
Taming aggressive replication in the Pangaea wide-area file system

Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik Mahalingam
Storage Systems Department, HP Labs, Palo Alto, CA, USA

{ysaito,christos,karlsson,mmallik}@hpl.hp.com

Abstract

Pangaea is a wide-area file system that supports data shar-
ing among a community of widely distributed users. It is
built on a symmetrically decentralized infrastructure that
consists of commodity computers provided by the end
users. Computers act autonomously to serve data to their
local users. When possible, they exchange data with nearby
peers to improve the system’s overall performance, avail-
ability, and network economy. This approach is realized by
aggressively creating a replica of a file whenever and wher-
ever it is accessed.

This paper presents the design, implementation, and
evaluation of the Pangaea file system. Pangaea offers ef-
ficient, randomized algorithms to manage highly dynamic
and potentially large groups of file replicas. It applies op-
timistic consistency semantics to replica contents, but it
also offers stronger guarantees when required by the users.
The evaluation demonstrates that Pangaea outperforms ex-
isting distributed file systems in large heterogeneous envi-
ronments, typical of the Internet and of large corporate in-
tranets.

1 Introduction

Pangaea is a wide-area file system that supports the daily
storage needs of a distributed community of users. It is a
platform for ad-hoc data sharing—it enables multinational
corporations, distributed groups of collaborating users, and
content management systems to exchange data efficiently
using a file system.

Pangaea builds a unified file system across a federation
of up to thousands of widely distributed computers con-
nected by dedicated or virtual private networks. We cur-
rently assume that all servers are trusted; relaxing the trust
relationship is future work. The system faces continuous
reconfiguration, with users moving, companies restructur-
ing, and computers being added or removed. Thus, Pangaea
must meet three key goals:

Speed: Hide the wide-area networking latency; file access
speed should resemble that of a local file system.

Availability and autonomy: Avoid depending on the
availability of any specific node. Pangaea must adapt
automatically to server additions, removals, failures and
network partitioning.

Network economy: Minimize the use of wide-area net-
works. Nodes are not distributed uniformly; some nodes
are in the same LAN, whereas some others are half way
across the globe. Pangaea should transfer data between
nodes in physical proximity, when possible, to reduce
latency and save network bandwidth.

We argue that a system should follow asymbiotic design
to achieve these goals in dynamic, wide-area environments.
In such a system, each server functions autonomously and
allows reads and writes to its files even when disconnected.
As more computers become available, or as the system con-
figuration changes, servers dynamically adapt and collab-
orate with each other, in a way that enhances the overall
performance and availability of the system.

Pangaea realizes symbiosis bypervasive replication. It
aggressively creates a replica of a file or directory whenever
and wherever it is accessed. There is no single “master”
replica of a file. Any replica may be read or written at any
time, and replicas exchange updates among themselves in
a peer-to-peer fashion. Pervasive replication achieves high
performance by serving data from a server close to the point
of access, high availability by letting each server contain
its working set, and network economy by transferring data
among close-by replicas. The following sections introduce
two key strategies used to implement pervasive replication.

1.1 Graph-based replica management

Pangaea’s replica management must satisfy three goals.
First, it must support a large number of replicas, to max-
imize availability. Second, it needs to manage the repli-
cas of each file independently, since it is difficult to pre-
dict file-access patterns accurately in a wide area. Third, it

needs to support dynamic addition and removal of replicas
even when some nodes are not available. Pangaea addresses
these challenges by maintaining a sparse, yet strongly con-
nected and randomized graph of replicas for each file. The
graph is used both to propagate updates and to discover
other replicas during replica addition and removal. This
design offers three important benefits:

Available and inexpensive membership management:
A replica can be added by connecting to a few live

replicas that it discovers, no matter how many other
replicas are unavailable. Since the graph is sparse,
adding or removing a replica involves only a constant
cost, regardless of the total number of replicas.

Available update distribution: Pangaea can distribute
updates to all live replicas of a file as far as its graph is
connected. The redundant and flexible nature of graphs
makes them extremely unlikely to be disconnected even
after multiple node or link failures.

Network economy: The random-graph design facilitates
the efficient use of wide-area network bandwidth, for a
system with an aggressive replication policy. Pangaea
achieves this by clustering replicas in physical proxim-
ity tightly in the graph, and by creating a spanning tree
along faster edges dynamically during update propaga-
tion.

1.2 Optimistic replica coordination

A distributed service faces two inherently conflicting chal-
lenges: high availability and strong data consistency [8,
37]. Pangaea aims at maximizing availability: at any time,
users must be able to read and write any replica and the
system must be able to create or remove replicas without
blocking.

To address this challenge, Pangaea uses two techniques
for replica management. First, it pushes updates to repli-
cas rather than invalidating them, since the former achieves
higher availability in a wide area by keeping up-to-date data
in more locations. This approach may result in manag-
ing unnecessary replicas, wasting both storage space and
networking bandwidth. To ameliorate this problem, Pan-
gaea lets each node remove inactive replicas, as discussed
in Section 4.4.

Second, Pangaea manages replica contents optimisti-
cally. It lets any node issue updates at any time, propagates
them among replicas in the background, and detects and re-
solves conflicts after they happen. Thus, Pangaea supports
only “eventual” consistency, guaranteeing that a user sees
a change made by another user in some unspecified future
time. Recent studies, however, reveal that file systems face

very little concurrent write sharing, and that users demand
consistency only within a window of minutes [31, 35]. Pan-
gaea’s actual window of inconsistency is around 5 seconds
in a wide area, as we show in Section 7.6. In addition, Pan-
gaea provides an option that synchronously pushes updates
to all replicas and gives users confirmation of their update
delivery (Section 5.3). We thus believe that Pangaea’s con-
sistency semantics are sufficient for the ad-hoc data sharing
that Pangaea targets.

Pangaea does not support applications that require strong
consistency such as open-close consistency, that use locks,
or that synchronize using directory operations (i.e., “lock
files”).

2 Related work

Traditional local-area distributed file systems do not meet
our goals of speed, availability, and network economy. Sys-
tems such as xFS [2] and Frangipani [33] rely on tight node
coordination for replica management and cannot overcome
the non-uniform networking latencies and frequent network
partitioning that are typical in wide-area networks.

Pervasive replication resembles the persistent caching
used in client-server file systems such as AFS [13],
Coda [20], and LBFS [21]. Pangaea, however, can harness
nodes to improve the system’s robustness and efficiency.
First, it provides better availability. When a server crashes,
there are always other nodes providing access to the files
it hosted. Updates can be propagated to all live replicas
even when some of the servers are unavailable. The de-
centralized nature of Pangaea also allows any node to be
removed (even permanently) transparently to users. Sec-
ond, Pangaea improves efficiency by propagating updates
between nearby nodes, rather than between a client and a
fixed server and, creating new replicas from a nearby exist-
ing replica. In this sense, Pangaea generalizes the idea of
Fluid replication [16] that utilizes surrogate Coda servers
placed in strategic (but fixed) locations to improve the per-
formance and availability of the system.

Pangaea’s replication follows an optimistic approach
similar to that of mobile data-sharing services, such as Lo-
tus Notes [15], TSAE [10], Bayou [32], and Roam [25].
These systems lack replica location management and rely
on polling, usually by humans, to discover and exchange
updates between replicas. Pangaea keeps track of repli-
cas automatically and distributes updates proactively and
transparently to all the users. Most of these systems repli-
cate at the granularity of the whole database (except Roam,
which supports subset replicas). In contrast, Pangaea’s files
and directories are replicated independently, and some of its

operations (e.g., “rename”) affect multiple files, each repli-
cated on a different set of nodes. Such operations demand
a new protocol for ensuring consistent outcome after con-
flicts, as we discuss in Section 5.2. Pangaea offers a sim-
ple conflict resolution policy similar to that of Roam, Lo-
cus [36], or Coda [18]. We chose this design over more so-
phisticated approaches (as in Bayou), because Pangaea can
make no assumptions about the semantics of file-system
operations.

FARSITE [1] and Pangaea both build a unified file sys-
tem across a federation of nodes, but they have different
objectives. FARSITE’s goal is to build a reliable service
on top of untrusted nodes using Byzantine consensus pro-
tocols, and it is designed primarily for local-area networks.
Pangaea assumes trusted servers, but it dynamically repli-
cates files at the edge to minimize the use of wide-area net-
works.

Recent peer-to-peer data sharing systems, built on top of
load-balanced, fault-tolerant distributed hash tables, share
many properties with Pangaea. Systems such as CFS [6]
and PAST [27] employ heuristics to exploit physical prox-
imity when locating data, but they do not support con-
current in-place updates of hierarchically structured data.
Pangaea, unlike these systems, provides extra machinery
for conflict detection and resolution, as we discuss in Sec-
tion 5.2. Oceanstore [17] builds a file system with strong
consistency by routing updates through a small “core” of
replicas. Pangaea, instead, allows in-place updating of any
replica without centralized coordination to maximize avail-
ability. Ivy [22] is a peer-to-peer file system that lets data be
updated, any time, anywhere, by exchanging operation logs
between replicas. Because the replicas poll remote logs fre-
quently, it supports stronger consistency than Pangaea. Its
log-based update propagation also allows for more versa-
tile conflict resolution than in Pangaea. However, because
Ivy forces each user to read the logs of all other writers, it
can only support a small file system with a small number of
writers.

A number of companies are active in the field of wide-
area collaborative data sharing, including FileFish, Scale8,
WebFS, and Xythos. They offer a uniform, seamless inter-
face for sharing files in a wide-area network, independent
of the physical locations of users and data. Some of them
provide features such as intelligent location of the cached
copy closest to the user. However, they all use a centralized
database to keep track of the location of files and replicas.
Thus, their design does not meet Pangaea’s goals of avail-
ability and autonomy.

3 Pangaea: a structural overview

This section overviews the structure of a server and the ma-
jor data structures it maintains. Pangaea’s design follows a
symmetrically distributed approach. A Pangaeaserver han-
dles file-access requests from users. We assume that a user
uses a single server during a log-in session (lasting, say,
a few hours), so that on-demand replication improves file-
access latency; the user may move between servers over
time. Each server maintains local hard disks, used to store
replicas of files and directories. Servers interact with each
other in a peer-to-peer fashion to provide a unified file-
system.

3.1 Definitions

We use the termsnode andserver interchangeably. Nodes
are automatically grouped intoregions, such that nodes
within a region have low round-trip times (RTT) between
them (<5ms in our implementation). Pangaea uses region
information to optimize replica placement and coordina-
tion.

Pangaea replicates data at the granularity of files and
treats directories as files with special contents. Thus, we
use the termfile to refer to a regular file or a directory. An
edge represents a known connection between two replicas
of a file; updates to the file flow along edges. The replicas
of a file and the edges between them comprise a strongly
connected graph. The set of replicas of a file is called the
file’s replica set.

3.2 Structure of a server

The Pangaea server is currently implemented as a user-
space NFSv3 loopback server (Figure 1). The server con-
sists of four main modules:

NFS protocol handler receives requests from applica-
tions, updates local replicas, and generates requests
for the replication engine. It is built using the SFS
toolkit [19] that provides a basic infrastructure for NFS
request parsing and event dispatching.

Replication engine accepts requests from the NFS proto-
col handler and the replication engine running on other
nodes. It creates, modifies, or removes replicas, and
forwards requests to other nodes if necessary. It is the
largest part of the Pangaea server.

Log module implements transaction-like semantics for lo-
cal disk updates via redo logging. The server logs all
the replica-update operations using this service, allow-
ing them to survive crashes.

replication
engine

User space
Kernel

Pangaea
server

I/O request
(application)

NFS client
Inter-node
communication

log

NFS protocol
handler

membership

Figure 1: The structure of the Pangaea server.

Membership module maintains the status of other nodes,
including their liveness, available disk space, the loca-
tions of root-directory replicas, the list of regions in the
system, the set of nodes in each region, and a round-trip
time (RTT) estimate between every pair of regions.
This module runs an extension of van Renesse’s gossip-
based protocol [34]. Each node periodically sends its
knowledge of nodes’ status to a random node chosen
from its live-node list; the recipient merges this list with
its own. A few fixed nodes are designated as “land-
marks” and they bootstrap newly joining nodes. The
protocol has been shown to disseminate membership in-
formation quickly with low probability of false failure
detection.
The region and RTT information is gossiped as part of
the membership information. A newly booted node ob-
tains the region information from a landmark. It then
polls a node in each existing region to determine where
it belongs or to create a new singleton region. In each re-
gion, the node with the smallest IP address elects itself
as a leader and periodically pings nodes in other regions
to measure the RTT.
This membership-tracking scheme, especially the RTT
management, is the key scalability bottleneck in
our system—its network bandwidth consumption in
a 10,000-node configuration is estimated to be 10K
bytes/second/node. We plan to use external RTT-
estimation services, such as IDMaps [9], once they be-
come widely available.

3.3 Structure of a file system

Pangaea decentralizes both the replica-set and consistency
management by maintaining a distributed graph of replicas
for each file. Figure 2 shows an example of a system with
two files. Pangaea distinguishes two types of replicas:gold
andbronze. They can both be read and written by users at
any time, and they both run an identical update-propagation
protocol. Gold replicas, however, play an additional role in
maintaining the hierarchical name space.

First, gold replicas act as starting points from which
bronze replicas are found during path-name traversal. To

�MRH�IRR

�MRH

EDFNSRLQWHU

GRZQOLQNV

JROG�UHSOLFD

EURQ]H�UHSOLFD

SHHU�HGJH

Figure 2: An example of a directory /joe and file /joe/foo .
Each replica of joe stores three pointers to the gold replicas of
foo . Each replica of foo keeps a backpointer to the parent di-
rectory. Bronze replicas are connected randomly to form strongly
connected graphs. Bronze replicas also have uni-directional links
to the gold replicas of the file, which are not shown here.

this end, the directory entry of a file lists the file’s gold
replicas. Second, gold replicas perform several tasks that
are hard to do in a completely distributed way. In particu-
lar, they are used as pivots to keep the graph connected after
a permanent node failure, and to maintain a minimum repli-
cation factor for a file. They form a clique in the file’s graph
so that they can monitor each other for these tasks. These
issues are discussed in more detail in Section 4. Currently,
Pangaea designates replicas created during initial file cre-
ation as gold and fixes their locations unless some of them
fail permanently.

Each replica stores abackpointer that indicates its loca-
tion in the file-system name space. A backpointer includes
the parent directory’s ID and the file’s name within the di-
rectory.1 It is used for two purposes: to resolve conflicting
directory operations (Section 5.2), and to keep the direc-
tory entry up-to-date when the gold replica set of the file
changes (Section 6.2).

Figure 3 shows the key attributes of a replica. The times-
tamp (ts) and the version vector (vv) [23] record the last
time the file was modified. Their use is described in more
detail in Section 5.GoldPeersare uni-directional links to
the gold replicas of the file.Peerspoint to the neighboring
(gold or bronze) replicas in the file’s graph.

4 Replica set management

In Pangaea, a replica is created when a user first accesses
the file, and it is removed when a node runs out of disk
space or finds a replica to be inactive. Because these oper-
ations are frequent, they must be carried out efficiently and

1A replica stores multiple backpointers when the file is hard-linked.
A backpointer need not remember the locations of the parent-directory
replicas, since a parent directory is always found on the same node due to
the namespace-containment property (Section 4.3).

struct Replica
fid: FileID // 96 bit globally unique file ID
ts: TimeStamp // Pair of〈physical clock, IP addr〉.
vv: VersionVector // Maps IP addr7→ TimeStamp
goldPeers: Set〈NodeID〉 // Set of IP addresses
peers: Set〈NodeID〉
backptrs: Set〈FileID, String 〉 // Pair of〈dirID, fname〉
. . .

end
struct DirEntry

fname: String
fid: FileID
downlinks: Set〈NodeID〉
ts: Timestamp

end

Figure 3: Key attributes of a replica.

without blocking, even when some nodes that store replicas
are unavailable. This section describes algorithms based on
random walks that achieve these goals.

4.1 File creation

We describe the interactions between the modules of the
system and the use of various data structures using a simple
scenario—a user on serverScreates fileF in directoryD.

For the moment, assume thatS already stores a replica
of D (if not, Screates one, using the protocol described in
Section 4.2.) First,S determines the location ofg initial
replicas ofF , which will become the gold replicas of the
file (a typical value forg is 3). One replica will reside onS.
The otherg−1 replicas are chosen at random from different
regions in the system to improve the expected availability
of the file. Second,S creates the local replica forF and
adds an entry forF in the local replica ofD. S then replies
to the client, and the client can start accessing the file.

In the background,Sdisseminates two types of updates.
It first “floods” the new directory contents to other direc-
tory replicas. It also floods the contents ofF (which is
empty, save for attributes such as permissions and owner)
to its gold-replica nodes. In practice, as we describe in Sec-
tion 5, we deploy several techniques to reduce the overhead
of flooding dramatically. As a side effect of the propaga-
tion, the replicas ofD will point to F ’s gold replicas so
that the latter can be discovered during future path-name
lookups.

4.2 Replica addition

The protocol for creating additional replicas for a file is run
when a user tries to access a file not present in her local
node. Say that a user on nodeSwants to read fileF . A read
or write request is always preceded by a directory lookup
(during theopen request) onS. Thus, to create a replica,

S must replicate the file’s parent directory. This recursive
step may continue all the way up to the root directory. The
locations of root replicas are maintained by the membership
service (Section 3.2).

Pangaea performs ashort-cut replica creation to transfer
data from a nearby existing replica. To create a replica of
F , S first discovers the file’s gold replicas in the directory
entry during the path-name lookup.S then requests the file
contents from the gold replica closest toS (sayP). P then
finds a replica closest toSamong its own graph neighbors
(sayX, which may beP itself) and forwards the request to
X, which in turn sends the contents toS. At this point,S
replies to the user and lets her start accessing the replica.
This request forwarding is performed because the directory
only knowsF ’s gold replicas, and there may be a bronze
replica closer toP than the gold ones.

The new copy must be integrated into the file’s replica
graph to be able to propagate updates to and receive updates
from other replicas. Thus, in the background,Schoosesm
existing replicas ofF , adds edges to them, and requests
them to add edges to the new replica inS. The selection of
m peers must satisfy three goals:

• Include gold replicas so that they have more choices dur-
ing future short-cut replica creation.

• Include nearby replicas so that updates can flow through
fast network links.

• Be sufficiently randomized so that, with high probabil-
ity, the crash of nodes does not catastrophically discon-
nect the file’s graph.

Pangaea satisfies all these goals simultaneously, as a
replica can have multiple edges.S chooses three types of
peers for the new replica. First,Sadds an edge to a random
gold replica, preferably one from a different region thanS,
to give that gold replica more variety of regions in its neigh-
bor set. Second, it asks a random gold replica, sayP, to pick
the replica (amongP’s immediate graph neighbors) closest
to S. Third, S asksP to choosem−2 random replicas us-
ing random walks that start fromP and perform a series of
RPC calls along graph edges. This protocol ensures that the
resulting graph ism edge- and node- connected, provided
that it wasm-connected before.

Parameterm trades off availability and performance. A
small value increases the probability of graph disconnec-
tion (i.e., the probability that a replica cannot exchange up-
dates with other replicas) after node failures. A large value
for m increases the overhead of graph maintenance and up-
date propagation by causing duplicate update delivery. We
found thatm= 4 offers a good balance in our prototype.

4.3 Name-space containment

The procedures for file creation and replica addition both
require a file’s parent directory to be present on the same
node. Pangaea, in fact, demands that for every file, all inter-
mediate directories, up to the root, are always replicated on
the same node. Thisname-space-containment requirement
yields two benefits. First, it naturally offers the availabil-
ity and autonomy benefits of island-based replication [14].
That is, it enables lookup and access to every replica even
when the server is disconnected and allows each node to
take a backup of the file system locally. We quantify these
benefits in Section 7.8. Second, it simplifies the conflict
resolution of directory operations, as we discuss in Sec-
tion 5.2.

On the other hand, this requirement increases the system-
wide storage overhead by 1.5% to 25%, compared to an
idealized scheme in which directories are stored on only
one node [28].2 We consider the overhead to be reason-
able, as users already pay many times more storage cost by
replicating files in the first place.

4.4 Bronze replica removal

This section describes the protocol for removing bronze
replicas. Gold replicas are removed only as a side effect
of a permanent node loss. We discuss the handling of per-
manent failures in Section 6.

A replica is removed for two possible reasons: because
a node has run out of disk space, or the cost of keeping
the replica outweighs its benefits. To reclaim disk space,
Pangaea uses a randomized GD-Size algorithm [24]. We
examine 50 random replicas kept in the node and calculate
their merit values using the GD-Size function that considers
both the replica’s size and the last-access time [5]. The
replica with the minimum merit is evicted, and five replicas
with the next-worst merit values are added to the candidates
examined during the next round. The algorithm is repeated
until it frees enough space on the disk.

Optionally, a server can also reclaim replicas not worth
keeping. We currently use a competitive updates algorithm
for this purpose [12]. Here, the server keeps a per-replica
counter that is incremented every time a replica receives
a remote update and is reset to zero when the replica is
read. When the counter’s value exceeds a threshold (4 in
our prototype), the server evicts the replica.

2 Due to the lack of wide-area file system traces, we analyzed the stor-
age overhead using a fresh file system with RedHat 7.3 installed. The
overhead mainly depends on the spatial locality of accesses, i.e., the de-
gree to which files in the same directory are accessed together. We expect
the overhead in practice to be much closer to 1.5% than 25%, because
spatial locality in typical file-system traces is usually high.

To remove a replica, the server sends notices to the
replica’s graph neighbors. Each neighbor, in turn, initiates a
random walk starting from a random gold replica3 and uses
the protocol described in Section 4.2 to establish a replace-
ment edge with another live replica. Starting the walk from
a live gold replica ensures that the graph remains strongly
connected. A similar protocol runs when a node detects an-
other node’s permanent death, as we describe in Section 6.

4.5 Summary

The graph-based pervasive replication algorithms described
in this section offer some fundamental benefits over tradi-
tional approaches that have a fixed set of servers manage
replica locations.

Simple and efficient recovery from failures: Graphs
are, by definition, flexible—spanning edges toany
replica makes the graph incrementally more robust and
efficient. Moreover, using just one type of edges both
to locate replicas and to propagate updates simplifies
the recovery from permanent failures and avoids any
system disruption during graph reconfiguration.

Decoupling of directories and files: Directory entries
point only to gold replicas, and the set of gold replicas is
typically stable. Thus, a file and its parent directory act
mostly independently once the file is created. Adding or
removing a bronze replica for the file does not require a
change to the directory replicas. Adding or removing a
gold or bronze replica for the directory does not require
a change to the file replicas. These are key properties
for the system’s efficiency.

5 Propagating updates

This section describes Pangaea’s solutions to three chal-
lenges posed by optimistic replication: efficient and reli-
able update propagation, handling concurrent updates, and
the lack of strong consistency guarantees.

5.1 Efficient update flooding

The basic method for propagating updates in Pangaea is
flooding along graph edges, as shown in Figure 4. When-
ever a replica is modified on a server, the server pushes the
entire file contents to all the graph neighbors, which in turn
forward the contents to their neighbors, and so on, until all
the replicas receive the new contents. This simple flooding

3The gold-replica set is kept as a part of the replica’s attributes; see
Figure 3.

r: Replica being updated.
when Update is newly issued

Log 〈r.fid, r.vv〉.
Send 〈r.fid, r.vv, r.data〉 to nodes in r.peers
Unlog 〈r.fid, r.vv〉 after all the neighbors reply.

when Update 〈fid, vv, data〉 is received from node n.
if this update has already been applied then Reply to n
else Log and apply the update.

Reply to n
Forward the update to r.peers - {n}.
Unlog after all the neighbors reply.

Figure 4: A simple flooding algorithm to distribute updates.
This code assumes that updates are issued one at a time; the han-
dling of concurrent updates is discussed in Section 5.2.

algorithm guarantees reliable update delivery as long as the
replica graph is strongly connected. The following three
sections introduce techniques for improving the efficiency
of the basic flooding algorithm.

5.1.1 Optimization 1: delta propagation

A major drawback of flooding is that it propagates the en-
tire file contents even when only one byte has been modi-
fied. Delta propagation improves the propagation efficiency
while maintaining the logical simplicity of flooding. Here,
whenever a portion of a file is changed (e.g., adding an en-
try to a directory), Pangaea propagates only a small, se-
mantic description of the change, called adelta. Deltas, in
general, must be applied in the same order to every replica
to produce the same result. We ensure this by having each
delta carry two timestamps: theold timestamp that repre-
sents the state of the replica just before the change, and the
new timestamp that shows the state of the replica after the
change [15]. A replica applies a delta only when its current
timestamp matches the delta’s old timestamp. Otherwise, it
resorts to full contents transfer, with potential conflict res-
olution as described in Section 5.2. In practice, updates are
handled almost exclusively by deltas, and full-state transfer
happens only when there are concurrent writes, or when a
node recovers from a crash.

Pangaea further reduces the size of updates by delta
merging, akin to the feature implemented in Coda [20].
For example, when a file is deleted right after it is modi-
fied (which happens often for temporary files), the server
quashes the modification if it has not yet been sent to other
replicas. Delta merging is transparent to users because it
adds no delay to propagation.

5.1.2 Optimization 2: harbingers

Flooding guarantees reliable delivery by propagating up-
dates (deltas or full contents) over multiple links at each

step of the algorithm. Thus, it consumesm times the op-
timal network bandwidth, wherem is the number of edges
per replica. Harbingers eliminate redundant update deliver-
ies.

Pangaea uses a two-phase protocol to propagate updates
that exceed a certain size (1KB). In phase one, a small mes-
sage that only contains the timestamps of the update, called
a harbinger, is flooded along graph edges. The update bod-
ies are sent, in phase two, only when requested by other
nodes. When a node receives a new harbinger, it asks the
sender of the harbinger (the immediate upstream replica in
the flooding chain) to push the update body. Simultane-
ously, it forwards the harbinger to other neighbors in the
graph. When a node receives a duplicate harbinger with-
out having received the update body, it asks its sender to
retry later. This is required because the sender of the ear-
liest harbinger may crash before sending the update body.
If a node receives a harbinger after having received the up-
date body, it tells the sender to stop sending the update. We
chose the harbinger threshold of 1KB, because we found
that delta sizes follow a bimodal distribution—one peak
around 200 bytes representing directory operations, and a
flatter plateau around 20KB representing bulk writes.4

This harbinger algorithm not only saves network usage,
but also shrinks the effective window of replica inconsis-
tency. When a user tries to read a file for which only a
harbinger has been received, she waits until the actual up-
date arrives. Since harbinger-propagation delay is indepen-
dent of the actual update size, the chance of a user seeing
stale file contents is greatly reduced.

5.1.3 Optimization 3: exploiting physical topology

Harbingers have another positive side effect. They favor the
use of fast links, because a node requests the body of an up-
date from the sender of the first harbinger it receives. How-
ever, unpredictable node or link load may reduce this bene-
fit. A simple extension to the harbinger algorithm improves
the data propagation efficiency, without requiring any coor-
dination between nodes. Before pushing (or forwarding) a
harbinger over a graph edge, a server adds a delay propor-
tional to the estimated speed of the edge (10∗RTT in our
implementation). This way, Pangaea dynamically builds
a spanning tree whose shape closely matches the physical
network topology. Figure 5 shows an example. In Sec-
tion 7.6, we show that this technique drastically reduces
the use of wide-area networks when updating shared files.

4Pangaea batches NFS write requests and flushes data to disk and other
replicas only after a “commit” request [4]. Thus, the size of an update can
grow larger than the typical “write” request size of 8KB.

A

D

B

FC

E

A

D

B

FC

E

A

D

FC

E

B
A

D

FC

E

B

(1) (2) (3) (4)

Figure 5: An example of update propagation for a file with six
replicas, A to F. Thick edges represent fast links. (1) An update
is issued at A. (2) A sends a harbinger via the fat edge to C. C
forwards the harbinger to D and F quickly. (3) D forwards the
harbinger to E. After some time, A sends the harbinger to B, and a
spanning tree is formed. Links not in the tree are used as backups
when some of the tree links fail. (4) The update’s body is pushed
along the tree edges. In practice, steps 2-4 proceed in parallel.

5.2 Conflict resolution

With optimistic replication, concurrent updates are in-
evitable, although rare [35, 31]. We use a combination of
version vectors and the last-writer-wins rule to resolve con-
flicts.

First, recall that when delta timestamps mismatch,
servers revert to full-state transfer. We then use version vec-
tors [23] to separate true conflicts from other causes (e.g.,
missing updates) that can be fixed simply by overwriting
the replica. This simplifies conflict resolution.

For conflicts on the contents of a regular file, we cur-
rently offer users two options. The first is the “last-writer-
wins” rule using update timestamps (attributets in Fig-
ure 3). In this case, the clocks of servers should be loosely
synchronized, e.g., using NTP, to respect the users’ intuitive
sense of update ordering. The second option is to concate-
nate two versions in the file and let the user fix the conflict
manually. Other options, such as application-specific re-
solvers [36, 18, 32], are certainly possible, but we have not
implemented them yet.

Conflicts regarding file attributes or directory entries are
more difficult to handle. They fall into two categories. The
first is a conflict between two directory-update operations;
for example, Alice does “mv /foo /alice/foo ” and
Bob does “mv /foo /bob/foo ” concurrently. In the
end, we want one of the updates to take effect, but not both.
The second category is a conflict between “rmdir” and
any other operation; for example, Alice does “mv /foo
/alice/foo ” and Bob does “rmdir /alice ”. These
problems are difficult to handle, because files may be repli-
cated on different sets of nodes, and a node might receive
only one of the conflicting updates and fail to detect the
conflict in the first place.

We only outline our solution here, as it is fully de-

scribed in [28]. Our principle is always to let the child file
(“ foo ” in our example), rather than its parent (“alice ”
or “bob ”), dictate the outcome of the conflict resolution
using the “last-writer-wins” rule. We thus let the file’s
backpointer (Section 3.3)authoritatively define the file’s
location in the file-system namespace. We implement di-
rectory operations, such as “mv” and “rm”, as a change to
the file’s backpointer(s). When a replica receives a change
to its backpointer, it also reflects the change to its parents
by creating, deleting, or modifying the corresponding en-
tries.5 The parent directory will, in turn, flood the change
to its replicas. In practice, we randomly delay the directory-
entry patching and subsequent flooding, because there is a
good chance that other replicas of the file will do the same.
Figure 6 illustrates how Pangaea resolves the first conflict
scenario. The same policy is used to resolve the mv-rmdir
conflict: when a replica detects the absence of the direc-
tory entry corresponding to its backpointer, it re-creates the
entry, which potentially involves re-creating the directory
itself and the ancestor directories recursively, all the way to
the root.

A directory in Pangaea is, in effect, merely a copy of the
backpointers of its children. Thus, resolving conflicts on di-
rectory contents is done by applying the “last-writer-wins”
rule to individual entries. If a file is to be removed from a
directory, the directory still keeps the entry but marks it as
“dead” (i.e., it acts as a “death certificate” [7]), so that we
can detect when a stale change to the entry arrives in the
future.

5.3 Controlling replica divergence

The protocols described so far do not provide hard guar-
antees for the degree of replica divergence—consistency is
achieved only eventually.

To alleviate this problem, Pangaea introduces an option,
called the “red button”, to provide users confirmation of up-
date delivery. The red button, when pressed for a particular
file, sends harbingers for any pending updates to neighbor-
ing replicas. These harbingers (and corresponding updates)
circulate among replicas as described in Section 5.1.2. A
replica, however, does not acknowledge a harbinger until
all the graph neighbors to which it forwarded the harbinger
acknowledge it or time out (to avoid deadlocking, a replica
replies immediately when it receives the same harbinger
twice). The user who pressed the red button waits until
the operation is fully acknowledged or some replicas time
out, in which case the user is presented with the list of un-
available replicas.

5 The replica can always find a replica of the parent directory in the
same node, because of the name-space-containment property.

50: ts=2, d={[51, foo, 4], [52, alice, 5], [53, bob, 6]}
51: bp=[50, foo], ts=4
52: bp=[50, alice], ts=5, d={}
53: bp=[50, bob], ts=6, d={}

% mv foo /alice/foo

50: ts=8, d={[51, *foo, 8],
 [52, alice, 5],
 [53, bob, 6]}

51: bp=[52, foo], ts=8
52: bp=[50,alice], ts=8,

 d={[51, foo, 8]}
53: bp=[50,bob],ts=6,d={}

50: ts=9, d={[51, *foo, 9],
 [52, alice, 5],
 [53, bob, 6]}

51: bp=[53, foo], ts=9
52: bp=[50,alice],ts=5,d={}
53: bp=[50,bob], ts=9,

 d={[51, foo, 9]}

50: ts=9, d={[51, *foo, 9], [52, alice, 5], [53, bob, 6]}
51: bp=[53, foo], ts=9
52: bp=[50,alice], ts=10, d={[51,*foo, 8]}
53: bp=[50,bob], ts=9, d=[{51,foo, 9}]

% mv foo /bob/foo

Update sent from bob to alice.

(1)

(2) (2’)

(3)

Figure 6: Example of conflict resolution involving four files,
“/” (FileID=50), “/foo” (FileID=51), “/alice/” (FileID=52), and
“/bob/” (FileID=53). “ts=2” shows the replica’s timestamp.
“bp=[50,foo]” shows that the backpointer of the replica indi-
cates that the file has the name “foo” in the directory 50 (“/”).
“d={[51,foo,4]}” means that the directory contains one entry, a
file “foo” with ID of 51 and timestamp of 4. Bold texts indicate
changes from the previous step. Entries marked “*foo” are death
certificates. (1) Two sites initially store the same contents. (2)
Alice does “mv /foo /alice/foo”. (2’) Bob concurrently does “mv
/foo /bob/foo” on another node. Because Bob’s update has a newer
timestamp (ts=9) than Alice’s (ts=8), we want Bob’s to win over
Alice’s. (3) When Alice’s node receives the update from Bob’s,
the replica of file 51 will notice that its backpointer has changed
from [52, foo] to [53, foo]. This change triggers the replica to
delete the entry from /alice and add the entry to /bob .

This option gives the user confirmation that her updates
have been delivered to remote nodes and allows her to take
actions contingent upon stable delivery, such as emailing
her colleagues about the new contents. The red button,
however, still does not guarantee a single-copy serializabil-
ity, as it cannot prevent two users from changing the same
file simultaneously.

6 Failure recovery

Failure recovery in Pangaea is simplified due to three prop-
erties: 1) the randomized nature of replica graphs that toler-
ate operation disruptions; 2) the idempotency of update op-
erations; including NFS requests; and 3) the use of a unified
logging module that allows any operation to be re-started.

We distinguish two types of failures: temporary fail-
ures and permanent failures. They are currently distin-
guished simply by their duration—a crash becomes perma-
nent when a node is suspected to have failed continuously
for more than two weeks. Given that the vast majority of
failures are temporary [11, 3], we set two different goals.
For temporary failures, we try to reduce the recovery cost.

For permanent failures, we try to clean all data structures
associated with the failed node so that the system runs as if
the node had never existed in the first place.

6.1 Recovering from temporary failures

Temporary failures are handled by retrying. A node persis-
tently logs any outstanding remote-operation requests, such
as contents update, random walk, or edge addition. A node
retries logged updates upon reboot or after it detects another
node’s recovery. This recovery logic may sometimes cre-
ate uni-directional edges or more edges than desired, but
it maintains the most important invariant, that the graphs
arem-connected and that all replicas are reachable in the
hierarchical name space.

Pangaea reduces the logging overhead during contents-
update flooding, by logging only the ID of the modified file
and keeping deltas only in memory. To reduce the memory
footprint further, when a node finds out that deltas to an
unresponsive node are piling up, the sender discards the
deltas and falls back on full-state transfer.

6.2 Recovering from permanent failures

Permanent failures are handled by a garbage collection
(GC) module. The GC module periodically scans local
disks and discovers replicas that have edges to permanently
failed nodes. When the GC module finds an edge to a failed
bronze replica, it replaces the edge by performing a random
walk starting from a gold replica (Section 4.4).

Recovering from a permanent loss of a gold replica is
more complex. When a gold replica, sayP, detects a per-
manent loss of another gold replica,P creates a new gold
replica on a live node chosen using the criteria described
in Section 4.1. Because gold replicas form a clique (Sec-
tion 3.3),P can always detect such a loss. This choice is
flooded toall the replicas of the file, using the protocol de-
scribed in Section 5, to let them update their uni-directional
links to the gold replicas. Simultaneously,P updates the
local replica of the parent directory(ies), found in its back-
pointer(s), to reflectP’s new gold-replica set. This change
is flooded to other replicas of the directories. Rarely, when
the system is in transient state, multiple gold replicas may
initiate this protocol simultaneously. Such a situation is
resolved using the last-writer-wins policy, as described in
Section 5.2.

Recovering from a permanent node loss is an inherently
expensive procedure, because data stored on the failed node
must eventually be re-created somewhere else. The prob-
lem is exacerbated in Pangaea, because it does not have
a central authority to manage the locations of replicas—

all surviving nodes must scan their own disks to discover
replicas that require recovery. To lessen the impact, the
GC module tries to discover as many replicas that needs
recovery as possible with a single disk scan. We set the
default GC interval to be every three nights, which reduces
the scanning overhead dramatically while still offering the
expected file availability in the order of six-nines, assum-
ing three gold replicas per file and a mean server lifetime
of 290 days [3].

7 System evaluation

This section evaluates the design and implementation of
Pangaea. First, we investigate the baseline performance and
overheads of Pangaea and show that it performs competi-
tively with other distributed file systems, even in a LAN.
Further, we measure the latency, network economy, and
availability of Pangaea in a wide-area networking environ-
ment in the following ways:

• We study the latency of Pangaea using two workloads: a
personal workload (Andrew benchmark) and a BBS-like
workload involving extensive data sharing. For the per-
sonal workload, we show that the user sees only local ac-
cess latency on a node connected to a slow network and
that roaming users can benefit by fetching their personal
data from nearby sources. Using the second workload,
we show that as a file is shared by more users, Pangaea
progressively lowers the access latency by transferring
data between nearby clients.

• We demonstrate network economy by studying how
updates are propagated for widely shared files. We
show that Pangaea transfers data predominantly over
fast links.

• To demonstrate the effect of pervasive replication on the
availability of the system, we analyze traces from a file
server and show that Pangaea disturbs users far less than
traditional replication policies.

7.1 Prototype implementation

We have implemented Pangaea as a user-space NFS (ver-
sion 3) server using the SFS toolkit [19]. Our prototype im-
plements all the features described in the paper, except that
support for recovery from permanent failures (Section 6)
is still fragmentary. Pangaea currently consists of 30,000
lines of C++ code.

A Pangaea server maintains three types of files on the
local file system: data files, the metadata file, and the
intention-log file. A data file is created for each replica

Type # CPU Disk Mem
A 2 730MHz Quantum Atlas 9WLS 256MB
B 3 1.8GHz Quantum Atlas TW367L 512MB
C 4 400MHz Seagate Cheetah 39236LW 256MB

Table 1: The type and number of PCs used in the experiments.
All the CPUs are versions of Pentiums.

of a file or directory. The node-wide metadata file keeps
the extended attributes of all replicas stored on the server,
including graph edges and version vectors. Data files for
directories and the metadata file are both implemented us-
ing the Berkeley DB library [30] that maintains a hash table
in a file. The intention-log file is also implemented using
the Berkeley DB to record update operations that must sur-
vive a node crash. All the Berkeley DB files are managed
using its “environments” feature that supports transactions
through low-level logging. This architecture allows meta-
data changes to multiple files to be flushed with a sequential
write to the low-level log.

7.2 Experimental settings

We compare Pangaea to Linux’s in-kernel NFS version 3
server and Coda, all running on Linux-2.4.18, with ext3 as
the native file system.

We let each Pangaea server serve only clients on the same
node. Both Pangaea and NFS flush buffers synchronously
to disk before replying to a client, as required by the NFS
specifications [4]. Coda supports two main modes of op-
eration: strongly connected mode (denotedcoda-s here-
after) that provides open-close semantics, and weakly con-
nected mode (denotedcoda-w hereafter) that improves the
response-time of write operations by asynchronously trick-
ling updates to the server. We mainly evaluate coda-w,
since its semantics are closer to Pangaea’s.

Table 1 shows the machines we used for the evaluation.
All the machines are physically connected by a 100Mb/s
Ethernet. Disks on all the machines are large enough
that replicas never had to be purged in either Pangaea or
Coda. For NFS and Coda, we configured a single server
on a type-A machine. Other machines are used as clients.
For Pangaea, all machines are used as servers and appli-
cations access files from their local servers. For CPU-
intensive workloads (i.e., Andrew), we used a type-A ma-
chine for all the experiments. The other experiments are
completely network-bound, and thus they are insensitive to
CPU speeds.

For our wide-area experiments, we built a simulated
WAN to evaluate Pangaea reliably in a variety of network-
ing conditions. We routed packets to a type-B FreeBSD
node (not included in the table) running Dummynet [26] to

add artificial delays and bandwidth restrictions. This router
node was fast enough never to become a bottleneck in any
of our experiments.

7.3 Baseline performance in a LAN

This section evaluates Pangaea’s performance in a LAN us-
ing a sequential workload without data sharing. While such
an environment is not Pangaea’s main target, we conducted
this study to test Pangaea’s ability to serve people’s daily
storage needs and to understand the system’s behavior in
an idealized situation.

We created a variation of the Andrew benchmark6 that
simulates a single-person, engineering-oriented workload.
It has the same mix of operations as the original Andrew
benchmark [13], but the volume of the data is expanded
twenty-fold to allow for accurate measurements on modern
hardware. This benchmark, denotedAndrew-Tcl hereafter,
consists of five stages: (1)mkdir: creating 200 directories,
(2) copy: copying the Tcl-8.4 source files from one direc-
tory to another, (3)stat : doing “ls -l” on the source files,
(4) grep: doing “du” and “grep” on the source files, and (5)
compile: compiling the source code. We averaged results
from four runs per system, with 95% confidence interval
below 3% for all the numbers presented.

Table 2 shows the time to complete the benchmark.
Throughout the evaluation, labelpang-N stands for a Pan-
gaea system withN (gold) replicas per file. Pangaea’s
performance is comparable to NFS. This is as expected,
because both systems perform about the same amount of
buffer flushing, which is the main source of overhead. Pan-
gaea is substantially slower only inmkdir . This is because
Pangaea must create a Berkeley DB file for each new direc-
tory, which is a relatively expensive operation. Pangaea’s
performance is mostly independent of a file’s replication
factor, thanks to optimistic replication, where most of the
replication processing happens in the background.

Coda’s weakly connected mode (coda-w) is very fast.
This is due to implementation differences: whereas Pan-
gaea and NFS flush buffers to disk after every update oper-
ation, Coda avoids that by intercepting low-level file-access
(VFS) requests using a small in-kernel module.

Figure 7 shows the network bandwidth used during the
benchmark. “Overhead” is defined to be harbingers and
update messages that turn out to be duplicates.Pang-1
does not involve any network activity since it stores files
only on the local server. Numbers forpang-3 and-4 show
the effect of Pangaea’s harbinger algorithm in conserving
network-bandwidth usage. In this benchmark, because all

6This benchmark is available fromhttp://www.hpl.hp.com/
personal/ysaito .

pang-1
pang-2

pang-3
pang-4

coda-s
coda-w nfs

0
25
50
75

100

M
B

Overhead
Received
Sent

0%

1.
12

%

1.
97

%

Figure 7: Network bandwidth consumed during the Andrew
benchmark. The “overhead” bars show bytes consumed by
harbingers and duplicate updates. The numbers above the bars
show the percentage of overhead.

replicas are gold and they form a clique, Pangaea would
have consumed 4 to 9 times the bandwidth ofpang-2 were
it not for harbingers. Instead, its network usage is near-
optimal, with less than 2% of the bandwidth wasted.

Table 3 shows network bandwidth consumption for com-
mon file-system update operations. Operations such as cre-
ating a file or writing one byte show a high percentage of
overhead, since they are sent directly without harbingers,
but they have only a minor impact on the overall wasted
bandwidth since their size is small. On the other hand, bulk
writes, which make up the majority of the overall traffic,
incur almost no overhead.

pang-1
pang-2

pang-3
pang-4 nfs

coda-w
0

120

240

360

480

S
ec

on
ds

compile
grep
stat
copy
mkdir

0ms R
TT, 100Mb/s

10ms R
TT, 100Mb/s

100ms R
TT, 5Mb/s

300ms R
TT, 1Mb/s

Figure 8: Andrew-Tcl benchmark results on a node with a slow
network link. The labels next to the bars indicate the link speeds.
For Pangaea, these are the links between any two servers; for NFS
and Coda, they are the links between clients and server. NFS took
1939 seconds in a 5Mb/s network, and it did not finish after two
hours in a 1Mb/s network.

7.4 Performance of personal workload in
WANs

We ran the Andrew-Tcl benchmark to study the perfor-
mance of the systems in WANs for a personal workload.
Since this workload involves no data sharing, the elapsed
time depends (if at all) only on the latency and capacity of
the link between the client and the server. Figure 8 shows
the time needed to complete the benchmark. Pangaea and

http://www.hpl.hp.com/personal/ysaito
http://www.hpl.hp.com/personal/ysaito

pang-1 pang-2 pang-3 pang-4 NFS Coda-s Coda-w ext3
mkdir 2.04 2.04 2.18 2.28 0.316 2.25 0.047 0.021
copy 3.40 3.79 3.85 3.90 3.50 201.0 0.85 0.264
stat 0.91 0.90 0.90 0.91 0.87 0.86 0.86 0.162
grep 2.09 2.11 2.13 2.13 2.20 1.22 1.20 0.925
compile 74.4 75.3 75.8 75.9 77.2 90.2 62.1 61.5
Total 82.84 84.14 84.86 85.12 84.08 295.5 65.05 62.87

Table 2: Andrew-Tcl benchmark results in a LAN environment. Numbers are in seconds. Label pang-N shows Pangaea’s perfor-
mance when it creates N replicas for each new file. Ext3 is Linux’s native (local) file system.

pang-1 pang-2 pang-3 pang-4 NFS coda-w coda-s
Bytes Bytes Overhead Bytes Overhead Bytes Overhead Bytes Bytes Bytes

create 0 248 0% 1.29K 60% 2.61K 68% 503 1.46K 1.96K
write 1B 0 323 0% 854 61% 2.01K 68% 667 944 935
write 50KB 0 52.04K 0% 104.98K 1.49% 157.44K 1.52% 53.21K 55.56K 82.13K
write 25MB 0 26.22M 0% 52.44M 0.01% 78.67M 0.02% 26.76M 1.56M 38.75M

Table 3: Network bandwidth consumption for common file-system operations. Shows the total number of bytes transmitted between
all the nodes for each operation. “Overhead” shows the percentage of the bandwidth used by harbingers and duplicate updates.

Coda totally hide the network latency, because the bench-
mark is designed so that it reads all the source data from
the local disk, and the two systems can propagate updates
to other nodes in the background. On the other hand, the
performance of NFS degrades severely across slow links.

7.5 Roaming

Roaming, i.e., a single user moving between different
nodes, is an important use of distributed file systems. We
expect Pangaea to perform well in non-uniform networks
in which nodes are connected with networks of different
speeds. We simulated roaming using three nodes:S, which
stores the files initially and is the server in the case of
Coda, and two type-A nodes,C1 andC2. We first run the
Andrew-Tcl benchmark to completion on nodeC1, delete
the *.o files, and then re-run only the compilation stage
of the benchmark on nodeC2. We vary two parameters:
the link speed betweenC1 andC2, and the link speed be-
tween them andS. As seen from Figure 8, the performance
depends, if at all, only on these two parameters.

Figure 9 shows the results. It shows that when the net-
work is uniform, i.e., when the nodes are placed either
all close by or all far apart, Pangaea and Coda perform
comparably. However, in non-uniform networks, Pangaea
achieves better performance than Coda by transferring data
between nearby nodes. In contrast, Coda clients always
fetch data from the server. (Pangaea actually performs
slightly better in uniformly slow networks. We surmise
that the reason is that Pangaea uses TCP for data transfer,
whereas Coda uses its own UDP-based protocol.)

 1
00

M
b/

s
+1

00
M

b/
s

 5
M

b/
s

+5
M

b/
s

 1
M

b/
s

+1
M

b/
s

 1
00

M
b/

s
+5

M
b/

s
 1

00
M

b/
s

+1
M

b/
s

0

60

120

180
S

ec
on

ds
pang
coda-w

S

C1 C2(a)

(b) (b)

Figure 9: The result of recompiling the Tcl source code.
100Mb/s + 1Mb/s, for example, means that the link between the
two client nodes (link (a) in the right-side picture) is 100Mb/s, and
the link between the benchmark client and the server (link (b)) is
1Mb/s. The speed of other links is irrelevant in this experiment.

7.6 Data sharing in non-uniform environ-
ments

The workload characteristics of wide-area collaboration
systems are not well known. We thus created a synthetic
benchmark modeled after a bulletin-board system. In this
benchmark, articles (files) are continuously posted or up-
dated from nodes chosen uniformly at random; other ran-
domly chosen nodes (i.e., users) fetch new articles not yet
read. A file system’s performance is measured by two met-
rics: the mean latency of reading a file never accessed be-
fore by the server, and the wide-area network bandwidth
consumption for files that are updated. These two numbers
depend, if at all, only on the file size, the number of exist-
ing replicas (since Pangaea can perform short-cut creation),
and the order in which these replicas are created (since it
affects the shape of the graph). We choose an article size

6

6

6

:LAN

:10ms RTT, 100Mb/s

:100ms RTT, 5Mb/s

3 3

3

:300ms RTT, 1Mb/s

9

:MAN

Figure 10: Simulated network configurations modeled after our
corporate network. The gray circle represents the SF bay area
metropolitan-area network (MAN), the upper bubble represents
Bristol (UK), and the other bubbles represent India, Israel, and
Japan. The number in a circle shows the number of servers run-
ning in the LAN.

of 50KB, a size typical in Usenet [29]. We try to aver-
age out the final parameter by creating and reading about
1000 random files for each sample point and computing the
mean. We run both article posters and readers at a constant
speed (≈5 articles posted or read/second), because our per-
formance metrics are independent of request inter-arrival
time.

In this benchmark, we run multiple servers in a single
(physical) node to build a configuration with a realistic size.
To avoid overloading the CPU or the disk, we choose to run
six virtual servers on a type-B machine (Table 1), and three
virtual servers on each of other machines, with the total
of 36 servers on 9 physical nodes. Figure 10 shows the
simulated geographical distribution of nodes, modeled after
HP’s corporate network. For the same logistical reasons,
instead of Coda, we compare three versions of Pangaea:

pang : Pangaea with three gold replicas per new file.

hub : This configuration centralizes replica management
by creating, for each file, one gold replica on a server
chosen from available servers uniformly at random.
Bronze replicas connect only to the gold replica. Up-
dates can still be issued at any replica, but they are all
routed through the gold replica. This roughly corre-
sponds to Coda.

random : This configuration creates a graph by using sim-
ple random walks without considering either gold repli-
cas or network proximity. It is chosen to test the effect
of Pangaea’s graph-construction policy.

We expect Pangaea’s access latency to be reduced as
more replicas are added, since that increases the chance
of file contents being transferred to a new replica from a
nearby existing replica. Figure 11 confirms this prediction.
In contrast, thehub configuration shows no speedup no
matter how many replicas of a file exist, because it always
fetches data from the central replica.

Figure 12 shows the network bandwidth consump-
tion during file updates. Although all the systems con-
sume the same total amount of traffic per update (i.e.,

0 10 20 30

of replicas

0.0

0.25

0.5

0.75

M
ea

n
ac

ce
ss

la
te

nc
y

pe
r

fil
e

(s
)

Hub
Random
Pangaea

Figure 11: The average time needed to read a new file in a col-
laborative environment. The X axis shows the number of existing
replicas of a file. The Y axis shows the mean latency to access a
file on a node that does not yet store a replica of the file.

4 14 24 34

of replicas

0

20

40

60

80

100

W
A

N
 tr

an
sf

er
 %

Hub (WAN)
Random (WAN)
Pang (WAN)

Figure 12: Wide-area network bandwidth usage during file
updates. The Y axis shows the percentage of traffic routed
through the indicated networks. “WAN+MAN” shows the traf-
fic that flowed through non-LAN (i.e., those with ≥10ms RTT),
whereas “WAN” shows the traffic that flowed through networks
with ≥180ms RTT (see also Figure 10).

(#-of-replicas− 1) ∗ filesize), Pangaea uses far less wide-
area network traffic since it transfers data preferentially
along fast links using dynamic spanning-tree construction
(Section 5.1.3). This trend becomes accentuated as more
replicas are created.

Figure 13 shows the time thepang configuration took
to propagate updates to replicas of files during the same ex-
periment. The “max” lines show large fluctuations, because
updates must travel over 300ms RTT links multiple times
using TCP. Both numbers are independent of the number of
replicas, because (given a specific network configuration)
the propagation delay depends only on the graph diameter,
which is three, in this configuration. We believe that 4 sec-
onds average/15 seconds maximum delay for propagating
50KB of contents over 300ms, 1Mb/s links is reasonable.
In fact, most of the time is spent in waiting when construct-
ing a spanning tree (Section 5.1.3); cutting the delay param-
eter would shrink the propagation latency, but potentially
would worsen the network bandwidth usage.

4 14 24 34

replicas

2

6

10

14

pr
op

ag
at

io
n

la
te

nc
y(

s)

delta (max)
harbinger (max)
delta (mean)
harbinger (mean)

Figure 13: The time needed to propagate updates to all replicas.
The dashed lines show the time needed to distribute harbingers to
replicas. They represent the window of inconsistency; i.e., time
before which users may observe old contents. The solid lines rep-
resent the time needed to distribute actual updates. They represent
the number of seconds users wait before seeing the new contents.
The “mean” lines show the mean time needed for an update is-
sued at one replica to arrive at all replicas, for a file with a specific
number of replicas. The “max” lines show the maximum time
observed for an update to arrive at all replicas of the file.

7.7 Performance and network economy at a
large scale

The previous section demonstrated Pangaea’s ability to
fetch data from a nearby source and distribute updates
through fast links, yet only at a small scale. This sec-
tion investigates whether these benefits still hold at a truly
large scale, by using a discrete event simulator that runs
Pangaea’s graph-maintenance and update-distribution algo-
rithms. We extracted performance parameters from the real
testbed we used in the previous section, and ran essentially
the same workload as before. We test two network con-
figurations. The first configuration, calledHP, is the same
as Figure 10, but the number of nodes in each LAN is in-
creased eighty-fold, to a total of 3000 nodes. The second
configuration, calledU, keeps the size of each LAN at six
nodes, but it increases the number of regions to 500 and
connects regions using 200ms RTT, 5Mb/s links.

Figures 14 and 15 show average file-read latency and
network bandwidth usage in these configurations. These
figures show the same trend as before, but the differences
between the configurations are more pronounced. In partic-
ular, in theHP configuration, Pangaea propagates updates
almost entirely using local-area network for popular files,
since it crosses over wide-area links only a fixed number of
times, regardless of the number of replicas. In theU config-
uration, Pangaea still saves bandwidth, more visibly when
many replicas exist. The systems cannot improve read la-
tency much inU, because most of the accesses are forced to
go over wide area links, but Pangaea still shows improve-
ment with many replicas.

5 10 30 10
0

30
0

10
00

30
00

of replicas

0.0

0.5

1.0

1.5

M
ea

n
ac

ce
ss

la
te

nc
y

pe
r

fil
e

(s
)

Central U
Random U
Pang U
Central HP
Random HP
Pang HP

Figure 14: File-reading latency in a simulated 3000-node sys-
tem. The meaning of the numbers is the same as in Figure 11.

5 10 30 10
0

30
0

10
00

30
00

of replicas

0

20

40

60

80

100

W
A

N
 tr

an
sf

er
 %

Central U
Random U
Pang U
Central HP
Random HP
Pang HP

Figure 15: Wide-area network bandwidth usage during file up-
dates in simulated 3000-node systems. The meaning of the num-
bers is the same as in Figure 12.

7.8 Availability analysis

This section studies the effects of pervasive replication, es-
pecially name-space containment, on the system’s avail-
ability. A Pangaea server replicates not just replicas ac-
cessed directly by the users, but also all the intermediate di-
rectories needed to look up those replicas. Thus, we expect
Pangaea to disrupt users less than traditional approaches
that replicate files (or directories) on a fixed number of
nodes.

We perform trace-based analysis to verify this predic-
tion. Two types of configurations are compared: Pangaea
with one to three gold replicas per file, and a system that
replicates the entire file system contents on one to four
nodes. Our trace was collected on our departmental file
server, and it contains 24 users and 116M total accesses to
566K files [31]. To simulate a wide-area workload from
this single-node trace, we assume that each user is on a dif-
ferent node; thus, all the simulated configurations contain
24 nodes.

For each configuration, we start from an empty file sys-
tem and feed the first half of the trace to warm the system
up. We then artificially introduce remote node crashes or
wide-area link failures. To simulate the former situation,

1 2 3 4 5 6 7
0.0001
0.001
0.01
0.1
1.0

10.0
100.0

F
ai

lu
re

 %

20212223

pang-1 (1)
pang-2 (1.65)
pang-3 (2.3)
fixed-1 (0.66)
fixed-2 (1.32)
fixed-3 (1.96)
fixed-4 (2.62)

of failures

Figure 16: Availability analysis using a file-system trace; the
users of a failed node move to a functioning node. The numbers
in parentheses show the overall storage consumption, normalized
to pang-1.

we crash 1 to 7 random nodes and redirect accesses by the
user on a failed node to another random node. To simulate
link failures, in which one to four nodes are isolated from
the rest, we crash 20 to 23 random nodes and throw away
future activities by the users on the crashed nodes. We then
run the second half of the trace and observe how many of
the users’ sessions7 can still complete successfully. We run
simulation 2000 times for each configuration with different
random seeds and average the results.

Figure 16 shows the results. For network partitioning,
Pangaea wins by a huge margin; it shows near-100% avail-
ability thanks to pervasive replication, whereas the other
configurations must rely on remote servers for much of
the file operations. For node failures, the differences are
smaller. However, we can still observe that for the same
storage overhead, Pangaea offers better availability.

8 Conclusions

Pangaea is a wide-area file system that targets the needs for
data access and sharing of distributed communities of users.
It federates commodity computers provided by users. Pan-
gaea is built on three design principles: 1) pervasive repli-
cation to provide low-access latency and high availability,
2) randomized graph-based replica management that adapts
to changes in the system and conserves WAN bandwidth,
and 3) optimistic consistency that allows users to access
data at any time, from anywhere.

The evaluation of Pangaea shows that Pangaea is as fast
and as efficient as other distributed file systems, even in a
LAN. The benefits of pervasive replication and the adap-
tive graph-based protocols become clear in heterogeneous
environments that are typical of the Internet and large in-
tranets. In these environments, Pangaea outperforms exist-

7We define a session to be either a directory operation (i.e.,unlink),
or a series of system calls to a file between and includingopen and
close . If any one of the system calls fails, we consider the session to
fail.

ing systems in three aspects: access latency, efficient usage
of WAN bandwidth, and file availability.

Acknowledgements

We thank our shepherd Peter Druschel, the anonymous
reviewers, and the members of our group in HP Labs—
especially, Eric Anderson, Mahesh Kallahalla, Kim Kee-
ton, Susan Spence, Ram Swaminathan, and John Wilkes—
for offering invaluable feedback that improved the quality
of this work.

References
[1] Atul Adya, William J. Bolosky, Miguel Castro, Ronnie

Chaiken, Gerald Cermak, John R. Douceur, John Howell,
Jacob R. Lorch, Marvin Theimer, and Roger Wattenhofer.
FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In5th Symp. on Op. Sys.
Design and Impl. (OSDI), Boston, MA, USA, December
2002.

[2] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David
Patterson, Drew Roselli, and Randolph Wang. Serverless
Network File Systems. In15th Symp. on Op. Sys. Princi-
ples (SOSP), pages 109–126, Copper Mountain, CO, USA,
December 1995.

[3] William J. Bolosky, John R. Douceur, David Ely, and Mar-
vin Theimer. Feasibility of a Serverless Distributed File Sys-
tem Deployed on an Existing Set of Desktop PCs. InCon-
ference on Measurement and Modeling of Computer Systems
(SIGMETRICS), pages 34–43, Santa Clara, CA, USA, June
2000.

[4] B. Callaghan, B. Pawlowski, and P. Staubach. RFC1813:
NFS version 3 protocol specification. http://info.internet.isi-
.edu/in-notes/rfc/files/rfc1813.txt,, June 1995.

[5] Pei Cao and Sandy Irani. Cost-Aware WWW proxy caching
algorithms. In1st USENIX Symp. on Internet Tech. and Sys.
(USITS), Monterey, CA, USA, December 1997.

[6] Frank Dabek, Frans Kaashoek, David Karger, Robert Mor-
ris, and Ion Stoica. Wide-area cooperative storage with CFS.
In 18th Symp. on Op. Sys. Principles (SOSP), pages 202–
215, Lake Louise, AB, Canada, October 2001.

[7] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes
Irish, and John Larson. Epidemic algorithms for replicated
database maintenance. In6th Symp. on Princ. of Distr.
Comp. (PODC), pages 1–12, Vancouver, BC, Canada, Au-
gust 1987.

[8] Armando Fox and Eric A. Brewer. Harvest, yield, and scal-
able tolerant systems. In6th Workshop on Hot Topics in
Operating Systems (HOTOS-VI), pages 174–178, Rio Rico,
AZ, USA, March 1999. http://www.csd.uch.gr/
˜markatos/papers/hotos.ps .

[9] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance esti-
mation service. IEEE/ACM Trans. on Networking (TON),
9(5):525–540, October 2001.

http://www.usenix.org/publications/library/proceedings/osdi02
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.acm.org/pubs/articles/proceedings/ops/224056/p109-anderson/p109-anderson.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p109-anderson/p109-anderson.pdf
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://research.microsoft.com/research/sn/Farsite/Sigmetrics2000.pdf
http://research.microsoft.com/research/sn/Farsite/Sigmetrics2000.pdf
http://info.internet.isi.edu/in-notes/rfc/files/rfc1813.txt
http://info.internet.isi.edu/in-notes/rfc/files/rfc1813.txt
http://citeseer.nj.nec.com/cao97costaware.html
http://citeseer.nj.nec.com/cao97costaware.html
http://www.usenix.org/publications/library/proceedings/usits97/
http://www.usenix.org/publications/library/proceedings/usits97/
http://portal.acm.org/toc.cfm?id=41840&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=41840&coll=portal&dl=ACM&type=proceeding
http://www.csd.uch.gr/~markatos/papers/hotos.ps
http://www.csd.uch.gr/~markatos/papers/hotos.ps

[10] Richard A. Golding, Darrell D. E. Long, and John Wilkes.
The refdbms distributed bibliographic database system. In
USENIX Winter Tech. Conf., San Francisco, CA, USA, Jan-
uary 1994.

[11] Jim Gray. A census of Tandem system availability between
1985 and 1990.IEEE Trans. on Reliability, 39(4):409–418,
October 1990.

[12] Håkan Grahn and Per Stenström and Michel Dubois. Imple-
mentation and evaluation of update-based cache protocols
under relaxed memory consistency models.Future Genera-
tion Computer Systems, 11(3), June 1995.

[13] John Howard, Michael Kazar, Sherri Menees, David
Nichols, M. Satyanarayanan, Robert Sidebotham, and Mica-
hel West. Scale and performance in a distributed file system.
ACM Trans. on Comp. Sys. (TOCS), 6(1), 1988.

[14] M. Ji, E. Felten, R. Wang, and J. P. Singh. Archipelago:
an island-based file system for highly available and scalable
Internet services. InUSENIX Windows Systems Symposium,
August 2000.

[15] Leonard Kawell Jr., Steven Beckhart, Timoty Halvorsen,
Raymond Ozzie, and Irene Greif. Replicated document
management in a group communication system. InConf.
on Comp.-Supported Coop. Work (CSCW), Chapel Hill, NC,
USA, October 1988.

[16] Minkyong Kim, Landon P. Cox, and Brian D. Noble. Safety,
visibility, and performance in a wide-area file system. In
USENIX Conf. on File and Storage Sys. (FAST), Monterey,
CA, January 2002. Usenix.

[17] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,
Chris Wells, and Ben Zhao. OceanStore: An architecture for
global-scale persistent storage. In9th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages 190–201, Cam-
bridge, MA, USA, November 2000.

[18] P. Kumar and M. Satyanarayanan. Flexible and safe resolu-
tion of file conflicts. InUSENIX Winter Tech. Conf., pages
95–106, New Orleans, LA, USA, January 1995.

[19] David Mazìeres. A toolkit for user-level file systems. In
USENIX Annual Tech. Conf., Boston, MA, USA, June 2001.

[20] Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan.
Exploiting weak connectivity for mobile file access. In15th
Symp. on Op. Sys. Principles (SOSP), pages 143–155, Cop-
per Mountain, CO, USA, December 1995.

[21] Athicha Muthitacharoen, Benjie Chen, and David Mazières.
A low-bandwidth network file system. In18th Symp. on Op.
Sys. Principles (SOSP), pages 174–187, Lake Louise, AB,
Canada, October 2001.

[22] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil,
and Benjie Chen. Ivy: A read/write peer-to-peer file sys-
tem. In 5th Symp. on Op. Sys. Design and Impl. (OSDI),
Boston, MA, USA, December 2002.

[23] D. Scott Parker, Gerald Popek, Gerard Rudisin, Allen
Stoughton, Bruce Walker, Evelyn Walton, Johanna Chow,

David Edwards, Stephen Kiser, and Charles Kline. Detec-
tion of mutual inconsistency in distributed systems.IEEE
Transactions on Software Engineering, SE-9(3):240–247,
1983.

[24] Konstantinos Psounis and Balaji Prabhakar. A randomized
web-cache replacement scheme. InInfocom, Anchorage,
AL, USA, April 2001.

[25] David H. Ratner. Roam: A Scalable Replication Sys-
tem for Mobile and Distributed Computing. PhD the-
sis, UC Los Angeles, 1998. Tech. Report. no. UCLA-
CSD-970044, http://ficus-www.cs.ucla.edu/
ficus-members/ratner/papers/diss.ps.gz .

[26] Luigi Rizzo. Dummynet,http://info.iet.unipi.
it/˜luigi/ip_dummynet/ , 2001.

[27] Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In18th Symp. on Op. Sys. Principles (SOSP),
pages 188–201, Lake Louise, AB, Canada, October 2001.

[28] Yasushi Saito and Christos Karamanolis. Replica consis-
tency management in the pangaea wide-area file system.
Technical report, HP Labs, 2002. To be published.

[29] Yasushi Saito, Jeffrey Mogul, and Ben Vergh-
ese. A Usenet performance study, September 1998.
http://www.research.digital.com/wrl/
projects/newsbench/ .

[30] Sleepycat Software. The Berkeley database, 2002.http:
//sleepycat.com .

[31] Susan Spence, Erik Riedel, and Magnus Karlsson. Adap-
tive consistency—patterns of sharing in a networked world.
Technical Report HPL-SSP-2002-10, HP Labs, February
2002.

[32] Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser. Man-
aging update conflicts in Bayou, a weakly connected repli-
cated storage system. In15th Symp. on Op. Sys. Principles
(SOSP), pages 172–183, Copper Mountain, CO, USA, De-
cember 1995.

[33] Chandramohan Thekkath, Timothy Mann, and Edward Lee.
Frangipani: a scalable distributed file system. In16th Symp.
on Op. Sys. Principles (SOSP), pages 224–237, St. Malo,
France, October 1997.

[34] Robbert van Renesse, Yaron Minsky, and Mark Hayden.
A gossip-style failure detection service. InIFIP Int.
Conf. on Dist. Sys. Platforms and Open Dist. (Middle-
ware), 1998.http://www.cs.cornell.edu/Info/
People/rvr/papers/pfd/pfd.ps .

[35] Werner Vogels. File system usage in Windows NT 4.0. In
17th Symp. on Op. Sys. Principles (SOSP), pages 93–109,
Kiawah Island, SC, USA, December 1999.

[36] Bruce Walker, Gerald Popek, Robert English, Charles Kline,
and Greg Thiel. The Locus distributed operating system.
In 9th Symp. on Op. Sys. Principles (SOSP), pages 49–70,
Bretton Woods, NH, USA, October 1983.

[37] Haifeng Yu and Amin Vahdat. The Costs and Limits of
Availability for Replicated Services. In18th Symp. on Op.
Sys. Principles (SOSP), pages 29–42, Lake Louise, AB,
Canada, October 2001.

http://citeseer.nj.nec.com/grahn95implementation.html
http://citeseer.nj.nec.com/grahn95implementation.html
http://citeseer.nj.nec.com/grahn95implementation.html
http://www.usenix.org/publications/library/proceedings/fast02
http://portal.acm.org/toc.cfm?id=378993&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=378993&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=378993&coll=portal&dl=ACM&type=proceeding
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf
http://www.scs.cs.nyu.edu/~dm/nfsloop.ps
http://www.usenix.org/publications/library/proceedings/usenix01
http://www.acm.org/pubs/articles/proceedings/ops/224056/p143-mummert/p143-mummert.pdf
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://www.usenix.org/publications/library/proceedings/osdi02
file:citeseer.nj.nec.com/psounis01randomized.html
file:citeseer.nj.nec.com/psounis01randomized.html
http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://www.research.digital.com/wrl/projects/newsbench/
http://www.research.digital.com/wrl/projects/newsbench/
http://sleepycat.com
http://sleepycat.com
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://www.acm.org/pubs/articles/proceedings/ops/268998/p224-thekkath/p224-thekkath.pdf
http://portal.acm.org/toc.cfm?id=268998&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=268998&coll=portal&dl=ACM&type=proceeding
http://www.cs.cornell.edu/Info/People/rvr/papers/pfd/pfd.ps
http://www.cs.cornell.edu/Info/People/rvr/papers/pfd/pfd.ps
http://www.cs.cornell.edu/vogels/NTFileTraces/index.htm
http://portal.acm.org/toc.cfm?id=319151&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=800217&coll=portal&dl=ACM&type=proceeding
http://www-cse.ucsd.edu/sosp01/papers/vahdat.pdf
http://www-cse.ucsd.edu/sosp01/papers/vahdat.pdf

