other clients or
by opening multiple Dandelion accounts.

• Altruistic clients upload correct content to their peers re-
gardless of the cost they incur and they do not expect to be
rewarded.

We assume weak security of the IP network, meaning
that a malicious or a selfish client cannot interfere with the
routing and forwarding function, and cannot corrupt mes-
sages, but it can eavesdrop messages. In addition, we as-
sume that errors can occur during transmissions, resulting
in the reception of invalid content.
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A.1.2 Setting

By 〈X〉 we denote the description of an entity or object,
e.g.〈X〉 denotes a clientX’s Dandelion ID.KS is S’s master
secret key,H is a cryptographic hash function such as SHA-
1, MAC is a Message Authentication Code (e.g HMAC [8])
and〈i〉 refers to a time period. By〈i〉X we denote the〈i〉 at
client or serverX.

Due to host mobility and NATs, we do not use Internet
address (IP or IP/source-port) to associate credit and other
persistent protocol information with clients. Instead, each
user applies for a Dandelion account and is associated with
a persistent ID. The serverS matches any client with its
authentication information (client ID and password), the file
〈F〉 it currently downloads or seeds, its credit balance, and
the files it can access. The clients and the server maintain
loosely synchronized clocks.

Every clientA that wishes to join the network must es-
tablish a transport layer secure session with the serverS,
e.g. using TLS [1]. A client sends its ID and password
over the secure channel. The serverSgenerates a temporary
shared secret keyKSAwith A. KSA is efficiently computed as
KSA= H(KS,〈A〉,〈i〉). KSA is also sent over the secure chan-
nel. The server initiates re-establishment of shared keys
with the clients upon〈i〉 change to prevent attackers from:
a) inferring the key by examining the encrypted content and
the MACs used by the protocol; and b) replaying previously
sent messages that were signed usingKSA, while allowing
the reuse of message sequence numbers once the numbers
reach a high threshold.S tolerates some lag in the〈i〉 as-
sumed by a client.

The rest of the messages that are exchanged between the
server and the clients are sent over an insecure connection
(e.g. plain TCP), which must originate from the same IP as
the secure session. Similarly, all messages between clients
are sent over an insecure connection.

A.1.3 Protocol Description

To provide robust incentives for cooperation, Dandelion
employs a cryptographic fair-exchange mechanism. The
server serves as the trusted third party (TTP) mediating the
exchanges of content for credit among its clients. When a
client A uploads to a clientB, it sends encrypted content to
clientB. To decrypt,B must request the decryption key from
the server. The requests for keys serve as the “proof” that
A has uploaded some content toB. Thus, when the server
receives a key request, it creditsA for uploading toB, and
chargesB for the content.

When a clientA sends invalid content toB, B can dis-
cover that the content is invalid only after receiving the
decryption key and being charged. To address this prob-
lem, our design includes a non-repudiable complaint mech-
anism. IfA intentionally sends garbage toB, A cannot deny

it. In addition,B is prevented from falsely claiming thatA
has sent it garbage.

Our fair-exchange protocol involves only efficient sym-
metric cryptographic operations. Each clientB exchanges
only short messages with the server. Each such message
includes a sequence number and a digital signature. The
signature is computed as the MAC of the message, which
includes a sequence number, keyed with the secret key
KSB that B shares with the server. Each time a client or
the server receive a message from each other, they check
whether the sequence number succeeds the sequence
number of the previously received message and whether
the MAC-generated signature verifies. If either of the two
conditions is not satisfied, the message is discarded. The
sequence number is reset when time period〈i〉 changes.
The following description omits the sequence number and
the digital signature. Figure 1 depicts the message flow in
our system.

Step 1: The protocol starts with the clientB sending a
request for the file〈F〉 to S.

B−→ S: [file request] 〈F〉

Step 2: If B has access to〈F〉, S chooses a random short
list of clients 〈A〉list, which are currently downloading
or seeding the file. Each list entry, besides the ID of
the client, also contains the client’s inbound Internet
address. For every client in〈A〉list, S sends a ticket
TSA = MACKSA[〈A〉,〈B〉,〈F〉, ts] to B. ts is a timestamp,
and〈A〉 is a client in〈A〉list. The ticketsTSA are only valid
for a certain amount of timeT (considering clock skew
betweenA and S) and allow B to request chunks of file
〈F〉 from client A. When TSA expires andB still wishes
to download fromA, it requests a newTSA from S. As
commonly done to ensure file integrity,S also sends the
SHA-1 hashh〈c〉 = H(c) for all chunksc of the file〈F〉.

S−→ B:[file response] TSA,〈A〉list,h〈c〉list,〈F〉, ts,〈i〉S

Step 3:The clientB forwards this request to eachA∈ 〈A〉list.
B−→ A:[client file request] TSA,〈F〉, ts,〈i〉S

Step 4: If current-time≤ ts+ T and TSA is not in A’s
cache,A verifies if TSA = MACKSA[〈A〉,〈B〉,〈F〉, ts]. The
purpose of this check is to mitigate DoS attacks against
A; it allows A to filter out requests from clients that are
not authorized to retrieve the content or from clients that
became blacklisted. As long asB remains connected toA,
it periodically renews itsTSA tickets by requesting them
from S. If the verification fails,A drops this request. Also,
if 〈i〉S is greater thanA’s current epoch〈i〉A, A learns that
it should renew its key withS soon. Otherwise,A caches
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TSA and replies with the message described below, which
contains a list of all the chunksA owns,〈c〉list. In addition,
A periodically reports toB newly acquired chunks as long
as the timestampts is fresh. B also does so in separate
chunk announcementmessages.

A−→ B:[chunk announcement] 〈c〉list

Step 5: B and A determine which chunks to download
from each other according to a chunk selection policy;
BitTorrent’s locally-rarest-first is suitable for static content
dissemination, while other policies [19, 35] are more
appropriate for streaming content.A can request chunks
from B, after it requests and retrievesTSB from S. B sends a
request for the missing chunkc to A.

B−→ A:[chunk request] TSA,〈F〉,〈c〉, ts,〈i〉S

Step 6: B’s chunk requestsare served byA as long as
the timestamp is fresh, andTSA is cached orTSA verifies.
If A is altruistic, it sends the chunkc to B in plaintext
and the per-chunk transaction ends here. Otherwise,A
encryptsc using a symmetric encryption algorithmEnc,as

C = Enc
iv〈c〉
k〈c〉

(c), wherek〈c〉 is a randomly generated key that

is distinct for each chunk, and iv〈c〉 is the randomly gener-
ated encryption Initialization Vector (IV).A encrypts the
random key withKSA, ase = EncivSA

KSA
(k〈c〉, iv〈c〉). Next, A

hashes the ciphertextC asH(C). Subsequently, it computes
its commitment to the encrypted chunk and the encrypted
key as TAS = MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,e,H(C), ts] and
sends the following toB.

A−→ B: [chunk response]TAS,〈F〉,〈c〉,e,C, ts,〈i〉A

Step 7: To retrieve(k〈c〉, iv〈c〉), B needs to request it from
the server. B computes its own hash over the received
ciphertextC′ and it forwards the following toS.

B−→ S:[decryption key request] 〈A〉,〈F〉,〈c〉,e,H(C′),
ts,TAS,〈i〉A

Step 8: If timestamp ts is fresh enough, and
〈i〉A is not too much off, S checks if TAS =
MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,e,H(C′), ts], where key KSA

is a cached value or a value computed usingKS, 〈A〉, and
〈i〉A. The timestampts freshness requirement forcesB
to expedite paying for decrypting the encrypted chunks.
This fact allowsA to promply acquire credit for its service.
The ticketTAS verification may fail either becauseC′ 6= C
due to transmission error in step(6) or becauseA or B
are misbehaving. SinceS is unable to determine which
is the case, it does not punish either clients and does not
update their credit. It does not send the decryption key to

B, but it still notifiesB of the discrepancy. In this case,B
is expected to disconnect fromA and blacklist it in case
A repeatedly sends invalid messages. IfB keeps sending
invalid decryption key requests,S penalizes him. If the
verification succeeds,S checks whetherB has sufficient
credit to purchase the chunkc. It also checks again whether
B has access to the file〈F〉. If B is approved, it charges
B and rewardsA with ∆c credit units. Subsequently,S
decrypts(k′〈c〉, iv

′
〈c〉) = DecKSA(e), and sends them toB.

S−→ B: [decryption key response] 〈A〉,〈F〉,〈c〉,
(k′〈c〉, iv

′
〈c〉)

Next, we explain the complaint mechanism.

Step 9: B uses (k′〈c〉, iv
′
〈c〉) to decrypt the chunk as

c′ = Dec
iv′〈c〉
k′
〈c〉

(C). If the decryption fails or ifH(c′) 6= h〈c〉

(step (2)), B complains toS by sending the following
message.

B−→ S:[complaint] 〈A〉,〈F〉,〈c〉,TAS,e,H(C′), ts,〈i〉A

S ignores this message ifcurrent-time> ts+ T ′, where
T ′ > T. T ′−T should be greater than the time needed for
B to receive a decryption key response, decrypt the chunk
and send a complaint to the server. This condition ensures
that a misbehavingA cannot avoid having complaints ruled
against it, even ifA ensures that the time elapsed between
the momentA commits to the encrypted chunk and the mo-
ment the encrypted chunk is received byB is slightly less
thanT.

S also ignores the complaint message if a complaint
for the sameA and c is in a cache of recent com-
plaints thatS maintains for each clientB. Complaints are
evicted from this cache oncecurrent-time> ts+ T ′. If
TAS6=MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,e,H(C′), ts], S punishesB.
This is becauseShas already notifiedB in step(7) thatTAS

is invalid. If TAS verifies,S caches this complaint, recom-
putesKSA as before, decrypts(k′〈c〉, iv

′
〈c〉) = DecKSA(e) once

again, retrievesc from its storage, and encryptsc himself

using the above key and IV vector,C′′ = Enc
iv′〈c〉
k′
〈c〉

(c). If the

hash of the ciphertextH(C′′) is equal to the valueH(C′) that
B sent toS, Sdecides thatA has acted correctly andB’s com-
plaint is unjustified. Subsequently,Sdrops the complaint re-
quest and blacklistsB. It also notifiesA, which disconnects
from B and blacklists it. Otherwise, ifH(C′′) 6= H(C′), S
decides thatB was cheated byA, removesA from its set of
active clients, blacklistsA, and revokes the corresponding
credit charge onB. Similarly, B disconnects fromA and
blacklists it.

The server disconnects from a blacklisted clientE, marks
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it as blacklisted in the credit file and denies access toE if
it attempts to login. Future complaints concerning a black-
listed clientE and for whichTES verifies, are ruled against
E without further processing.

Since a verdict on a complaint can adversely affect a
client, each client needs to ensure that the commitments it
generates are correct even in the rare case of a disk read
error. Therefore, a client always verifies the read chunk
against its hash before it encrypts the chunk and generates
its commitment.

A.2 Security Analysis
We claim the following security properties of our design:

Lemma 4.1 If the serverS charges a clientB ∆c credit
units for a chunkc received from a selfish clientA, B must
have received the correctc, regardless of the actions taken
by A.

Proof 4.1 B gets charged only if the ticketTAS thatSgets in
steps(6) and(8) verifies and ifH(C) = H(C′). SinceH(C)
is a second pre-image resistant cryptographic hash thatB
computes itself onC received fromA, C =C′. Furthermore,
since the samek, iv pair is used byA to encryptc into C′

and byB to decryptC into c′, C = C′ implies thatc′ = c.

Lemma 4.2 If a selfish clientA always encrypts chunk
c anew when servicing a request and ifB gets correctc
from A, thenA is awarded∆c credit units fromS, andB is
chargedDeltac credit units fromS.

Proof 4.2 If A encryptsc using a one-time keyk〈c〉, iv〈c〉,
B seesk〈c〉, iv〈c〉 only in the encrypted forme. The only
way E can retrieve the encrypted chunk is by retrieving
the shared secret keyKSA. However, this key was trans-
mitted over the secure session betweenA and the server
S. Therefore, the only way forB to retrieve it is to get it
decrypted byS, in which caseS will log a charge against
B. The only wayB can possibly avoid this charge is by
sending a complaint, which includesTAS and H(C′) such
that. TAS = MACKSA[〈A〉,〈B〉,〈F〉,〈c〉,e,H(C′), ts], while
H(C′) 6= H(C′′) whereC′′ is computed byS in step (9).
However, since we consider this attack only against a
selfishA, theTAS value will verify only if all the values it
includes are the ones thatA sent toB, and if hashH(C′) is
correctly computed on the transferred ciphertext that isC.
However, if this is the case,S will decrypt e to the same
k〈c〉, iv〈c〉 pair thatA used, henceS’s encryptionC′′ will be
the same as theC that A computed. Consequently,H(C′)
will be equal toH(C′′), henceB is not able to reverse its
charge.

Lemma 4.3 A selfish or a malicious client cannot assume

another authorized client’sA identity and issue messages
underA, aiming at obtaining service at the expense ofA,
chargingA for service it did not obtain or causingA to be
blacklisted. In addition, it cannot issue a validTSA for an in-
valid chunk that it sends to a clientB and causeB to produce
acomplaintmessage that would result in a verdict againstA.

Proof 4.3 The only way a misbehaving client can be suc-
cessful in such attack is by obtaining the user authentication
information or the shared secret keyKSA. However user
authentication, and the transmission of the shared secret
key KSA is performed over the secure session betweenA
and the serverS.

Lemma 4.4 A malicious client cannot replay previously
sent valid requests to the server or generatedecryption
key chunk requestsor complaintsunder A’s ID, aiming
at A being charged for service it did not obtain or being
blacklisted because of invalid or duplicate complaints.

Proof 4.4 All messages exchanged between a clientA and
the server are digitally signed with the shared secret key
KSA and include sequence numbers. Both the client and the
server store the last sequence number seen by each other
and the sequence numbers are reset upon〈i〉 change. Thus,
a malicious client cannot forge the source of the request,
neither it can resent a request that has already been received.

Observation 4.5 A client cannot download chunks from a
selfish peer if it does not have sufficient credit. Since the
server mediates each exchange the credit balance is always
checked before the client retrieves the decryption key for a
chunk.

Observation 4.6 To maintain an efficient content dis-
tribution pipeline, a client needs to relay a received
chunk to its peers as soon as it receives it. However, the
chunk may be invalid due to communication errors or
due to peer misbehavior. The performance of the system
would be severely degraded if peers wasted bandwidth
to relay invalid content. To address this issue, Dande-
lion clients send a decryption key request to the server
immediately upon receiving the encrypted chunk. This
design choice enables clients to promptly retrieve the
chunk in its non-encrypted form. Thus, they can verify the
chunk’s integrity prior to uploading the chunk to their peers.

Observation 4.7 A malicious client cannot DoS attack
the server by sending invalid content to other clients or
repeatedly sending invalid complaints aiming at causing
the server to perform the relatively expensive complaint
validation. This is because it becomes blacklisted by both
the server and its peers the moment the invalid complaint
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is ruled against it. In addition, a malicious client cannot
attack the server by sending valid signed messages with
redundant valid complaints. Our protocol detects duplicate
complaints through the use of timestamps and caching of
recent complaints.

Observation 4.8 A malicious clientE can always abandon
any instance of the protocol. In such case,E does not
receive any credit, as argued in Lemmas 4.1 to 4.3, even
thoughE may have consumedA’s resources. This is a de-
nial of service attack againstA. Note that this attack would
require that the attacker expends resources proportional to
the resources of the victim, therefore it is not particularly
practical. Nevertheless, we prevent blacklisted clients or
clients that do not maintain paid accounts with the content
provider from launching such attack by havingS issue
only to authorized clients a short-lived ticketTSA. TSA is
checked for validity byA (steps 4 and 6 in Section A.1.3).
In addition,Smay charge an authorizedE for the issuance
of tickets TSA effectively deterringE from maliciously
expending bothA’s and the server’s resources.

Owing to properties 4.1, 4.2, 4.3 and 4.5, and given that
the content provider employs appropriate pricing schemes,
Dandelion ensures that selfish (rational) clients increase
their utility when they upload correct chunks and obtain
virtual currency, while misbehaving clients cannot increase
their utility. Consequently, Dandelion entices selfish clients
to upload to their peers, resulting in a Nash equilibrium of
cooperation.
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