
The TickerTAIP Parallel RAID Architecture

PEI CAO, SWEE BOON LIM, SHIVAKUMAR VENKATARAMAN, and
JOHN WILKES

Hewlett-Packard Laboratories

Tradltlonal disk arrays have a centrahzed architecture, with a single controller through which

all requests flow. Such a controller M a single point of failure, and Its performance hrnlts the

maximum number of disks to which the array can scale. We describe TlckerTAIP. a parallel

architecture for dmk arrays that dmtrlbutes the controller functions across several loosely

coupled processors. The result 1s better scalablhtyi fault tolerance, and flexlblhty.

This article presents the T1ckerTAIP architecture and an evaluation of Its behavior We

demonstrate the feasibility by a working example, describe a family of distributed algorithms for

calculating RAID parity, discuss techmques for establishing request atomlclty, sequencing, and

recovery, and evaluate the performance of the TlckerTAIP design m both absolute terms and by

comparison to a centrahzed RAID Implementation We also analyze the effects of Including

disk-level request-scheduhng algorkhms mslde the array We conclude that the Ticker TAfP

architectural approach M feasible, useful, and effective

Categories and Subject Descriptors B 42 [Input/ Output and Data Communications]
Input/ Output Devices—c/Lunnels and controllers; D 13 [Programming Techniques]: Concur-
rent Programming—parallel progra mm zng; D 42 [Operating Systems] Storage Management

—seco?Ldary storage; D.4.7 [Operating Systems]: Orgamzatlon and Design—dlsfrzbuted sys-

tems

General Terms: Algorithms, Design, Performance, Rehablhty

Addltlonal Key Words and Phrases Decentrahzed panty calculation, disk scheduling, du-

trlbuted controller, fault tolerance, parallel controller, performance slmulatlon, RAID disk array

1, INTRODUCTION

A disk array is a structure that connects several disks together to extend the

cost, power, and space advantages of small disks to higher-capacity configura-

tions. By providing partial redundancy such as parity, availability can be

An earner version of this article was presented at the 1993 International Symposium on

Computer Architecture

Authors’ addresses: P Cao, Princeton Umversity, Department of Computer Science, Princeton,

NJ 08540; emad: PC(CJcs prmceton.cdu: S. B Llm, Umverslty of Illinols, Department of Computer

Science. 1.304 W ,Sprmgfleld Avenue, T_Trhana, IL 61801, emad sbhm(({ es muc edu; S Venkatara-

man, Umverslty of Wisconsin, Department of Computer Science, 1210 West Dayton Street,

Madison, WI 53706, emad venkatar[a cs WMC edu: J Wilkes, Hewlett-Packard Laboratories, PO

Box 10490, 1U13, Palo Alto. CA 94304-0969; emad: wllkestff hpl hp com

Permmslon to copy without fee all or part of thm material IS granted provided that the copies are

not made or chstrlhuted for direct commercial advantage, the ACM copyright notice and the title

of tbe publication and its date appear, and notice is given that copying 1s by permission of the

Assoclatlon for Computmg Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or

specific permmslon.
[a 1994 ACM 0734-2071/94/0800-0236 $03.50

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994, Pages 236-2b9

TlckerTAIP .

Table I. Some Common RAID Levels

237

Level

o
stnpmg

1
mirrormg

3

5

redundancy

technique

none

parity across a
stripe of data

panty across a
stripe of data

host interconnect

/ /

p/acement of

redundant data

none

mmpete disks

one diskdexiicsted to
parity

panty rotates round-
robm across all disks

diagrammatic rendrf!on

Hf3@m
!

1 sfrige of data blocks

secondary copy of data

P%d
p;mary copy’of data blocks

da{a blocks parity block

Ejm3g$
data blocks panty Mock

controller

Fig. 1.

increased as well. Such

I
disk controller

‘JJ’s

Traditional RAID array architecture.

RAIDs (for Redundant Arrays of Inexpensive

Disks) were first described in the early 1980s [Lawlo~ 1981; Pa~k and

Balasubramanian 1986], and popularized by the work of a group at UC

Berkeley [Patterson et al. 1988; 1989]. The RAID terminology encompasses a

number of different levels, corresponding to different amounts of redundancy

and placement of the redundant data. The most commonly encountered of

these are summarized in Table I.

To implement a disk array that provides one or more of the RAID levels,

the traditional RAID array architecture, shown in Figure 1, has a central
controller, one or more disks, and multiple head-of-string disk interfaces. The

RAID controller interfaces to the host, processes read and write requests, and

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994.

238 . Pel Cao et al.

small-area network

/
1

-4

1/

host mterconneot(s) ‘m
\

\
array controller nodes

Fig 2 TlckerTAIP array architecture

carries out parity calculations, block placement, and data recovery after a

disk failure. The disk interfaces pass on the commands from the controller to

the disks via a disk interconnect of some sort—these days, most often a

variety of the Small Computer System Interface, or SCSI bus [SCSI 1991].

Obviously, the capabilities of the RAID controller are crucial to the perfor-

mance and availability of the system. If the controller’s bandwidth, process-

ing power, or capacity are inadequate, the performance of the array as a

whole will suffer. (This is increasingly likely to happen: for example, parity

calculation is memory bound, and memory speeds have not kept pace with

recent CPU performance improvements [Ousterhout 1990].) A high latency

through the controller can reduce the performance of small requests. The

single point of failure that the controller represents can also be a concern:

failure rates for disk drives and packaged electronics are now similar, and

one of the primary motivations for RAID arrays is to survive the failure rates

that result from having many disks in a system. Although some commercial

RAID array products include spare RAID controllers, they are not normally

simultaneously active: one typically acts as a backup for the other, and is

held in reserve until it is needed because of failure of the primary. (For

example, this technique was suggested in Gray et al. [1990].) This is expen-

sive: the backup has to have all the capacity of the primary controller, but it

provides no useful services in normal operation. Alternatively, both con-

trollers are active simultaneously, but over disjoint sets of disks. This limits

the performance available from the array, even though the controllers can be

fully utilized.
To address these concerns, we have developed the TickerTAIP architecture

for parallel RAIDs. In this architecture (Figure 2), there is no central con-

troller: it has been replaced by a cooperating set of array controller nodes

that together provide all the functions needed by operating in parallel. The

TickerTAIP architecture offers several benefits, including: fault tolerance (no

central controller to break), performance scalability (no central bottleneck),

smooth incremental growth (by simply adding another node), and flexibility

(it is easy to mix and match components).

ACM Transactions on Computer Systemb, Vol 12, No 3, August 1994

TickerTAIP . 239

This article provides an evaluation of the TickerTAIP architecture. Its

main emphasis is on the techniques used to provide parallel, distributed

controller functions and their effectiveness.

1.1 Outline

We begin this article by presenting an overview of the TickerTAIP architec-

ture and related work, and follow it with a detailed description of several

design issues, including descriptions and evaluations of algorithms for parity

calculation, recovery from controller failure, and extensions to provide se-

quencing of concurrent requests from multiple hosts.

To evaluate TickerTAIP we constructed a working prototype as a functional

testbed, and then built a detailed event-based simulation that we calibrated

against this prototype. These tools are presented as background material for

the simulation-based performance analysis of TickerTAIP that follows, with

particular emphasis on comparing it against a centralized RAID implementa-

tion. We conclude with a summary of our results.

2. THE TICKERTAIP ARCHITECTURE

A TickerTAIP array is composed of a number of worker nodes, which are

nodes with one or more local disks connected through a bus. Originator nodes

provide connections to host computer clients. The nodes are connected to one

another by a high-performance, small-area network with sufficient internal

redundancy to survive single failures.

Mesh-based switching fabrics can achieve the bandwidth, latency, and

availability needs with reasonable costs and complexity across a reasonable

scale of array sizes. A design that would meet the performance, scalability,

and fault tolerance needs of a TickerTAIP array is described in Wilkes [1991].

A similar scheme has been described in Shin [1991]. For smaller arrays, the

interconnect could even be a pair of backplanes. (For example, PCI is capable

of running at well over 100MB/s [PC I 1994], which would support 15–20

disks for bandwidth-limited applications, or many hundred disks if the

workload was small, random 1/0s.) Multiple, independent arrays will become

more cost effective at some sufficiently large scale: no interconnect scales

perfectly. However, TickerTAIP’s requirements on the switching fabric are

relatively light, and this point will probably only be reached with arrays that

are so large that such a split will probably be desirable for other reasons.

In Figure 2, the nodes are shown as being both workers and originators:

that is, they have both host and disk connections. As a result, designing a

node requires that both the host interface and the disk interface be designed

together, and adding a disk node requires paying for another host connection.

A second design that avoids these problems is shown in Figure 3. It uses

separate disk-controller (worker) nodes and host-interface (originator) nodes.

This allows arbitrary mixing and matching of node types (such as SCSI-

originator, FDDI-originator, IPI-worker, SCSI-worker), which makes building
a TickerTAIP array with several different kinds of host interface simply a

configuration-time question, not a design-time one. Since each node is plug

ACM TransactIons on Computer Systems, Vol. 12, No 3, August 1994

240 . Pei Cao et al.

chent processes

e /“’”e

Flg 3. TickerTAIP system envn-onment

compatible from the point of view of the internal interconnect, it is easy to

configure an array with any desired ratio of worker and originator nodes, a

flexibility less easily achieved in the traditional centralized architecture.

Figure 3 shows the environment in which we envision a TickerTAIP array

operating. The array provides disk services to one or more host computers

through the originator nodes. There may be several originator nodes, each

connected to a different host; alternatively, a single host can be connected to

multiple originators for higher performance and greater failure resilience.

For simplicity, we require that all data for a request be returned to the host

along the path used to issue the request.

In the context of this model, a traditional RAID array looks like a Ticker-

TAIP array with several unintelligent worker nodes, a single originator node

on which all the parity calculations take place, and shared-memory communi-

cation between the components.

One assumption we made in this study is that parity calculation is a
driving factor in determining the performance of a RAID array. The Ticker-

TAIP architecture does these calculations in a decentralized fashion; other

high-speed array controller designs (e.g., RAID-II [Drapeau et al. 1994] use a

central parity calculation engine. Our approach is predicated on two beliefs:

(1) that processors are cost-effective engines for calculating parity and (2)

that memory bandwidth, rather than processor cycles, is the determining cost
factor in providing this functionality. (By way of example, the bandwidth and

functionality requirements of the RAID-II engine required a controller card

nearly two feet on a side.) The TickerTAIP architecture reduces the per-

processor parity calculation requirements sufficiently far that the cheap

commodity microprocessors it uses for the control functions can also be used

as the parity calculation engines. At this point, the diseconomies of scale

associated with providing high-bandwidth data paths to a hardware parity

calculation engine will overwhelm any intrinsic simplicity in the use of

specialized logic to perform the exclusive-OR calculation. As the performance

ACM TransactIons on Computer Systems, Vol 12, No 3, August 1994

TickerTAIP . 241

of commodity microprocessors continues to improve at its current rate, the

range of array sizes over which this argument holds will only increase.

2.1 Related Work

Many papers have been published on RAID reliability, performance, and on

design variations for parity placement and recovery schemes [Clark et al.

1988; Gibson et al. 1989; Menon and Kasson 1992; Schulze et al. 1989;

Dunphy et al 1990; Gray et al 1990; Lee 1990; Muntz and Lui 1990; Holland

and Gibson 1992]. Our work builds on these studies: we concentrate here on

the architectural issues of parallelizing the techniques used in a centralized

RAID array, so we take such work as a given—and assume familiarity with

basic RAID concepts in the following discussion.

The HP7937 family of disks realizes a physical architecture similar to that

of TickerTAIP [Hewlett-Packard 1988]. These disks can be connected to-

gether by a 10MB/s bus, which allows access to “remote” disks as well as fast

switch-over between attached hosts in the event of system failure. No multi-

disk functions (such as a disk array) were provided, however.

Several “shared-nothing” database systems use a hardware architecture

similar to that adopted for TickerTAIP, including Bubba [Boral 1988;

Copeland et al. 1988], Gamma [DeWitt et al. 1986; 1988], Teradata [Neches

1984; Sloan 1992], and Tandem [Bartlett et al. 1990; Siewiorek and Swarz

1992]. However, none appears to use a distributed RAID implementation

across multiple nodes, and all are intended as database engines rather than

parallel implementations of RAID. On the other hand, TickerTAIP makes

extensive use of well-known techniques such as two-phase commit and par-

tial-write ordering from the database community [Gray 1978].

A proposal was made to connect networks of processors to form a widely

distributed RAID controller in Stonebraker [1989]. This approach was called

RADD-Redundant Arrays of Distributed Disks. It proposed using disks

spread across a wide-area network to improve availability in the face of a site

failure. In contrast to the RADD study, we emphasize the use of parallelism

inside a single RAID server; we assume the kind of fast, reliable interconnect

that is easily constructed inside a single-server cabinet; we couple processors

and disks closely, so that a node failure is treated as (one or more) disk

failures; and we provide much improved performance analyses—Stonebraker

used “all disk operations take 30 ins.” The result is a new, detailed character-

ization of the parallel RAID design approach in a significantly different

environment.

3. DESIGN ISSUES

This section describes the TickerTAIP design issues in some detail. It begins

with an examination of normal mode operation (i.e., in the absence of faults)

and then examines the support needed to cope with failures. Table II may

prove helpful in understanding the data layout used for the RAID5 array we

are describing.

ACM Transactions on Computer Systems, Vol 12, No. 3, August 1994

242 . Pel Cao et al

Table II Data Layout for a 5-Disk Left-Symmetric RAID 5 Array [Lee 1990]

~ /og/ca/ b/ock number
I

i

2

3

4

Each column represent a disk The shaded, cmtl]ned area represents one possible request that

spans most of stripe 1 (a “large stripe”), all of stripes 2 and 3 (“full stripes”), and a small amount

of stripe 4 (a “small stripe”). Parity blocks have darker shading and are marked with a P

3,1 Normal-Mode Reads

In normal mode, no parity computation is required for reads, so they are

quite straightforward. All the necessary data is read at the workers and

forwarded to the originator, where it is assembled, and transmitted to the

host in the correct order. The main performance issue that arises has to do

with skipping over the parity blocks: we found it beneficial to perform

sequential reads of both data and parity, and then to discard the parity

blocks inside the worker nodes, rather than to generate separate requests

that omitted reading the parity blocks.

3.2 Normal-Mode Writes

In a RAID array, writes require calculation or modification of stored parity to

maintain the partial data redundancy. Each stripe is considered separately in

determining the method and site for parity computation, since this is the unit

across which the partial redundancy is maintained. The discussion that

follows describes the algorithms executed on each of the stripes that a single

request spans.

3.2.1 How to Calculate New Parity. The first design choice is how to

calculate the new parity. There are three alternatives, depending upon how
much of the stripe is being updated (Figure 4):

—full stripe: all of the data blocks in the stripes have to be written, and

parity can be calculated entirely from the new data;

—small stripe: less than half of the data blocks in a stripe are to be written,

and parity is calculated by first reading the old data of the blocks that will

be written, XORing them with the new data, and then XORing the results

with the old parity block data;

—large stripe: more than half of the data blocks in the stripe are to be
written; the new parity block can be computed by reading the data blocks

in the stripe that are not being written and XORing them with the new
data (i.e., reducing this to the full-stripe case) [Chen et al. 1990].

ACM ‘11-ansactlom on Computer Systems, Vol 12, No 3, August 1994

TickerTAIP . 243

“y’’mn~~~

clhbffcks
Y

parity block

(a) Full stripe

old dafa
bei~g read

(b) Small stripe
read-mo~fy-write cycles’

ml
(c) Large stripe

Fig. 4. Three different stripe update size policies. x indicates where parity calculations occur.

Notice that a single request might span all three kinds of stripes, although

all but the first and last stripe will always be full ones.

The large-stripe mode is just a (potential) performance optimization, since

the right behavior can be obtained from using just the small- and full-stripe

cases. We discuss whether it is beneficial in practice later.

3.2.2 Where to Calculate New Parity. The second design consideration is

where the parity is to be calculated. Traditional centralized RAID architec-

tures calculate all parity at the originator node, since only it has the

necessary processing capability. In TickerTAIP, every node has a processor,

so there are several choices. The key design goal is to load balance the work

among the nodes—in particular, to spread out the parity calculations over as

many nodes as possible. Here are three possibilities (shown in Figure 5):

—at originator: all parity calculations are done at the originator;

—solely-parity: all parity calculations for a stripe take place at the parity
node for that stripe;

—at-parity: same as for solely-parity, except that partial results during a
small-stripe write are calculated at the worker nodes and shipped to the

parity node.

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994

244 . Pel Cao et al

.

- .. -J

(a) At originator

r - “ - ----,)

.&
+

f==l f=l ‘+’:’
b) Solely parity

Fig. 5 Three different places to calculate panty @ indicates the orl~nator node; X, indicates

the node where parity calculations occur.

The solely-parity scheme always uses more messages than the at-parity one,

so we did not pursue it further. We provide performance comparisons be-

tween the other two, later in the article.

3.3 Single Failures— Request Atomicity

We begin with a discussion of single-point failures. Notice that a primary goal

of a regular RAID array is to survive single-disk failures.1 The TickerTAIP

architecture extends this to include failure of a part of its distributed con-

troller: we do not make the simplifying assumption that the controller is not a
possible failure point. The way in which TickerTAIP is intended to be used

provides duplex paths to its host (see Figure 3), and since there are several

techniques for doing so, we have legislated that the internal interconnect

fabric is itself single-fault resilient. As a result the overall architecture is

1There are variants of the parity calculation scheme, that can compensate for multlple disk

failures [Gibson et al 1989] The extension of the Ticker TAIP architecture to cover these cases is

straightforward, and not discussed further here.

ACM TransactIons on Computer Systems, Vd 12 No 3, August 1994

TickerTAIP . 245

Table III. Algorithms used to perform a write in failure mode, as a function of the kind of

block being written to, and the amount of the stripe being updated

stripe physical block type on faded disk

size
updated parity not updated

small ‘ large stripe strategy I none small stripe strategy

I lar9e large stripe strategy none small stripe strategy

full full stripe strategy none —

capable of surviving a fault in any single system component. However, there

are certain requirements on the software algorithms used at the nodes in a

TickerTAIP system to ensure correct operation in the presence of faults. This

section discusses the first of them: the need to provide request atomicity.

Just as with a regular RAID array, packaging and power-supply issues are

very important if the system availability is to be maximized. Some of these

decisions are discussed in Schulze [1988] and Schulze et al. [1989]; the design

approach used for these questions in a TickerTAIP-based array is identical to

that used for a regular disk array.

3.3.1 Disk Failure. In TickerTAIP, a disk failure is treated in just the

same way as in a traditional RAID array: the array continues operation in

degraded (failed) mode until the disk is repaired or replaced; the contents of

the new disk are reconstructed: and execution resumes in normal mode. From

the outside of the array, the effect is as if nothing has happened. Inside,

appropriate data reconstructions occur on reads, and 1/0 operations to the

failed disk are suppressed. Exactly the same algorithm is used if an entire

disk string goes bad for some reason. The algorithms are summarized in

Table III.

3.3.2 Worker Failure. A TickerTAIP worker failure is treated just like a
disk failure, and is masked in just the same way. (Just as with a regular

RAID controller with multiple disks per head-of-string controller, a failing

worker means that an entire column of disks is lost at once, but the same

recovery algorithms apply,) We assume fail-silent nodes so that we can

significantly simplify the fault-isolation and normal-case protocols we use

between the nodes. In practice, the isolation offered by the networking

protocols used to communicate between nodes is likely to make this assump-

tion realistic in practice for all but the most extreme cases—for which RAID

arrays are probably not appropriate choices. (In support of our position, Gray

[1988] explains that the complexities of handing the more complicated Byzan-

tine failure modes are rarely deemed worthwhile in practice.)

A node is suspected to have failed if it does not respond to an “are you

alive” request within a reasonable time. (This is the only place that such

time-outs occur, to simplify the maintenance of other portions of the system.)
The node that detects a failure of another node initiates a distributed

consensus protocol much like two-phase commit, taking the role of coordina-

ACM TransactIons on Computer Systems, Vol. 12, No 3, August 1994.

246 . Pel Cao et al

tor of the consensus protocol. All the remaining nodes reach agreement by

this means on the number and identity of the failed node(s). This protocol

ensures that all the remaining nodes enter failure mode at the same time.

Multiple failures cause the array to shut itself down safely to prevent

possible data corruption.

3.3.3 Originator Failure and Request Atomicity. Failure of a node with an

originator on it brings new concerns: a channel to a host is lost; any worker

on the same node will be lost as well; and the fate of requests that arrived

through this node needs to be determined since the failed originator was

responsible for coordinating their execution.

Originator failures during reads are fairly simple: the read operation is

aborted since there is no longer a route to communicate its results back to the

host.

Failures during write operations are more complicated, because different

portions of the write could be at different stages unless extra steps are taken

to avoid compromising the consistency of the stripes involved in the write.

Worst is failure of a node that is both a worker and an originator, since it will

be the only one with a copy of the data destined for its own disk. (For

example, if such a node fails during a partial-stripe write after some of the

blocks in the stripe have been written, it may not be possible to reconstruct

the state of the entire stripe, violating the rule that a single failure must be

masked.)

Our solution to both these concerns is to ensure write atom icity: that is,

either a write operation completes successfully, or it makes no changes.

Notice that this is a much stronger guarantee than provided by single disk

drives or non-parity-protected disk arrays. With these, the content of a range

of logical blocks being written to is indeterminate until the write completes

successfully. If a write request is aborted or fails, the contents of the targeted

range will be in an indeterminate state. To achieve this guarantee, we added

a two-phase commit protocol to write operations. Before a write can proceed,

sufficient data must be replicated in more than one node’s memory to let the

operation restart and complete—even if an arbitrary node fails. If this cannot

be achieved, the request is aborted before it can make any changes. (A similar

problem occurs in RAID controllers that have two-part nonvolatile write

caches that must tolerate failure of either cache half, possibly in conjunction

with concurrent disk failures. This issue is discussed in Menon and Courtney

[1993]; similar solutions to the one we adopted serve there as well.)
We identified two approaches to implementing the two-phase commit: early

commit tries to make the decision as quickly as possible; late commit delays

its commit decision until all that is left to do are the writes. We describe them

in reverse order, since late commit is the simpler of the two.
In late commit, the commit point (when it decides whether to continue or

not) is reached only after the parity has been computed. The reason for this

choice is that the computed parity data, suitably distributed, provides exactly

the partial redundancy needed. In late commit, all that remains to be done

after the commit decision is to perform the writes.

ACM Transactmns on Computer Systems, Vol 12. No 3, August 1994

TlckerTAIP . 247

Table IV. Data needed for recovering a stripe during a write,

and the stripe-size strategy used to do so
—

block type
--1

faded
stripe size

node
at fa//ed -+

node small strpe /arge stripe fu// strpe (

originator
L

updated

panty

not-
updated

updated

panty node has copy; parity node has copy;
large-stripe strategy large-stripe strategy

parity not computed panty not computed

— parity node has copy;
Iarge-stripe strategy

originator has copy; originator has copy;
large-stripe strategy large-stripe strategy

I updated and panty nodes ~

qh_._ -.-,
ave copy, full-stripe strategy I

k--- ----1

panty not computed

L--=-
+orlgmator has copy;

full-stripe strategy

~
worker

t
parity parity not computed parity not computed panty not computed

1

L

not updated
parity node has copy;— I
large-stripe strateg~l

— —1

In early commit, the goal is for the array to get to its commit point as

quickly as possible during the execution of the request. This requires that the

new data destined or the originator/worker node has to be replicated else-

where, in case the originator fails after commit. The same must be done for

old data being read as part of a large-stripe write, in case the reading node

fails before it can provide the data. We duplicate this data on the parity nodes

of the affected stripes—this involves sending no additional data in the case

of parity calculations at the parity node (which we will see below is the

preferred policy). The commit point is reached as soon as the necessary

redundancy has been achieved.

Late commit is much easier to implement, but has somewhat lower concur-

rency and higher request latency. We explore the magnitude of this cost later.

A write operation is aborted if any involved worker does not reach its

commit point. When a worker node fails, the originator is responsible for

restarting the operation. In the event of an originator failure, a temporary

originator, chosen from among those nodes that were already participating in

the request, is elected to complete or abort it processing. Choosing one of the

nodes that was already participating in the request minimizes data and

control traffic interchanges, since these nodes already have the necessary

information about the request itself.

Table IV summarizes the different cases that need to be accommodated.

For each combination of node role and block type that has been lost, it shows

which node has a copy of the data required for recovery, and the write policy

that must be applied to the stripe.

3.4 Multiple Failures — Request Sequences

This section discusses measures designed to help limit the effects of multiple
concurrent failures. The RAID architecture tolerates any single disk failure.

However, it provides no behavior guarantees in the event of multiple failures

ACM Transactions on Computer Systems, Vol 12, No 3. August 1994

248 . Pei Cao et al.

(especially power-fail), and it does not ensure the independence of overlap-
ping requests that are executing simultaneously. In the terminology of Lamp-

son and Sturgis [1981], multiple failures are disasters: events outside the

covered fault set for RAID. TickerTAIP introduces coverage for partial con-

troller failures; and it goes beyond this by using request sequencing to limit

the effects of multiple failures in a way that is useful to file system designers.

As with a regular RAID, a power-fail during a write can corrupt the stripe

being written to unless more extensive recover techniques (such as intentions

logging) are used—in this respect, TickerTAIP is exactly emulating the RAID

failure model. Power failures can be handled by the use of an uninterruptible

power supply for both TickerTAIP and a regular RAID array, but Ticker-

TAIP’s request sequencing also provides improved performance to hosts

wishing to tolerate crashes and other failures. Strengthening the regular

RAID failure guarantees in the controller follows naturally as a consequence

of wanting to maximize performance in the array; in turn, doing so at the

lower level allows the host to simplify its own failure recover mechanisms.

3.4.1 Requirements. File system designers rely typically on the presence

of ordering invariants to allow them to recover from crashes or power failure.

For example, in 4.2 BSD-based file systems, metadata (inode and directory)

writes must occur before the data to which they refer is allowed to reach the

disk [McKusick et al. 1984]. The simplest way to achieve this is to defer

queueing the data write until the metadata write has completed. Unfortu-

nately, this can severely limit concurrency: for example, parity calculations

can no longer be overlapped with the execution of the previous request. This

is unfortunate, and becoming more so, as the technology of disk drives

improves to include command queueing, immediate reporting, and more

nearly optimal request sequencing that exploits position information avail-

able only at the disk itself [Seltzer et al. 1990; Jacobson and Wilkes 1991;

Ruemmler and Wilkes 1993].

A better way to achieve the desired invariant is to provide—and preserve

—partial write orderings in the 1/0 subsystem. This technique can signifi-

cantly improve file system performance. From our perspective as RAID array

designers, it also allows the RAID array to make more intelligent decisions

about request scheduling. We discuss the effects of some of these scheduling

decisions later in the article.

A TickerTAIP array can be configured to support multiple hosts. As a

result, some mechanism needs to be provided to let requests from different

hosts be serialized without recourse to either sending all requests through a
single host or requiring one request to complete before the next can be issued.

Finally, multiple overlapping requests from a single or multiple hosts can

be in flight simultaneously. This could lead to parts of one write replacing

parts of another in a nonserializable fashion, which clearly should be pre-

vented. (Our write commit protocols provide atomicity for each request, but

no serializability guarantees.)

3.4.2 Request Sequencing. To address these requirements, we introduced

a request-sequencing mechanism using partial orderings for both reads and

ACM Transactions on Computer Systems, Vol. 12. No 3, August 1994

TickerTAiP . 249

writes. Internally, these are represented in the form of directed acyclic

graphs (DAGs): each request is represented by a node in the DAG, while the

edges of the DAG represent dependencies between requests.

To express the DAG, each request is given a unique identifier. A request is

allowed to list one or more requests on which it depends explicitly; Ticker-

TAIP guarantees that the effect is as if no request begins until the requests

on which it depends complete (this allows the implementation the freedom to

perform eager evaluation, some of which we exploited in our testbed proto-

type). If a request is aborted, all requests that depend explicitly on it are also

aborted (and so on, transitively).

If a host later wishes to reissue any of the aborted dependent requests, it is

free to do so, of course. Having TickerTAIP itself propagate the abort to

dependent requests preserves sequencing guarantees without requiring a

handshake with the host on every operation in the normal (error-free) case.

An alternative designz would have TickerTAIP enter a special mode once it

detects any abort, during which it would execute no requests until all the

hosts had acknowledged that they had aborted any and all requests that

depended on the failed one. This would push the dependency-handling back

up into the hosts, but at the cost of a more complicated and fragile recovery

protocol. Additionally, giving the dependency data to TickerTAIP allows it to

determine which requests can be executed in parallel, thereby improving

performance in the normal case.

Also, TickerTAIP will arbitrarily assign sufficient implicit dependencies to

prevent overlapping requests from executing concurrently. Aborts are not

propagated across implicit dependencies. In the absence of explicit dependen-

cies, the order in which requests are serviced is some arbitrary serializable

schedule.

3.4.3 Sequencer States. The management of sequencing is performed

through a high-level state table, with the following states (diagramed, with

their transitions, in Figure 6):

—NotIssued: the request itself has not yet reached TickerTAIP, but another

request has referred to this request in its dependency list.

—Unresolved: the request has been issued, but it depends on a request that

has not yet reached the TickerTAIP array.

—Resolved: all of the requests that this one depends on have arrived at the

array, but at least one has yet to complete.

—InProgress: all of a request’s dependencies have been satisfied, so it has

begun executing.

—Completed: a request has &ccessfully finished.

—Aborted: a request was aborted, or a request on which this request de-

pended explicitly has been aborted.

~Due to one of the anonymous reviewers.

ACM Tran.actmm on Computer Systems, Vol 12, No. 3, August 1994

250 . Pei Cao et al.

referenced by
another n?quest

Issued
by a host

issued by
a host

anti-dependents
resolved

anti-dependents
completed

Fig. 6. States of a request. An “antidependent” is a request that this request is waiting for.

Old request state has to be garbage-collected. We do this by requiring that

the hosts number their requests sequentially and by keeping track of the

oldest outstanding incomplete request from each host. When this request

completes, any older completed requests can be deleted. Any request that

depends on an older request than the oldest recorded one can consider the

dependency immediately satisfied.

Aborts are an important exception to this mechanism since a request that

depends on an aborted request should itself be aborted, whenever the original

request was aborted—even if this was some considerable time in the past.

The simplest solution is to require that a host never issue a request that

depends on one that has been aborted, but this would require an unnecessary

serialization at the host. As a result, we decided to propagate aborts to other

requests already in the TickerTAIP array. Unfortunately, this is not enough:

there is a potential race condition between the request being aborted and the

host being told about it, and the host ceasing to emit further requests that

may depend on the aborted request. Our solution is to maintain state about
aborted requests for a guaranteed minimum time— 10 seconds in our proto-

type. (This is not ideal: in the presence of a large number of cascaded aborts,

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994

TlckerTAIP . 251

we may have to delay accepting new commands until the 10 seconds are up.

However, we believe this situation is likely to be extremely rare in practice.)

Similarly, a time-out on the NotIssued state can be used to detect errors such

as a host that never issues a request for which other requests are waiting.

3.4.4 Sequencer Design Alternatives. We considered four designs for the

sequencer mechanism:

(1) Fully centralized: a single, central sequencer manages the state table and
its transitions. (A primary and a backup are used to eliminate a single

point of failure.) In the absence of contention, each request suffers two

additional round-trip message latency times: between the originator and

the sequencer, and between the sequencer and its backup. One of these

trips is not needed if the originator is co-located with the sequencer.

(2) Partially centralized: a centralized sequencer handles the state table

until all the dependencies have been resolved, at which point the respon-

sibility is shifted to the worker nodes involved in the request. This

requires that the status of every request be sent to all the workers, to

allow them to do the resolution of subsequent transitions. This has more

concurrency, but requires a broadcast on every request completion.

(3) Originator driven: in place of a central sequencer, the originator nodes

(since there will typically be fewer of these than the workers) conduct a
distributed-consensus protocol to determine the overlaps and sequence

constraints, after which the partially centralized approach is used. This

always generates more messages than the centralized schemes.

(4) Worker driuen: the workers are responsible for all the states and their
transitions. This widens the distributed-consensus protocol to every node

in the array, and still requires the end-of-request broadcast.

Although the higher-numbered of the above designs may increase concur-

rency, they do so at the cost of increased message traffic complexity.

We chose to implement the fully centralized model in our prototype, largely

because of the complexity of the failure recovery protocols required for the

alternatives. As expected, we measured the resulting latency to be that of two

round-trip messages (i.e., 440 KS in our prototype) plus a few tens of microsec-

onds of state table management. We believe this additional overhead accept-

able for the benefits that request sequencing provides. Nonetheless, we made

request sequencing optional for those cases where it is not needed.

3.5 The RAIDmap

Previously sections have presented the policy issues; this one discusses an

implementation technique we found useful. Our first design for sequencing

and coordinating requests retained a great deal of centralized authority: the

originator tried to coordinate the actions taking place at each of the different

nodes (reads and writes, parity calculations). We soon found ourselves faced
with the messy problem of coping with a complex set of interdependent

actions taking place on multiple remote nodes, and coordinating these proved

ACM TransactIons on Computer Systems, Vol 12, No. 3, August 1994

252 . Pel Cao et al

Stripe node O node 1 node 2 node 3 Type

. . . ---
0 x, ‘, 2,0,3 -,o,- small

unused unused data parity stripe

1
4,1,2 5,1,2 -,1,- 3,1,2 full

data data parity data stripe

2 .! -,2,- 6,2,1 7,2,1 large

unused parity data data stripe

Fig 7. RAIDmap example for a write request spanmng lo~cal blocks 2 through 7 Each cell m

the figure represents a physical block on a disk, and contains a four-part tuple The parts are the

logical block number in the array; the physical block number on this disk (which equates to the

stripe number if there is only one disk on each node); the node number to send parity data to,

and a block type. The rightmost column is d]scussed In SectIon 32 1

exceedingly complex—especially so when potential failure modes were taken

into consideration.

To avoid this complexity, we developed a new approach: rather than having

the originator tell each worker what it had to do, and coordinate the stream

of asynchronous events that resulted, we delegated management of its own

work to each worker, and then coded everything to assume that all the nodes

were doing what they were supposed to without any further prompting. So,

once the workers are told about the original request (its starting point and

length, and whether it is a read or a write) and given any data they needed,

they can proceed on their own. For example, if node A needs data from node

B, A can rely on B to generate and ship the data to A with no further

prompting. We call this approach collaborative execution; it is characterized

by each node assuming that other nodes are already doing their part of the

request. It proved to be an enormous simplification.

To orchestrate all the work, we developed a structure known as a RAIDmap;

a two-dimensional array with an entry for each column (worker) and each

stripe.3 Each worker builds its column of the RAIDmap, filling in the blanks

as a function of the operation (read or write), the layout policy, and the

execution policy. The layout policy determines where data and parity blocks

are placed in the RAID array (e.g., mirroring, or RAID 4 or 5). The execution

policy determines the algorithm used to service the request (e.g., where

parity is to be calculated). A simplified RAIDmap is shown in Figure 7.

One component of the RAIDmap is a state table for each block (the states
are described in Table V). It is this table that the layout and execution

policies fill out. A request enters the states in order, leaving each one when

the associated function has been completed, or immediately if the state is

marked as “not needed” for this request. For example, a read request will

‘Although the Idea of the RAIDmap 1s more simply described as If the full array was present, in

practice there m no need to actually generate all the rows of the array for a very long request,

since the inner full-strip descriptions all look pretty much ahke.

ACM Transactions on Computer Systems, V.] 12, No 3, August 1994

TickerTAIP . 253

Table V. State-Space for each Block at a Worker Node

IState I Funct/on I Wrerinfomration I
I
II I Read old data I disk address

I 5
XOR incomin data with

a?local old dat Dantv i 1

6 Write new data or parity disk address

enter state 1 (to read the data), skip through state 2 to state 3 (to send it to

the originator), and then skip through the remaining states.

The RAIDmap proved to be a flexible mechanism, allowing us to test out

several different policy alternatives (e.g., whether to calculate partial parity

results locally, or whether to send the data to the originator or parity nodes).

Additionally, the same techniques is used in failure mode: the RAIDmap

indicates to each node how it is to behave, but now it is filled out in such a

way as to reflect the failure mode operations. Finally, the RAIDmap simpli-

fied the configuring of a centralized implementation, using the same policies

and assumptions as in the distributed case.

The goal of any RAID implementation is to maximize disk utilization and

minimize request latency. To help achieve this, the RAIDmap computation is

overlapped with other operations, such as moving data or accessing disks. For

the same reason, workers send data needed elsewhere before servicing their

own parity computations or local disk transfers.

It also proved important to optimize the disk accesses themselves. When we

delayed writes in our prototype implementation until the parity data was

available, throughput increased by 25–3070 because the data and parity

writes were coalesced together, reducing the number of disk seeks needed.

In implement the two-phase commit protocols described in Section 3.3,

additional states were added to the worker and originator node state tables.

The placement of these additional states determines the commit policy: for

early commit, as soon as possible; for late commit, just before the writes.

3.6 Scheduling Disk Accesses

Unlike traditional centralized RAID designs, TickerTAIP provides request

atomicity and sequencing to support multiple outstanding requests. As a

result, more than one disk access request can be queued at a worker node at

one time, which means that it is beneficial to consider more sophisticated

request-scheduling policies inside the array (preserving the write-order in-

variant determined by the sequencing algorithms, of course). In theory, a
worker node could use any of the algorithms proposed in the (fairly extensive)

literature on disk scheduling. In practice, we are mostly interested in those

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994

254 . Pel Cao et al,

that are inexpensive and yet give good performance. We report here on our

experiments with four such algorithms.

—first come first served (FCFS): that is, no request reordering—this is what
is implemented in the working prototype described below, and which is

used for the majority of the results we present;

—shortest seek time first (SSTF): the request that has the shortest seek time

from the current disk head position is served first;

—shortest access time first (SATF): the request that has the shortest access

time (seek time + rotation time) from the current disk head position is

served first [Seltzer et al. 1990; Jacobson and Wilkes 1991];

—batched nearest neighbor (BNN): like SATF, except that requests are

batched—each time it runs, the scheduler takes all the requests currently

in the queue as a batch, and runs the SATF algorithm over them; it does

not attempt to serve any new requests until the current batch is finished.

Among these algorithms, SAFT gives generally the best throughput when

applied to Unix system-like workloads, but can potentially starve requests.

BNN remedies this at the cost of a small reduction in throughput.

We found that scheduling improved both the throughput and average

response time of requests. The improvement depended on the workload and

load condition of the array, and (as expected) was largest under heavy loads.

The results are reported in Section 4.7.

3.7 Memory Management

The main functionality issue we did not address explicitly in this work is

buffer management at the originator nodes. In a real system, memory limita-

tions would complicate some of the algorithms presented here. For example,

additional flow control might be needed to ensure that the originator memory

would not get swamped if the array was presented with many large requests.

However, these costs will be small: by definition, they only show up if the

requests are larger than would fit comfortably into the memory of an origina-

tor node, so the cost of the flow control will be largely hidden by the cost of

moving the data.

Alternatively, the originator node might choose to break up very large

requests up into chunks with some maximum size. This approach is com-

monly used in disk drive controllers today; the main difference would be the

use of much larger chunk sizes to ensure that the array could deliver data at

close to its full potential bandwidth.

4. EVALUATING TICKERTAIP

This section presents the vehicles we used to evaluate the design choices and

performance of the TickerTAIP architecture.

4,1 The Prototype

We first constructed a working prototype implementation of the TickerTAIP

design, including all the fault tolerance features described above. The intent

ACM TransactIons on Computer Systems, Vol 12, No 3, August 1994

TlckerTAIP . 255

Table VI. Characteristics of the HP97560 Disk Drive

[properfy

diameter

=
track size

I controller overhead

value

525”

19 data, 1 servo

1.3GB

72 sectors

512 bytes

4002 RPM

2.2MB/s

5MB/s

1ms

1.67ms

1.28 + 1.15~d ms

4.84 + 0.193~d +

0.00494d ms

of this implementation was a functional testbed, to help ensure that we had

made our design complete. (For example, we were a-ble to test our fault

recovery code by telling nodes to “die.”) The prototype also let us measure

path lengths and obtain early performance data.

We implemented the design on an array of seven storage nodes, each

comprised of a Parsytec MSC card with a T800 transputer, 4MB of RAM, and

a local SCSI interface, connected to a local SCSI disk drive. The disks were

spin-synchronized for these experiments. A stripe unit (the block-level inter-

leave unit) was 4KB. Each node had a local HP97560 SCSI disk [Hewlett-

Packard 1991] with the properties shown in Table VI.

The prototype was built in C to run on Helios [Perihelion 1991]: a small,

lightweight operating system nucleus. We measured the one-way message

latency for short messages between directly connected nodes to be llO~s, and

the peak internode bandwidth to be 1.6MB/s. Performance was limited by

the relatively slow processors, and because the design of the Parsytec cards

means that they cannot overlap computation and data transfer across their

SCSI bus. Nevertheless, the prototype provided useful comparative perfor-

mance data for design choices, and served as the calibration point of our

simulator.

Our prototype comprised a total of 13.3k lines of code, including comments

and test routines. About 12k lines of this was directly associated with the

RAID functionality.

4.2 The Simulator

We also built a detailed event-driven simulator using the AT&T C + +

tasking library [AT & T 1989]. This enabled us to explore the effects of

ACM Transactions on Computer Systems, VOI 12, No 3, August 1994

256 . Pei Cao et al

changing link and processor speeds, and to experiment with larger configura-

tions than our prototype. Our model encompassed the following components:

— Workloads: both fixed (all requests of a single type) and imitatiue (pat-

terns that simulate existing workload patterns); we used a closed queueing

model, and the method of independent replications [Pawlikowski 1990] to

obtain steady-state measurements.

—Host: a collection of workloads sharing an access port to the TickerTAIP

array; disk driver path lengths were estimated from measurements made

on our local HP-UX systems.

—TickerTAIP nodes (workers and originators): code path lengths were de-

rived from measurements of the algorithms running on the working proto-

type and our HP-UX workstations (we assumed that the Parsytec MSC

limitations would not occur in a real design).

—Disk: we modeled the HP97560 disks as used on the prototype implemen-

tation, using data taken from measurements of the real hardware. The

disk model was fairly detailed, and included:

—the seek time profile from Table VI;

—longer settling times for writes than reads (the disk can afford to be

optimistic about head positioning for reads, but not for writes);

—track- and cylinder-skews, including track- and cylinder-switch times

incurred during a data transfer;

—rotation position;

—SCSI bus and controller overheads, including overlapped data transfers

from the mechanism into a disk track buffer and transmissions across

the SCSI bus (the granularity used was 4KB).

—Links: represent communication channels such as the small-area network

and the SCSI buses. We report here data from a complete point-to-point

interconnect design with a DMA engine per link, since this is both the

simplest topology and the one from which it is easiest to extrapolate to the

effects of other designs. Our preliminary studies suggest that similar

results would be obtained from mesh-based switching fabrics. We did not

assume multicast capabilities.

Under the same design choice and performance parameters, our simulation

results agreed with the prototype (real) implementation within 3% most of

the time, and always within 6%. This gave us confidence in the predictive

abilities of the simulator.
The system we evaluate here 1s a RAID5 disk array with left-symmetric

parity [Lee 1990] (the same data layout shown in Table II and Figure 7),

stripes composed from a 4KB block on each disk, spin-synchronized disks,

FIFO disk scheduling (except where noted), and without any data replication,

spare blocks, floating parity, or indirect-writes for data or parity [English and

Stepanov 1992; Menon and Kasson 1992]. The configuration simulated had 4

hosts and 11 worker nodes, with each worker node having a single HP97560

disk attached to it via a 5MB/s SCSI bus. Four of the nodes were both

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994

TickerTAIP . 257

Table VII Read performance for fixed-size workloads, with varying link speeds

(all relative standard deviations were less than 2%)

Request throughput
latency (in ms)

size MEW
lMBA 10MBIs 100MBA

4KB 0.94 33 31 30

40KB 1.79 38 34 33

lMB 15.2 178 ae 76

10MB 21.1 1520 610 520

originators and workers; for simplicity, and since we were most concerned

about exploring the effects of the internal design choices, we used only a

single infinite-speed connection between each host and the array.

Except for the results in Section 4.7, the throughput numbers reported here

were obtained when the system was driven to saturation; response times with

only one request in the system at a time. For the throughput measurements

we timed 10,000 requests in each run; for latency we timed 2000 requests.

Each data point on a graph represents the average of two independent runs,

with all relative standard deviations less than 1.59%, and most less than 0.5%.

Each value in a table is the average of five such runs; the relative standard

deviations are reported with each table.

In section 4.7, our throughput and response time numbers are means of 5

simulations, each consisting of 10,000 requests. Nearly all relative standard

deviations for the data points in Section 4,7 are less than 1.OYC, although a

few (on the OLTP workload) were as high as 6.0%.

In all cases, 100 requests were run to completion through the simulator

before any measurements were taken, to minimize startup effects.

4.3 Read Performance

Table VII shows the performance of our simulated n-disk array for random

read requests across a range of link speeds. The data show no significant

difference in throughput for any link speed above lMB/s, but 10MB/s or

more are needed to minimize request latencies for the larger transfers.

4.4 Write Performance: An Exploration of the Design Alternatives

We first consider the effect of the large-stripe policy. Figure 8 shows the

result: the difference is small, but enabling the large-write policy resulted

always in a slight improvement in throughput at the expense of a slight

increase in latency. We chose to enable the large-stripe mode for the remain-

der of the experiments.

Next, we compared the at-originator and at-parity policies for parity calcu-

lation. Figure 9 gives the results: at-parity is significantly better than at-
originator, with the differences largest (as expected) at larger write sizes and

with lower processor speeds. This is due to the at-parity algorithm spreading

ACM TransactIons on Computer Systems, Vol 12, No 3, August 1994

258 . Pel Cao et al.

ol~
100 1000 10000

Reqwst s,,. (iii3) (log SC.le)

Res Ponse Tlrne, “s Request S,,, (10 MIPS, 10 MB/s)
o 14

/’

With —

0.12
Without *

:::; ~ ----’”~
+?

0.04

0.02

ol~
100 1000 10000

Request S,ze (KB) (log scale)

Fig. 8, Effect of enabhng the large-stripe parity computation policy for writes larger than one

half the stripe

theparity calculation across several processors more evenly, so weused it for

the remainder of our experiments.

The effect of the late-commit protocol on performance is shown in Figure

10: the effect of the commit protocol on throughput is small (< 2%), but the

effect on response time is more marked, with the late commit increasing

response time by up to 20%. This is because the commit point is acting as a

synchronization barrier, which prevents some of the usual overlaps between

disk accesses and other operations. For example, a disk that is only doing
writes for a request will not start seeking until the commit message is given.

The delay that results could presumably be reduced by sending the disk a

seek command to position its head while the parity computation was occur-

ring, although we have not performed this experiment because the effect will

only show up on an otherwise-idle disk array.

Although not shown, the performance of early commit is slightly better

than that of late commit, but not as good as no commit. As a result, we

recommend late commit as the preferred design choice: its throughput is

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994

TlckerTAIP

Throughput vs Link and CPU (Random lMB)

. 259

12

10

8

6

4

2

0

0 5 10 15 20 25 30
Link (MB/s) & CPU (MIPS)

Responsetlme vs Link and CPU (Random lMB)
0.7 r

at CIrlglnator —

0.6
at Pa,, ty +

;
‘c
G

;2 ‘L

:
G 0.1

n I

“o 5 10 15 20 25 30

Link Speed (MB/s) CPU (MIPS)

Fig, 9, Effect of parity calculation policy on throughput and response times for lMB random

writes.

almost as good as no commit protocol at all, and it is much easier to

implement than early commit.

4.5 Comparison with a Centralized RAID Array

How would a TickerTAIP array compare with a traditional centralized RAID

array? This section answers that question. We simulated both the same

n-node TickerTAIP system as before and an n-disk centralized RAID. The

simulation components and algorithms used in the two cases were the same:

our goal was to provide a direct comparison of the two architectures, uncon-

taminated by other factors. The centralized array was modeled as a single,

dedicated originator node, together with a set of worker nodes that did read

and write operations only when directed to do so.

For amusement, we also provide data for a 10-disk nonfault-tolerant strip-

ing array implemented using the TickerTAIP architecture.
The results for 10MIPS processors with 10MB/s links are shown in Figure

11: clearly a nondisk bottleneck is limiting the throughput of the centralized

ACM TransactIons on Computer Systems, Vol 12, No 3, August 1994

260 . Pel Cao et al,

‘.7- ,qhvut ,,s Request S,ze (10 MIPS. 10 MB,.).
12

k..., + —

1 /N. Corn, t .
,.. .

a

6

4

2

1 10 100 1000 10000

Request Slzt! (KB) (log scale)

Response Times v. Request Size (10 MIPS, 10 MB/s)
0.13

Comlt —
0.12 NO Comrnlt -

q
0.11

:
“
a 01
.

0 09

2 ,/i’
: 0.08

al
/’

2 0.07

:
0 06

: /
a

0.05
/“’’””””

0.04
1 10 100 1000 10000

Request Size (KB) (log SC,le)

Fig 10 Effect of the late-commit protocol on write throughput and response time

system for request sizes larger than 256KB, and its response time for

requests larger than 32KB. The obvious candidate is a CPU bottleneck from

parity calculations, and this is indeed what we found. To show this, we plot

performance as a function of CPU and link speed (Figure 12), and both

varying together (Figure 13)—these graphs show that changing the CPU

speed has a marked effect on the performance of the centralized case for lMB

writes, but a much smaller effect on TickerTAIP,

These graphs show that the TickerTAIP architecture is successfully ex-

ploiting load balancing to achieve similar (or better) throughput and response
times with less powerful processors than the centralized architecture. For

lMB write requests, TickerTAIP’s 5MIPS processors and 2–5MB/s’ links

give comparable throughput to 25MIPS and 5MB/s for the centralized array.
The centralized array needs a 50MIPS processor to get similar response

times as TickerTAIP.

Finally, we looked at the effect of scaling the number of workers in the

array, with both constant request size (400KB) and a varying one with a fixed

amount of data per disk (ten full stripes, however large a stripe becomes). In

ACM TransactIons on Computer Systems, Vol 12, No .3, August 1994

TickerTAIP . 261

Throughput “s Size (CPU 10 MI PS, Link 10 (M B, s))
16 r

I Cent Al> zed -—
14 TIckerTAIP -

Str, plnq =

12
..

10

8 *

6

4

>
E //

2

‘*, .,,,
0

1 10 100 1000 10000
Request S,ze (KB) (log scale)

Responset, mes “, Request Size (CPU 10 MI PS, Link 10 (MB
0.3

0.25

0.2

0.15 /’
,+

01

0.05 /“”: ~ ❑

m= ..=.

o
1 10 100 1000 1000$

Request Size (KB) (log scale)

Fig. 11. Writs throughput and response time for three different array architectures

these experiments, four of the worker nodes were also originators. The results

are seen in Figure 14. With constant request size, the performance grows only

slightly with larger number of disks. This is exactly as expected: as the

number of disks increases, the fixed-size 400KB request touches a smaller

fraction of the stripe size, so the disks get to do less useful work. On the other

hand, the performance improvement shown as the request size is scaled up

with the number of disks shows almost perfect linearity. (In practice, at some

point the host links would become a bottleneck.) We believe these data are a

strong vindication of our scalability claims for TickerTAIP.

4.6 Synthetic Workloads

The results reported so far have been from fixed, constant-sized workloads.

To test our hypothesis that TickerTAIP performance would scale as well over

some other workloads, we tested a number of additional workload mixtures,
designed to model “real-world” applications:

—OLTP: based on the TPC-A database benchmark [Dietrich et al. 1992];

ACM Transactions on Computer Systems, Vol 12. No 3, August 1994

262 . Pel Cao et al.

Thrcwqhp.t “s CPU (Random lMB, L,nk 100 (t.fF3/s))
12 >+2LL’L

t

12

Centralized —

10 I ‘ r ‘lckerTA’p- ; _ ,0
,/

9

6

4

2

0

Throughput v, L,nk (Random 1M?3, CPU 100 MIPs)

+-

7

Centralized —
T,ckerTAIP ~

/
,

.~
0.5 1 1.5 2 2.53354455

L.nk Speed (wB/see)

Pes PO”,’3t,me “3 L,nk (Random 1~, CPU 10fl MIPS)
25

Central, zcd —
‘\ T. CkerTAIP -,-,,

Fig. 12. Throughput and response time as a funct]on of both CPC1 and link speed lMB random

writes.

—timeshare: based on measurements of a local Unix timesharing system

[Ruemmler and Wilkes 1993];

—scientific: based on measurements taken from supercomputer applications
running on a Cray [Miller and Katz 1991]; “large” has a mean request size

of about 0.3 MB; “small” has a mean around 30KB.

Table VIII gives the throughputs of the disk arrays under these workloads

for a range of processor and link speeds. As expected, TickerTAIP outper-

forms the centralized architecture at lower CPU speeds, although both are

eventually able to drive the disks to saturation—mostly because the request
sizes are quite small. TickerTAIP’s availability is still higher, of course.

4.7 The Effect of Scheduling Individual Disk Accesses

Our previous results used the simplest possible request-scheduling algo-

rithm, FCFS, at the disk device drivers in the worker nodes. In this section

we explore the effects of changing this scheduling algorithm. Clearly, this will

have little effect when the queue sizes seen at the disk are small, but our

early experiments led us to believe that they can sometimes get quite large

ACM Transactmns on Computer Systems, Vol 12, No. 3, August 1994

TickerTAIP . 263

Throughput vs Link and CPU (Random lMB I/o)

~ /
t /’+ ~.“

L
w 6
, /’

s ,/
g 4 -i

,/

2
, ●f’

O*
0510152025 3035404550

Link (MB/see) and CPU (MIPS)

Responsetlme vs LL. k speed and CPU (Random lMB 1/0)
1.2

- 1.

Central, zed —
TlckerTAIP +

~ 1 Strlplng ~

c

j
08

.

; 0.6

2

.

; 0.4

$

:
02 - ~.

%;; ;;~ -; +-- ------: --

0
0 10 20 30 40 50 60 10 Eo ~0 1(30

Link (MB/see) CPU (MIPS)

Fig, 13. Throughput and response time as a function of both CPU and link speeds. lMB random

writes,

(especially when operating near saturation)—at which point, a better

scheduling algorithm is quite likely to produce a marked improvement in

performance. This is indeed what we found.

To demonstrate this, Figure 15 shows the results of applying SSTF, SATF,

and BNN scheduling algorithms on workloads comprised of fixed-sized 40KB

writes and lMB writes, as well as the OLTP synthetic workload. The graphs

show that scheduling can nearly double the throughput under OLTP work-

loads and random 40KB writes. The smaller improvement shown for lMB

writes results because the individual 1/0s are larger, so the effect of improv-

ing the gaps between them (which is the effect of the better scheduling

algorithms) is less noticeable. Similar effects are seen on the response time

graphs.

Our initial results suggest that both SATF and BNN are good candidates

for scheduling algorithms. Currently, we prefer BNN because of its inherent

starvation-resistant properties.

ACM Transactions on Computer Systems, Vol 12. No 3. August 1994

264 . Pel Cao et al.

Throughput v. Array’ Size h Request SLze
25

scaled write Sizes ~

20

;

?
/

15
/

/
,’

z
~

D
, 10
0 /’”
*

E /~
5

/’

.
0 5 10 15 20 25 30 35

of Nodes (n) Request Size ((n-l)x40K)

8

;

400KB W,, te,

/

./”

o 5 10 15 20 25 30 35

f of Nodes (n)

Fig. 14 Effect of TlckerTAIP array size on performance

Table VIII Thmughputs, m MB,/s, of the three array architectures under

different workloads

~ Workload

~ OLTP

:

t/me-

share

small
sclenttfic

large

sc/ent/f/c

Speeds

-z

MEW I A’4/Ps
I

101 101 059(17%)1059(14%) 163 (1 O%)

1 1 ~ 0.43 (0.9%) ~o.7fj (0.8%) 1.69 (1 3%)
–;;. -.+_ - ‘ L_

10 i176 {2 5%) O 76 (~7%) 169 (1 4%)

1 1 I 0.71 (4.2%) f .20(1 .2%) 173 (o 4%)

10 1=2.3 %) 120 (1 9%) 1 73 (o 2%) !

10 ~ 10 823 (4 8%) 8.39 (3.3%) 981 (2.1%) ~

The shading hlghhghts comparable total-MIPS configurations (Relatlve standard cleviatlons are

shown In parenthcse~)

ACM Transaction. on Computer Systems, Vol 12, No 3, August 1994

TlckerTAIP . 265

Ttrouc4wJI m Loads w HOS (rmdom 40KB wni6 WK=SIS)

:F

IJ f_-* -------- -——-——.—--—.
31
~ 1

05} i

o—---___J
o 5 10 15 20 25

#0flmd2perh0st

ta) Fixed-size 40KB writes.

TfWUEW W+bfds W(Hc61(randcm 1M me rape+
20

18
SATF —

.

16
.&mT? Q
FCFS --

- 14
s
~ 12 .&z-::... ---- ..:.. .:

~ to

~.z -

‘6

o~
o 5 10 15 20 25

#0fbnc!5pefhost

(c) Fixed-size 1MB writes.

Thru.I@@ w Lads w H- (OLTP WOikk@

1

SATF —
BNN +

SSTF o
FCFS . !

!0: : x---=~.
f06 - : ----------------------------

g
04 -

02

0-
0 20 40

#0ffcad5Derflo6i
(e) Synthetic OLTP workload.

Mean ~ TIm’6 W F& H@ (~!lb?l 40f@ WI19S)
3 *

SATF -
SNN -

p 25 SSTF .
, FCFS --

jz .

I ‘: ‘ /’;’””:
c = ,“

: /%
s 05 - , ,,

/p
o

0 5 10 15 20 25
#01 bad5G9h05t

(b) Fixed-size 40KB writes.

h4a&nRes+mw Tmevs L0sd5Pw HcsI (mndm1M3ti83)
10

SATF —
BNN -

98
SSTF Q
FCFS -

~
x

.
.,

~: :/./ ~~~ ~

o
0 5 15 20 25

:? ILMIISw I105t

(d) Fixed-size 1MB writes,

01 I
0 20 40 60 lW

#of fOmdsrtlfwsi

(f) Synthetic OLTP workload,

Fig. 15. Effect of different disk-level request-scheduling algorithms on TickerTAIP performance.

The left-hand graphs display throughput as a function of load and scheduling policy, the

right-hand ones the response time.

5 CONCLUSIONS

TickerTAIP is a new parallel architecture for RAID arrays. Our experience is

that it is eminently practical (for example, our prototype implementation took

only 12k lines of commented code). The TickerTAIP architecture exploits its

physical redundancy to tolerate any single point of failure, including single

ACM Transactions on Computer Systems, Vol. 12, No. 3, August 1994.

266 . Pei Cao et al

failures in its distributed controller: it is scalable across a range of system

sizes with smooth incremental growth; and its worker/originator node model

provides considerable configuration flexibility. Further, we showed how to

provide—and prototyped—partial-write ordering to support clean semantics

in the face of multiple outstanding requests and multiple faults, such as

power failures. We have also demonstrated that—at least in this application

—eleven 5MIPS processors are just as good as a single 50MIPS one, and

provided quantitative data on how central and parallel RAID array imple-

mentations compare. Finally, we have demonstrated the performance im-

provements available from more sophisticated request-scheduling algorithms.

Most of the performance differences between the TickerTAIP and central-

ized designs result from the cost of doing parity calculations, and this turns

out to be the main thing that changes with the processor speed: most of the

other CPU-intensive work is hidden by disk delays. One suggestion that has

been made is to improve the lackluster performance of these XOR calcula-

tions in the centralized case by constructing dedicated XOR engines. Unfortu-

nately, it seems that the resulting systems can be unwieldy, in part because

of the high speeds they have to operate at. Because the cost of a processor

system increases faster than linearly with its performance—much of the cost

is in the memory system rather than the processor itself—tackling the

XOR-speed problem in this way is unproductive. It is our contention that

off-the-shelf microprocessors are, in fact, cost-effective XOR engines, and they

bring with them all their advantages of economies of scale in manufacturing

cost, design time, and reliability. Thus it is better, we believe, to use an

approach like TickerTAIP to divide up and parallelize the work to the point

where such microprocessors can be used.

With small request sizes, it is easy for either architecture to saturate the

disks. With larger requests, the difference becomes more marked as parity

calculations become more significant. The difference is also likely to increase

as multiple disks are added to each worker, and as the cost of performing

smarter disk-scheduling algorithms is included. Both improvements are obvi-

ous upgrade paths for TickerTAIP (indeed, we have demonstrated one of

them here); both will make the TickerTAIP architecture even more attractive

than the centralized model.

We recommend the TickerTAIP parallel RAID architecture to future disk

array implementers. Additionally the TickerTAIP architecture is well suited

for use in multicomputers with locally attached disks. In this case, it can

provide multinode RAID resilience without any dedicated or specialized
hardware beyond that already provided for the multicomputer itself.

ACKNOWLEDGMENTS

The TickerTAIP work was done as part of the DataMesh research project at

Hewlett-Packard Laboratories [Wilkes 1992]. The prototype implementation

is based loosely on a centralized version written by Janet Wiener, and uses

the SCSI disk driver developed by Chia Chao. David Jacobson improved the

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994

TickerTAIP . 267

AT& T tasking library to use a double for its time value. Federico Malucelli

provided significant input into our understanding of the sequencing and

request-scheduling options. Chris Ruemmler helped us improve our disk

models.

We also thank the IEEE for allowing us permission to publish this revision,

and the ACM anonymous reviewers for helping us to improve it.

Finally, whence the name? Because tickerT’AIP is used in all the best

pa(rallel)lltills!

REFERENCES

AT& T. 1989. In UnLY System VAT& T C+ + language system release 2.0 selected readings.

Select Code 307-144. AT& T, Indianapolis, In.

BARTLETT, J., BAmm,m, W., CARR, R., GARCIA, D,, GRAY, J., HORST, R., JARDINE, R., LENOSIU, D.,

AND MCGUIRE, D. 1990. Fault tolerance in Tandem computer systems Tech. Rep. 90.5,

Tandem Computers, Cupertino, Calif.

BoR~L, H. 1988. Parallelism and data management. Tech. Rep, ACA-ST-156-88, Microelec-

tronics and Computer Technology Corporation, Austin, Tex.

CH~N, P. M., GIBSON, G, A.j KATZ, R. H., AND PATTERSON, D. A. 1990. An evaluation of

redundant arrays of disks using an Amdahl 5890. In Proceedings of ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, ACM, New York, 74-85.

CLARK, B. E., LAWLUR, F. D., SCHMIDT-STUMPF, W. E., STEWART, T. J., AND TIMMh, G. D. JR. 1988.

Parity spreading to enhance storage access. U.S. Patent 4,761,785; filed 12 June 1986; granted

2 August 1988.

COPELAND, G., ALEXANDER, W., BOU~HT~R, E., AND KELLER. T. 1988, Data placement in Bubba.

In Proceedings of 1988 SIGMOD Internattonul Conference on Management of Data. ACM, New

York, 99-108,

DEWITT, D. J., GERBER, R. H., GRA~F~, G,, HEYTENS, M. L., KUMAR, K. B., AND MURAIJKRISHNA, M.

1986 GAMMA-a high performance dataflow database machine. In Proceedings of the 12th

Znternatzonal Conference on Very Large Data Bases. VLDB Endowment, 228-237.

DEWITT, D. J., GHAN~EHARIZ~DE.H, S., AND SCHNEIDER, D. 1988. A performance analysis of the

Gamma database machine. In Proceedings of 1988 SIGMOD International Conference on

Managen~ent of Data. ACM, New York, 350-360.

DIETRICH, S. W., BROWN, M., CORTES-RELLO, E., AND WUNDERLIN, S. 1992. A practitioner’s

introduction to database performance benchmarks and measurements. Comput. J. 35, (Aug.)

322-331.

DRJUWAU, A. L., SHIRRIFF, K. W,, HARTMAN, J. H., MILLER E. L., SIMHAN, S., KATZ, R. H., LUTZ, K.,

PATTERSON, D. A., LF,F., E, K., CHEN, P. M., AND GIBSON, G. A. 1994. RAID-II: A high-band-

width network file server. In Proceedings of 21st Internat~onal Symposz unz on Computer

Architecture. IEEE, New York, 234-244

DUNPHY, R. H. JR., WALSH, R., AND BOWERS, J. H. 1990. Disk drwe memory. U.S. patent 4, 914,

656; filed 28 June 1988, granted 3 April 1990.

ENGLISH, R. M. AND STEPANOV, A A. 1992. Loge: A self-organizing storage device. In Proceed-

ings of USENIX Wtnter’92 Tech nzcal Conference. USENIX Assoc., Berkeley Calif., 237–251.

GIBSON, G. A., HELLERSTEIN, L., KARP, R. M., KATZ, R. H., AND PATTERSON, D. A. 1989. Failure

correction tecbmques for large disk arrays. In Proceedings of 3rd Znternatzonal Conference on

Architectural Support for Programming Languages and Operating Systems. Oper. Syst. ReL,.

23, Apr., 123-132.

GRAY, J. 1988. A comparison of the Byzantine agreement problem and the transaction commit

problem. Tech Rep 88.6 Tandem Computers, Cupertino, Calif.

GRAY, J. N. 1978. Notes on data base operating systems. In Operating Systems: An Aduanced

Course. Lecture Notes in Computer Science, vol 60. Springer-Verlag, Berlin, 393-481.

GRAY, J., HORST, B., AND WALKKR, M. 1990. Parity striping of disc arrays: Low-cost rehable

storage with acceptable throughput In Proceedings of 16 International Conference on Very

Large Data Bases. VLDB Endowment, 148-159

ACM Transactions on Computer Systems, Vol 12, No 3, August 1994.

268 . Pei Cao et al

HEWLETT-PACKARD. 1991. HP 97556, 97558, and 97560 5,25-znch SCSI Dnk Drz ves: Technzczzl

Manual. Part No. 5960–0115. Hewlett-Packard Company, Boise, Idaho

HEWLETT-PACKARD 1988b. HP 7936 and HP 7937 Disc Drlues Operating and Insiallatlon

Manual. Part No 07937-90902. Hewlett-Packard Company, Boise, Idaho,

HOLLAND, M., AND GIBSON, G. A. 1992. Parity declustering for continuous operation in redun-

dant dmk arrays. In Proceedings of 5th International Conference on Architectural Support for

Programrnzng Languages and Operating Systems Cornput. Arch. News, 20, 23-35.

JACOBSON, D. M. AND WILKES, J. 1991. Disk scheduling algorithms based on rotational posi-

tion. Tech Rep HPL-CSP-91-7, Hewlett-Packard Lahoratoz-ies, Palo AJto, Cahf.

LMVIPSON, B. W. AND STURGIS, H. E, 1981. Atomic transactions. In Dzstrzbuted Systems—Ar-

chltecture and Zmplementatzon. An Advanced Course. Lecture Notes in Computer Science, vol.

105 Sprmger-Verlag, New York, 246-265

LAWLOR, F. D. 1981. Efficient mass storage parity recovery mechamsm In IBM Tech. Dmlos

Bull 2?4, 2 (July), 986-987

LFE, E. K. 1990. Software and performance issues in the unplementatlon of a RAID prototype.

UCB,’CSD 90/573. Computer Science Div., Dept of Electrical Engmeermg and Computer

Sclencc, Univ. of Cahforma, Berkeley, Calif

McKusIcK, M K., Joy, W. N., L~FFLER, S J., AND FABRY, R. S. 1984. A fast file system for

UNIX. In ACM Trans. Comput. Syst. 2, 3 (Aug.), 181-197.

M~NON, J. AND COURTNF,Y, J 1993 The architecture of a fault-tolerant cached RAID con-

troller In Proceedings of 20th International Symposium on Computer Arch ztectare, IEEE, New

York, 76-86.

MENON, J AND KMSON, J 1992 Methods for Improved update performance of disk arrays. In

Proceedings of 25th International Conference on System Sczences. Vol. 1. IEEE, New York,

74-83

M[LLER> E L. AND KATZ, R H 1991 Analyzing the 1/0 behavior of supercomputer apphca-

tlons In Dzgest of Papers, llth IEEE Symposzum on Mass Storage Systems, IEEE, New York,

51 –59

M(TNIY, R R AND LUI, J. C S 1990 Performance analys[s of disk arrays under fadure, In

Pro, w’dlng$ of 16th International Conference on Very Large Data Bases. VLDB Endowment,

162-17’3

N~[<l[[s, P M 1984 Hardware support for advanced data management systems, In IEEE

(’ompuf 17, 11 (Nov.), 29-40.

0[~ 11RI l[IUT, ,J K 1990 Why aren’t operating systems getting faster as fast as hardware? In

I’rm eed[ng~ of USENIX Summer’90 Tech rzzcal Conference, USENIX Assoc , Berkeley, Calif.,

247 !256

P um, A AN[l BAL.iSU~RMWiNIAN, K. 1986 Providing fault tolerance in parallel secondary

storage ~ystcms Tech Rep, CS-TR-057-86, Dept. of Computer Science, Princeton Umv ,

Prlncc.ton, N J

P.41 [PR>(IN, 1) A , CH~N, P GIMWN, G ANI) KATZ, R. H. 1989, Introduction to redundant

arrays of Inexpensive disks (RAID), In Sprzng COMPCON’89, IEEE, New York, 112–117

P~TTLRS(IN. D A , GIBSON, G , AND KATZ, R H 1988 A ca~e for redundant arrays of mexpen-

>lVC d]>ks (RAID) In proce~dmgs of 1988 SIGMOD Internc[tlonal Co?lference on Management

o~ Data ACM, New York.

PAWL1hoW\hl, K 1990. Steady-state simulation of queueing processes. A survey of problems

and +{]lut]on> In A(”M Comput Sure, 22, 2 (,June), 123–170

PCI 1!994 In P(’I Speclficatzon. Intel Corporation, Hlllsboro, Or.

PERIHELION 1991 The Hellos Parallel Operatzng System Prentice-Hall International, London,

RummIL1>l{. (’ ANI) WILKES> J 1993. UNIX disk access patterns. In Proceedings of Winter 1993

[lSENLY LTSENIX Assoc., Berkeley, Cahf., 405-420

S(HUI m’, M E 1988 Considerations in the design of a RAID prototype. Tech. Rep, UCB CSD

88-448. Computrr Science D]v , Dept of Electrical Engmeermg and Computer Science, Umv. of

California. Berkeley, Cahf

SCHULZE, M., GIIIW)N, G , KATZ, R , AND PATTERSON, D 1989 How reliable M a RAID? In

S,artng COitlPCON’89 IEEE, New York, 118-123.

ACM Transaction. on (’oruputer Systems, Vol 12, No 3, August 1994

TickerTAIP . 269

SCSI. 1991. Secretariat, Computer and Business Equipment Manufacturers Association. Draft

proposed American National Standard for information systems—Small Computer System

Interface-2 (SCSI-2), Draft ANSI standard X3 T9.2/86-109, 2 February 1991 (revision 10d).

SELTZER, M., CHEN, P., AND OUSTERHOUT, J. 1990. Disk scheduling revisited. In Proceedings of

Wznter 1990 USENZX Conference. USENIX Assoc., Berkeley, Calif., 313-323.

SHIN, K. G. 1991. HARTS: A distributed real-time architecture. In IEEE Conzput. 24, 5 (May),
25-35.

SIEWIOREK D. P. ANII SWARZ, 1%.S. 1992. Reliable Computer Systems: Design and Evaluation.

2nd ed. Digital Press, Bedford, Mass.

SLOAN, R. D. 1992. A practical implementation of the database machine—Teradata DBC/ 1012.

In Proceedings of 25th International Conference on System ScLences. Vol. 1. IEEE, New York,

320-327.

STONEBRAIWR, M. 1989. Distributed RAID—a new multiple copy algorithm. Tech. Rep.

UCB\ERL M89/56, Electronics Research Lab., Univ. of California, Berkeley, Calif.

WILKES, J. 1992. DataMesh research project, phase 1. In USENIX Workshop on File Systems.

USENIX Assoc., Berkeley, Calif., 63-69.

Wn.KEs, J. 1991. The DataMesh research project. In 7’ranspztttng’91, Vol. 2. 10S Press,

Amsterdam, 547-553.

Recewed October 1993; revLsed May 1994; accepted June 1994

ACM Transact]cms on Computer Systems, Vol 12, No 3, August 1994

