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Abstract

The rapid increase in web usage has led to dramatically
increased loads on the network infrastructure and on in-
dividual web servers. To ameliorate these mounting bur-
dens, there has been much recent interest in web caching
architectures and algorithms. Web caching reduces network
load, server load, and the latency of responses. However,
web caching has the disadvantage that the pages returned
to clients by caches may be stale, in that they may not be
consistent with the version currently on the server. In this
paper we describe a scalable web cache consistency archi-
tecture that provides fairly tight bounds on the staleness of
pages. Our architecture borrows heavily from the literature,
and can best be described as an invalidation approach made
scalable by using a caching hierarchy and application-level
multicast routing to convey the invalidations. We evaluate
this design with calculations and simulations, and compare
it to several other approaches.

1 Introduction

The world-wide-web has become an important component
of the global information infrastructure. The rapid increase
of web usage has imposed a heavy load on the network and
server infrastructure, and significant delays are not uncom-
mon. To mitigate the effects of this increased usage, there
has been much recent interest in developing and deploying
techniques for web caching (see, for example, [8, 29, 33|
and references therein). Web caching has several benefi-
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cial effects: it lowers the load on servers, reduces the overall
network bandwidth required, and lowers the latency of re-
sponses.

However, web caching does have (at least) one serious
disadvantage. If a page has been modified after being stored
in a cache, the version of the page delivered to the requesting
client’ may be inconsistent with the server’s version of that
page. We call such inconsistent pages stale, and call consis-
tent pages fresh; the degree of staleness is the delay between
when the page was changed on the server and when the pre-
vious version was delivered. To make this precise, consider
the version of the page that was delivered to the client. Let
t = M be the time the delivered version was first rendered
invalid by being modified at the server. Let ¢t = R be the
time the cache responds to the client’s request for that page.
We then define the staleness? to be max(0, R — M).

For many pages, being significantly stale is not a serious
problem. For some pages, however, clients may care a great
deal if the pages are substantially stale. For instance, it
is clear that pages devoted to current news stories (e.g.,
CNN) should be as fresh as possible. Other examples of
pages that are sensitive to being stale — we will call such
pages perishable — are catalogs, product information, and
code distribution pages. Perishable pages need not have
zero staleness (i.e., a news page could be a minute or so
out of date without serious harm), but they should not be
significantly stale.

One could most easily meet the freshness needs of per-
ishable pages by circumventing caching; this can be accom-
plished by marking pages as uncacheable, or by merely ex-
pecting users to manually hit the “reload” button. However,
since some perishable pages are likely to be quite popular
— news sites in particular — one would like to ensure the
relative freshness for these pages while retaining the advan-
tages of caching. Because there is a finite latency between
the server and the cache, it is impossible to guarantee abso-
lute freshness (i.e., true consistency between what the cache

1We use the term client to refer to a browser or other user process
at the end host that generates requests for pages.

2Note that even if the staleness is zero by this definition, the page
may be out of date when it actually arrives at the client due to changes
made at the server while the data was in transit to the client; this,
however, is not a problem with the caching infrastructure — since this
source of inconsistency occurs even if the request was sent directly
from the client to the server rather than being handled by a cache —
and so we do not consider it part of being stale.



delivers and the current version at the server) without insti-
tuting write-locking on servers.> While write-locking is sen-
sible for keeping file systems consistent, it makes less sense
for web pages,* since write-locking merely masks the under-
lying reality that the content delivered is different than the
content the server thinks is most current. Thus, the most
practical goal is to merely limit the degree of staleness — i.e.,
to achieve loose consistency — rather than trying to achieve
strict consistency. We believe such loose-consistency guar-
antees should be sufficient for the vast majority of perishable
pages.

In this paper we focus on the design of a scalable web
cache consistency architecture that meets this goal. Our de-
sign retains the benefits of web caching (as listed above),
while providing fairly tight limits on the degree of staleness
of delivered pages. Of course, as we review in Section 2,
there has been much previous work on techniques to achieve
various degrees of consistency for web pages; the architec-
ture we propose combines many of the features of these pre-
vious proposals, melding them together in a scalable fashion.
Moreover, our proposal can easily be extended to support
the pushing of data, in which modified pages are sent to
caches even before clients have requested them.

Since we envision, at least initially, that a small frac-
tion of pages are perishable, our design can be restricted to
those pages that are deemed by the server to be perishable;
that is, our proposal does not change how caches handle
nonperishable pages and only modifies how caches handle
perishable ones. Our design does make use of a caching hi-
erarchy. However, this hierarchy can be replaced by a cache
mesh, as we describe in Section 3.2.

We evaluate this design in two ways. We first investigate
its behavior analytically in a very simplified setting, and
then present simulation results in a somewhat more realis-
tic setting. In both cases we compare our proposed design
against several other schemes.

This paper is addressing the question of design, not of
deployment. That is, we are asking: can one design such
a scalable web consistency architecture? We are most def-
initely not addressing the question of whether such an ar-
chitecture, once designed, should be deployed (although we
discuss this question briefly in Section 7) since the question
of deployment is a complicated cost/benefit tradeoff involv-
ing many nontechnical factors, such as the future usage of
the web and the economics of the ISP business. However, de-
ployment can only occur if a scalable web consistency archi-
tecture exists, and our contribution here is to demonstrate
that such a design is indeed possible.

This paper has 7 sections. We begin in Section 2 by re-
viewing several of the previous approaches to ensuring con-
sistency. We present our approach in Section 3, starting
with our basic scheme and then adding in the ability to
push pages. We then evaluate this design analytically in
Section 4 and through simulations in Section 5. We discuss
additional design issues in Section 6, and conclude with a

3If the cache receives a request for a page, obtains a fresh version
of the page from the server, and then delivers the page to the client,
the page would still be stale when delivered if the page was modified
on the server between the time the server sent the page to the cache
and when it arrived at the cache. The only way to avoid this would
be to write-lock the page during the interval while the page was being
delivered to the cache.

4The crucial distinction between file systems and web pages, in
terms of the role of write-locking, is that web pages have a single
logical writer (the hosting server) whereas files have many logical
writers (they can be written from many hosts). Merging multiple
writers requires strict consistency, whereas handling multiple readers
does not.

brief discussion of our results in Section 7. We include esti-
mates of cache state and network bandwidth requirements
in an appendix.

2 Previous Approaches

All web caching proposals attempt to achieve some degree of
consistency, but the approach taken to achieve consistency
depends greatly on the degree of consistency desired. In this
section we briefly review three basic approaches to consis-
tency. These approaches function both as inspirations for
our proposed architecture and also as benchmarks against
which we evaluate our design in Sections 4 and 5.

2.1 Time-To-Live

The simplest way to achieve some limited form of consis-
tency is to associate a time-to-live with each page. When a
request arrives at a cache after the TTL for the requested
page has expired, the cache sends an If-Modified-Since (IMS)
message to the server (or parent cache) to determine if the
version held by the cache is still valid. If the TTL is fixed
then the staleness is bounded by this TTL (plus the latency
between the server and the cache). Setting small values of
the TTL provides fairly tight consistency guarantees, but
also mitigates against some of the benefits of web caching,
since many IMS requests will be forwarded to the server even
though the page is still valid. The limit of TTL=0 generates
an IMS for every request, thereby guaranteeing no staleness;
we call this scheme poll-always.

It has long been known that files exhibit the property
that the longer they have gone unmodified, the longer they
are likely to go unmodified [3, 4]. In [7] this insight was
used to develop an adaptive TTL scheme in which the TTL
is set, at the first request after each TTL expiration, to
be proportional to the page’s age (current time minus the
last modification time); the algorithm takes, as a parameter,
the constant of proportionality (called the update threshold
in [15]) used to update the TTL. However, adaptive TTL
schemes do not give an upper bound on the staleness of a
page, since the TTL can grow without bound.

2.2 Invalidation

In the TTL approach, the cache can only guess as to whether
a page is still valid. A very different approach to consistency
requires servers to send explicit invalidation signals to caches
when pages are modified. The invalidation approach is most
easily explained, as we do below, when considering only the
interaction between a server and a client without caches as
intermediaries; later, when presenting our design, we will
discuss the role of invalidations in the presence of proxy
caches.

In its simplest incarnation, an invalidation scheme works
as follows: each server keeps track of all clients who have
requested a particular page and then, whenever that page
changes, notifies those clients. We say that servers have
an 4nvalidation contract with the clients so that clients are
assured that they will be informed of any changes to pages
they have read.

While invalidation schemes are effective in limiting stale-
ness, they incur the cost of requiring the server to keep state
on every client of each page. Thus, this approach does not
scale well in the limit of many readers per page; both the
state required to store the list of readers, and the OS and



network burden of having to contact every reader of a page
when it changes, grow linearly in the number of readers.?

This scaling problem can be overcome by using multi-
cast to transmit the invalidations. By assigning a multicast
group to each page, and having clients join the groups asso-
ciated with the pages they have accessed, the burden on the
server is greatly reduced; the server need not keep any read-
ership state, and need only send a single invalidation mes-
sage to inform the group of any page modifications. Such
an approach is described in [28], and the somewhat related
idea of pushing content (rather than sending invalidations)
via multicast is described in [23, 27, 28]. However, while
multicast solves the scaling problems at the server, it cre-
ates (following the law of conservation of difficulty) another
one at the routers. The state required by such schemes
in routers is substantial, easily on the order of hundreds
of thousands of addresses (judging by the proxy traces in
[19]); this is certainly too much for many currently deployed
routers. Moreover, the rate at which clients would be join-
ing and leaving multicast groups, as they read and discard
pages, will likely create an unscalable overhead on the rout-
ing infrastructure [17].

A recent proposal [9] includes information about related
pages in responses to page requests; this information may
include invalidations and delta-encoded page updates. It
can be used to greatly improve consistency on average but
it does not provide staleness assurances.

2.3 Lease

The lease approach to consistency combines features of the
TTL and invalidation approaches; see [13] for the basic ref-
erence on leases in file systems, and see [31] for applications
of these ideas to web caching. In the simplest version of
this approach, whenever a cache stores a page, it requests a
lease from the server. Whenever a page changes, the server
notifies all caches who hold a valid lease of the page; the
invalidation contract applies only while the lease is valid. If
a cache receives a request for a page with an expired lease,
it renews the page’s lease by sending an IMS to the server
before responding to the request. While the lease is valid,
the approach is exactly like invalidation, but the expiration
of leases resembles the TTL approach. One wants to choose
the length of the lease so that the number of readers hold-
ing valid leases remains reasonably small when writes are
made, but most reads occur while the lease is still valid.
In distributed file systems, leases are usually short (seconds
or minutes) [4], but in the Web context using overly short
leases makes the scheme roughly equivalent to TTL.

Yin et al. [31] presented two volume lease algorithms
aimed at reducing validation traffic of short leases. They
assign a long lease to every page, and a short lease to sets
of pages called volumes. A cache must renew a lease when-
ever either the page lease or the volume lease expires. The
advantage of this approach is that the overhead of renew-
ing the short leases is amortized over the many pages in a
volume.

3  Our Approach

Our approach borrows quite freely from these previous ap-
proaches. It is based primarily on multicast-based invalida-

5Also, in the oversimplified version just described, there are ro-
bustness problems when servers lose their state or when network par-
titions occur. These robustness issues can be addressed, as we shall
see in Section 3.
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Figure 1: Example of a single multicast caching hierarchy.
The arrows indicate the propagation directions of heart-
beats.

tions, but avoids the scalability problem by using a hierarchy
of caches.® The multicast groups are associated with caches,
not pages, and the caches send heartbeats to each other that
are the equivalent of cache-to-cache volume leases. In con-
trast to a previous use of volume leases [31], the unit of our
lease is all pages in a cache, instead of a single page or page
group. Caches maintain a server table in order to locate
where servers are attached to the hierarchy. Invalidation
messages for a page, which may be sent both up and down
the hierarchy, are filtered so as to limit the scope of distri-
bution. Client requests are forwarded through the caching
hierarchy to the server or to the first cache containing a
valid copy of the requested page.” We first describe the ba-
sic protocol and then describe how to add pushing to the
architecture.

3.1 Simple Description of Protocol

To describe the algorithm most compactly we first consider
the special case where all caches are infinite, all pages are
part of this consistency architecture, there is a single sta-
ble caching hierarchy with all caches having synchronized
clocks, and no caches fail (although we make no assumption
about the reliability of communication between caches). As-
pects of the design associated with more realistic settings are
addressed in Section 6. The descriptions given here (and in
Section 6) are rather cursory and informal; a more complete
and detailed description of the entire protocol can be found
in [32].

Hierarchy The caching hierarchy (Figure 1) is glued to-
gether by multicast. Each parent cache owns a unique mul-
ticast group, in the sense that it is responsible for allocating
the group address, and it is the only sender in the group.
Each child cache joins the group owned by its parent. Thus,
parents need not know who their children are, and children
can choose their parents freely as long as cycles are pre-
vented, and that is easily accomplished with a convention
on assigning each cache to one of a few levels — e.g., leaf
caches, intermediate caches, and top-level caches — and re-
quiring that parents always outrank their children. We do
not address the issue of hierarchy establishment and mainte-
nance; see [25] for one approach to these issues. We discuss
alternatives to the use of a hierarchy later in this section.

Heartbeats The hierarchy is kept alive by heartbeats. Each
group owner sends out a periodic heartbeat message to its

SWe discuss alternatives to a hierarchy in Section 3.2.
" An extension that allows requests to bypass the caching hierarchy,
thus reducing response latency, is described in Section 6.



associated multicast group; let T be the time period be-
tween heartbeats. The heartbeat functions as a volume lease
of length T to its children; this lease applies to all pages
sent by the cache to its children. The time period of the
lease starts when the message was generated (reflected in
its timestamp), not when it was received. Typically 7 will
be significantly less than 7' (£ = 5 in our simulations) so
that if one or a few consecutive heartbeat are lost — which
is a possibility since we are not sending them reliably — the
lease won’t expire unnecessarily. Each child cache compares
the current time to the last heartbeat’s timestamp (or, more
precisely, the highest timestamp among all received heart-
beats). If this time gap ever reaches T' then the lease on all
pages from that server expires and all such pages are marked
as invalid.

Invalidations On top of these heartbeats we piggyback ex-
plicit invalidations. We need only invalidate pages that have
been requested (by a client or another cache) after they were
last rendered invalid; we call these read pages. Each heart-
beat message contains a list of all read pages that have been
rendered invalid at the parent cache within the last time
period T. Thus, if a read page is rendered invalid at the
parent cache at time ¢ = 0 then by time ¢ = T each child
cache has either received a heartbeat with an invalidation for
that page, or has expired the lease from that parent cache
(and thereby rendered the page invalid). A child cache that
had a previously valid copy of the page will mark it invalid
and propagate the invalidation if and only if the page was
previously read; otherwise it ignores the invalidation.

Attaching Servers In addition to heartbeats going down
the hierarchy, we also have a set of heartbeats traveling up
the hierarchy from servers towards the top-level cache. To
describe this, we first define how servers attach to the hierar-
chy. Each web server is attached to a cache (not necessarily
a leaf cache) in the hierarchy, which we call the server’s
primary cache. Upon attaching, each server must reliably
unicast a JOIN message to its primary cache. This message
is forwarded upwards (by each cache to its parent cache) via
reliable unicast until it reaches the top-level cache. We say
that the parent cache sources a server from a child cache
if it receives that server’s JOIN message from a child cache
(and has not received a LEAVE message for that server; we
define LEAVE messages below). Each cache has a listing of
those servers it sources (i.e., those servers attached below
it); we call this list the server routing table (Figure 2). If a
cache does not source a server, we say that its server routing
table entry for the server points to the parent cache. Note
that the top-level cache knows about all servers attached in
the hierarchy.

Servers send (via unreliable unicast) periodic heartbeats
to their primary cache, also piggybacking invalidations of
any read pages as we described above. Similarly, every child
cache who sources at least one server must unicast heart-
beats to its parent, along with piggybacked invalidations. A
cache can ignore invalidations for unread pages (pages that
are not in residence in the cache are automatically consid-
ered unread pages). Invalidations are thus propagated from
the server to every cache from which the page has been read.
If a cache C1 is closer to the server than cache C2 along this
propagation path, we call C1 an upstream cache (compared
with C2); otherwise, we call it a downstream cache. Each
upstream cache is said to maintain an invalidation contract
with its immediate downstream cache(s) for any page that
has been read by a downstream cache.

— -» response
----- > request

APREY
web server

Figure 2: An example of server routing table setup. Routing
table entries are shown in parentheses next to each cache.
Each entry is in the form (S,C), where C is the next hop
cache towards server S. A “*” indicates a default entry. The
arrows show how requests flow from a client to the server,
and how responses flow in the reverse direction.

When a time period 7" has passed without cache C1 hear-
ing from cache C2 from whom it sources a server, cache C2
and all the servers sourced from cache C2 are removed from
cache C1’s server routing table. Cache C1 then sends a
LEAVE message to its parents and children, notifying them
that those servers are no longer sourced from cache C1, and
therefore all of the pages from those servers should be con-
sidered invalid. (More details are described in Section 6.)
LEAVE messages are a form of invalidation, and are in-
cluded in the heartbeats (rather than being sent reliably).

Handling Requests We now describe how client requests
are handled, as illustrated in Figure 2. Clients can attach to
any cache in the hierarchy; we call this the client’s primary
cache. In particular, a client can attach to its own local
cache (i.e., the browser’s cache) and then use a nearby proxy
cache as a parent cache (as they typically do now). When
a client requests a page, it sends the request to its primary
cache. The primary cache, and recursively all caches the
request visits, first checks to see if the page is resident in the
cache. If it is not, then the cache forwards the request to
the next cache designated by the server routing table. When
the request is fulfilled, by either the originating server or
by some intermediary cache, the response takes the reverse
path through the caching hierarchy towards the client. The
reverse path is automatically set up because every cache
has an open HTTP connection to the the requester before
it responds.

3.2 Discussion

We list below three important properties of this scheme
(proofs can be found in [32]). As stated above we assume a
stable hierarchy, synchronized clocks, and the proper func-
tioning of caches, but make no assumptions about the reli-
ability of communication.

Property 1 If there are no invalidations in transit or wait-
ing to be sent, then if a cache C in the hierarchy has a page
P marked as invalid, then no downstream cache considers P
valid (i.e., it is either invalid or not in residence).

Property 2 When a cache C receives an invalidation for a
page P marked as invalid, it may safely discard the invalida-
tion without affecting the resulting state of all downstream
caches.



Property 3 Assume that each cache uses the same timeout
period T. Consider a server S1, a client attached to cache
C2 requesting the page, and assume that there are H cache-
hops between S1 and C2. Then the mazimal staleness of a
page hosted on S1 delivered to the client is HT .

Property 2 follows directly from Property 1. Together they
allow us to reduce redundant invalidation traffic. Property
3 sets an upper bound of page staleness for every cache in
the hierarchy.

We believe this scheme is a scalable approach to web
cache consistency, and is essentially an application-level ver-
sion of multicast distribution of invalidations. To clarify this
analogy, consider a design which has a multicast group per
version of a page and in which requesting the page is equiv-
alent to joining the group for that version of the page; when
a version of the page is rendered invalid, invalidations are
sent to the group associated with that version, and multicast
routing makes sure the invalidation ends up at every client
and cache that has that version of the page. This is exactly
what happens in our design, except that our design has no
explicit notion of groups, and all “routing” of invalidations
is done by the caches keeping track of the read pages and
forwarding invalidations for those read pages.® The use of
heartbeats facilitates robustness and failure detection.

Before proceeding, we elaborate on the use of caching
hierarchies in this design. Our protocol requires application
level routing to route messages among clients, servers and
caches. Cache hierarchies provide a simple way to do this,
but there are other possible cache organizations. The only
requirement is that the cache organization provides source-
independent and acyclic application-level routing of mes-
sages between servers and caches. That is, there must be a
single (application-level) path between a cache and a server,
and when superimposed, the set of paths to a server from
all caches is loop-free. A cache mesh, in addition to a cache
hierarchy, can also accomplish this goal.

We see the tradeoff between a mesh and a hierarchy as
follows. The hierarchy provides a simple mechanism to re-
duce the (application-level) routing state in caches. This
is particularly true at the leaves of the hierarchy, since a
cache only needs explicit information about servers below
it in a hierarchy. A mesh, on the other hand, eliminates
the bottleneck of a root cache at the expense of increased
state at other caches. Since a mesh organization has neither
implicit information about cache location, as is provided by
the default parent entry in a hierarchy, nor aggregable cache
address allocation as is available in IP routing [12], reducing
the routing state at caches is difficult. In addition, the lack
of aggregation implies increased processing and communica-
tion overhead to establish and maintain the routing state.
For example, information about changes in server state must
be propagated to all caches in the mesh.

Given this tradeoff, we see the choice of a hierarchy as
reasonable for the following reasons. First, it places the
largest burden on a smaller number of caches (root or other
high level caches) that are most easily engineered to meet
this load. Engineering all caches to meet the state require-
ments of a mesh is likely a more difficult problem. Sec-
ond, estimates of the load on root caches, provided in Ap-
pendix A, indicate that the load on the root caches is man-
ageable. Therefore, in this paper we describe our design in
the context of a cache hierarchy, nevertheless, it works for

8Note that our analogy to application-level multicast is completely
unrelated to our use of real multicast to communicate between parent
and child caches.

both meshes and hierarchies. Moreover, hybrid approaches
are possible; for instance, leaf caches could be attached to a
general mesh topology, reducing the state requirements on
leaves and reducing traffic in the core.

Above we assumed an ideal environment for the sake
of discussion, however, our design is capable of handling
various issues related to more realistic contexts: e.g., clock
skew, finite cache, failure recovery, incremental deployment,
etc. We address these issues briefly in Section 6, and refer
the interested reader to [32] for additional details.

3.3 Adding Push to the Architecture

There is one aspect of performance that caching cannot im-
prove: the latency suffered by the first request to an un-
read page. The concept of pushing data from the server to
caches is of some interest, precisely because it reduces this
first access latency so dramatically. While pushing is not
directly related to caching, it fits within our architecture
and addresses an important web performance issue, so we
have included it in our design. We now briefly present a
simple proposal for pushing. One only wants to push pop-
ular pages that are likely to be read before they are modi-
fied again. Servers could identify pages that are sufficiently
popular that they should be pushed, or clients could request
certain pages be pushed (see [32] for designs of that flavor).
Here we present a more adaptive algorithm that chooses
which pages to push based on the request and writing pat-
tern. We call this scheme selective push.

Rather than pushing the entire page, we push only the
delta’s from the previous version of the page, which are typi-
cally rather small [19]. On the way up the caching hierarchy
the updates are sent via reliable unicast. On the way down,
we use a sin%le unreliable multicast sent to a cache’s mul-
ticast group.” Pushing the page does not remove the need
for sending invalidations for the previous version, since the
data could be lost in transit.

We use a heuristic to decide if a page is sufficiently pop-
ular to be pushed. We do not make a single global decision
about whether or not to push a page; instead, each cache,
and the originating server, make their own independent de-
cision about whether or not to push the page. Every cache
(and the server) keeps a counter Ap (initialized to 0) and a
push bit for each of its pages. If the bit is 1, the cache will
forward all pushed updates of the page to all of its down-
stream caches. The heuristic uses three positive constants:
f, v, and . Whenever a cache receives an invalidate of
page P, it sets Ap = Ap — ~; whenever it receives a re-
quest for P, it sets Ap = Ap + 3. If Ap > 0 for some
threshold 6, the cache (or the server) sets the push bit of
the page to 1; otherwise the push bit is set to 0. In ad-
dition, we let each downstream cache notify its immediate
upstream cache when a pushed page is first read; these read
notifications are forwarded recursively until they hit a read
page. This allows caches who have pushed the page to still
get accurate readings on whether the pushed page was read
downstream before the page was invalidated.

Recent work has addressed the issue of pushing web
pages. Continuous Multimedia Push (CMP) [24] assigns a
unique multicast group to every popular page and contin-
uously multicasts pages to their groups. They found that
multicast push is preferable to caching only when pages are

9Unreliable distribution is sufficient, since pushing affects perfor-
mance and not correctness of the protocol. However, one could use
SRM [11] or other reliable multicast protocol for this distribution; we
have not done so in our simulations to reduce complexity, but it is a
very natural design choice.



very popular and change very frequently. LSAM [27] as-
signs one multicast group per “topic”; popular pages of sim-
ilar topic (e.g., SuperBowl) are multicast to a unique group
when they are created or modified. Our scheme is similar in
spirit to these approaches, but quite different in implemen-
tation. We use application-level “routing” of pushes that
is equivalent to multicast, and we adaptively decide which
pages are sufficiently popular to push.

4 Analytical Performance Evaluation

If we assume, as we will throughout this paper, that caches
are effectively infinite,'® then the behavior of our web caching
consistency protocol can be analyzed on a per-page basis; if
no meta-state or page data is deleted from a cache due to
space considerations, then the message generation behavior
(i.e., invalidations, etc.) for a given page is independent of
what happens for all other pages.!! We now analytically
evaluate the performance of our proposed protocol in a very
simple setting. We consider a single client, a single cache,
and a single server. The client sends out requests (reads)
for a particular page, and the server modifies (writes) that
page.

We compare several different web consistency approaches.
The first, omniscient TTL (OTTL), is not a realistic scheme,
but it provides a useful benchmark; in this scheme caches
magically know when a page has been modified and only
send the IMS request in those cases. The second is poll-
always (PA) which, as we discussed in Section 2, is just a
TTL approach with TTL=0. The other two are variants of
our invalidation scheme: our basic invalidation scheme with
no page pushing (BINV) and our invalidation scheme with
pages always pushed (PINV).!? To make the modeling eas-
ier, we assume there is no delay between when invalidations
are generated and their being sent out (i.e., invalidations
don’t wait for the next heartbeat). Thus, all of the protocols
described here provide the same level of strong consistencys;
if we ignore page modifications made after the server has re-
sponded to a request and before the response arrives at the
cache, then there are no stale pages delivered by any of these
protocols. We do not study the looser policies of adaptive
TTL or fixed TTL here because their finite timeout peri-
ods makes the analysis intractable; we evaluate them using
simulation in Section 5.

Since none of these algorithms depends on absolute time,
we care only about the patterns of reads and writes arriving
at a cache. We can characterize the behavior of these algo-
rithms by describing which messages get sent upon one of
these four events: a read following a write (WR), a read fol-
lowing a read (RR), a write following a write (WW), and a
write following a read (RW). Let Frr, Frw, Fwr, Fww de-
note the average rate at which the patterns RR, RW, WR,
and WW occur, respectively. We model the reading and
writing as Poisson processes of rate r and w, respectively,
and so the frequencies of events can be computed as follows:
Frr = r:_—zw, Fww = ﬁ—z, Frw = Fwr = 555

Table 1 summarizes the bandwidth usage, server hit count,
and cache response delay of each protocol for these four
events. The relative performance in terms of server hit
counts and response time holds regardless of the read and

105ee Appendix A for further discussion of this assumption.

1 The only degree of interaction is the number of pages over which
the overhead of heartbeats is shared.

12PINV can be seen as a version of mirroring in which updated
pages are automatically mirrored at remote sites.

[ [ OTTL [ PA [ BINV [ PINV |
RR | delay: 0 delay: 2 d; delay: 0 delay: 0
bw: 0 bw: 2brms bw: 0 bw: 0
hc: 0 he: 1 he: 0 he: 0
RW | bw: 0 bw: 0 bw: binwv bw:
bp+biny
WR | delay: di + d> | delay: di + d2 | delay: di + d=2 | delay: 0
bw: bp+brms bw: bp+bras bw: bp+baeT bw: 0
he: 1 he: 1 he: 1 hc: 0
WW| bw: 0 bw: 0 bw: 0 bw:
bp+biny

Table 1: Table of bandwidth, server hit count, and delays
for each of the four events: RR, RW, WR, WW. b;,, is the
cumulative size of a repeated set of invalidation messages.
bp is the average size of a page. bggr is the size of an HTTP
GET request. brus is the size of an IMS request. bn:f is
the size of a read notification message. d; is one way delay
of IMS, GET, invalidation and responses. d» is the one way
delay of transmitting a page from server to cache.

write rates. PINV completely eliminates server hits,'® and
BINV and OTTL have the same server hit count, which is
less than PA. The same ordering applies to response time:
PINYV has no delays, OTTL and BINV have an intermediate
level of delay, and PA has the most delay. The bandwidth
comparison of these algorithms is less clear and, in some
cases, depends on the values of the various parameters.

For convenience, we assume brars = bino = bney = boeT,
and let b.y; denote this size. Since these are all small packets,
we do not introduce significant errors by ignoring the size
differences. Notice that OTTL uses less bandwidth than
any other scheme. PA uses less bandwidth than BINV if
and only if 2r < w; the tradeoff is between PA sending
an IMS and response on reads following reads versus BINV
sending an invalidate message on writes following reads. PA

bp
uses less bandwidth than PINV if and only if (£)* < H%
Lastly, PINV uses less bandwidth than BINV if and only if
I >1428.
w beti

If one assumes the size of pages dominates the size of the
control messages then the limit of b.y; = 0 may provide some
insight. When b.y; = 0 then all the protocols except PINV
require the same bandwidth (pages are transmitted when-
ever a modified page is first read). BINV has the same per-
formance, in terms of server hit counts and response times,
as the OTTL, our idealized benchmark. BINV has lower
response time and server hit count than PA. This perfor-
mance gap grows as the reading rate increases, since BINV’s
advantage is that it need not contact the server (thereby in-
curring server hit counts and delay) when a valid page is
read; when the read rate is much lower than the write rate,
few of the requests find a valid page at the cache, but as the
read rate increases more of these requests find a valid page
at the cache. Thus, if the bandwidth of control messages can
be ignored, then the main performance criteria separating
BINV from PA are server hit counts and response times, not
bandwidth, and these performance gaps become more sig-
nificant as the reading rate increases. PINV eliminates hit
counts and delays but at the cost of increased bandwidth.

In order to make our analysis in this section tractable, we
assumed a very idealized environment and did not consider
every protocol. In the next section we will use simulations
to evaluate all of the consistency protocols in a somewhat

130f course, this reduction in server hits comes at the cost of the
server pushing the data; however, we believe that the cost of answer-
ing a request may be higher than that of pushing a page update.



more realistic setting.

5 Simulations

In this section we use simulations, performed using the ns [2]
simulator, to evaluate the performance of our proposal, and
to compare it to several other approaches. In particular, we
investigate the performance of our basic invalidation proto-
col (BINV), along with the variants selective push (SINV)
and push-always (PINV), and compare them to poll-always
(PA), adaptive TTL (ATTL), fixed TTL (FTTL) and om-
niscient TTL (OTTL).

We evaluate these various web cache consistency pro-
tocols using two categories of metrics: user-centric metrics
and infrastructure-centric metrics. The user-centric metrics,
which quantify the user’s level of satisfaction with the ser-
vice provided, are client response time'* and staleness. We
measure staleness in three ways: the maximum and aver-
age staleness taken over all pages, and the percentage of
pages which are delivered stale (stale hit rate). Most pre-
vious papers on web consistency used stale hit rate as the
only metric for staleness; we prefer to emphasize the aver-
age staleness, since staleness is not a binary property. That
is, how out-of-date a page is, not just whether or not the
page is stale, may be important. The infrastructure-centric
metrics quantify (aspects of) the burden placed on the net-
work infrastructure by these various protocols; we measure
the total network bandwidth (in byte-hops), the bandwidth
at the server, and the rate of (GET and IMS) requests at
the server.

Recall that several of these algorithms have adjustable
parameters that control their performance: the heartbeat
rate h for the invalidation-based algorithms, the TTL value
for FTTL, and the threshold for ATTL. We are not inter-
ested in measuring the tradeoff between staleness and band-
width achievable by each of these protocols. Rather, we
assume low average staleness is a performance requirement
and ask how much bandwidth and delay are incurred by the
protocols to achieve a particular level of staleness. There-
fore, we set the heartbeat rate for BINV to be 10 per minute
and then vary the parameters for FTTL and ATTL so that
they all have roughly equivalent average staleness.!> The
additional parameters required in SINV are set as follows:
~ = 1 (invalidation constant), 3 = 2 (request constant),
6 = 8 (push threshold).

We begin our simulations with a very basic scenario, and
then later describe several additional scenarios. The results
show that our invalidation scheme can achieve the same stal-
eness as the TTL approaches with lower response time and
overhead. The advantages are most pronounced for popular
pages which do not change often.

5.1 Basic Scenario

In this scenario we consider a single two-level caching hier-
archy (5 leaf caches and a top-level cache) embedded in a
simple network topology, as shown in Figure 3. As we dis-
cussed in Section 4, if we treat the caches as infinite then
the behavior attributed to each page is independent of other
pages. Consequently, we choose the workload in our basic
scenario to have only a single page so that we can focus
more narrowly on how the performance of these consistency

14The latency between sending a request and complete receipt of
the response.

15We are not able to accomplish this in all cases. We elaborate on
this below.

Top-level cache

dummy node

leaf caches

web server (:%:} (LQ (j_a (119 (}D (119 clients

Figure 3: Network topology in the basic scenario. All links
between server/clients and leaf caches have 10Mb bandwidth
and 2ms delay. All links among caches and the dummy node
have 1.5Mb bandwidth and 50ms delay.

protocols depends on the reading and writing patterns of a
page. This single page, chosen to be 1KB in size, is read and
written according to Poisson processes with average rates r
(per-client) and w, respectively. We consider two cases: a
write-dominated (WD) page, where the read rate (per-client)
is one per 2.5 hours and the write rate is 1 per 15 minutes
(% =10); and a read-dominated (RD) page, where the read
rate (per-client) is 1 per 2 minutes and the write rate is 1
per 10 minutes (£ =5).

We now describe some of the simulation details. The
IMS and GET messages are 43 bytes, and each invalidation
record adds an additional 32 bytes to a heartbeat. Because
in reality the header of a heartbeat is amortized over many
pages, we ignore it in these single-page simulations. The
RD and WD simulations were run for approximately one
day and five days (simulation time), respectively, with the
initial 7 and 15 minutes taken to be a warmup period (for
the RD and WD simulations, respectively).

Tables 2 and 3 show the results for RD and WD pages,
respectively. Because of the sensitivity of the results to the
tuning parameters, exactly matching the average staleness
across protocols is difficult. When confronted with this, we
chose parameter values for ATTL and FTTL that yielded
slightly higher average staleness than our BINV benchmark
(e.g., 8.37 and 11.9 msec versus 8.06 msec in Table 2). This
gives us a lower bound on the overhead and delay incurred
for the ATTL and FTTL to match the staleness of BINV.
We first discuss the RD case, and begin by comparing BINV
to the TTL-style protocols. Compared with PA, BINV uses
26% less bandwidth, has 27 times less server hit count and
10 times faster response time. Because FTTL and ATTL
are required to maintain the same low staleness as BINV,
they both have small TTL values (ATTL threshold equals
0.0105 and FTTL time-to-live equals 9.5 seconds) and there-
fore behave like PA. Their bandwidth is slightly higher and
their response time and server hit count are much higher
than those of BINV. BINV’s performance is similar to that
of OTTL, but it has slightly higher bandwidth consumption
due to its invalidation overhead. Comparing BINV to PINV,
we find, as expected, that pushing data reduces response
time and eliminates server hits while increasing bandwidth
by only about 6%. Because the read rate is so much higher
than the write rate, updated pages are eventually fetched
from the server, so pushing them out immediately for this
read-dominated workload does not incur additional band-
width overhead. SINV’s performance is very close to that
of PINV.

Turning to the WD case, we see that the problem of
matching the average staleness across the tunable proto-
cols is exacerbated. This is due to the fewer number of
stale hits (in absolute terms) in a write-dominated work-
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(0.0105) | (9.5)

AS 8.06 8.37 11.9 0.00 0.00 0.34 0.09
MS 4.95 17.00 8.43 0.00 0.00 1.08 0.21
SR 0.38 0.15 0.27 0.00 0.00 0.06 0.05
TB 6.90 8.73 8.42 5.75 9.33 7.35 7.38
CR 0.06 0.53 0.48 0.05 0.61 0.04 0.04
SH 123 2684 2324 124 3300 8 0

SB 158.4 694.1 617.4 | 147.9 | 824.2 | 153.9 | 153.6

Table 2: Statistics of a read-dominated page in the basic
scenario. AS: average staleness (millisecond); MS: maxi-
mum staleness (second); SR: stale hit rate (%). TB: total
bandwidth (MB-Hop). CR: client response time (second).
SH: server hits. SB: server bandwidth (KB).

BINV | ATTL FTTL| OTTL| PA SINV | PINV
(0.1) | (80)

AS 1.22 544.4 13.1 0.00 0.00 1.22 0.00
MS 0.29 76.19 3.11 0.00 0.00 0.29 0.00
SR 0.42 0.84 0.42 0.00 0.00 0.42 0.00

TB 1.40 1.41 1.41 1.35 1.42 1.40 6.16
CR 0.41 0.60 0.61 0.46 0.62 0.41 0.26
SH 155 224 230 151 236 149 1

SB 184.7 193.7 194.9 | 179.1 | 197.2 | 184.8 | 275.4

Table 3: Statistics of a write-dominated page in the basic
scenario.

load. Nonetheless, the data show that BINV’s performance
advantage is now reduced. For the time-to-live value shown
in the table, FTTL has worse staleness than BINV, nearly
the same bandwidth but only about 50% longer response
time and 50% higher server hit count. ATTL has worse
average staleness while the other metrics are comparable to
FTTL. PA has performance very similar to FTTL (reflecting
the very small TTL used in FTTL). Again, PINV achieves
very low response time and server hit count, but this time
at the cost of a factor of 4 in bandwidth consumption. Note
that SINV behaves like BINV in this WD case, but behaved
more like PINV in the RD case; this was the goal of the
adaptive algorithm in SINV, to actively push pages only
when they are read-dominated.

These results are completely consistent with the theo-
retical analysis of Section 4. The major benefits of inval-
idation schemes (over TTL-based schemes) are savings of
response time and server hit count, and these benefits are
much more pronounced in the read-dominated case. Adding
push increases these advantages further, but at the cost of
significantly more bandwidth in the WD case.

In this basic scenario, and in each of the following scenar-
ios, we assume that the heartbeat rate h is greater than the
write rate w times the number of cache-hops H. This will
likely be true for the vast majority of pages, however there
are some pages, such as those containing stock quotes, that
will change faster than % If such pages are also popular,
our invalidation approach will deliver a significant fraction
of pages stale (since the invalidations are still in transit from
server to leaf cache); see [32] for more details. Such pages
are better delivered using multicast techniques, such as Con-
tinuous Multicast Push [24].

5.2 More Complex Topology

In the second scenario, to test the effect of having a more
complicated network topology, we took a 3-level caching hi-
erarchy (leaf, intermediate, and top-level), with a branching

(0.01) (12)

AS 15.6 16.2 17.5 0.00 0.00 2.47 0.88
MS 6.44 26.46 10.47 | 0.00 0.00 1.25 0.94
SR 0.54 0.12 0.34 0.00 0.00 0.26 0.16
TB 18.16 | 23.04 22.67 | 15.55 | 23.83 | 19.45 | 19.53
CR 0.18 0.49 0.44 0.12 0.53 0.12 0.12
SH 124 2290 1880 126 2583 8 1

SB 158.6 | 607.2 560.9 | 150.3 | 694.5 | 154.0 | 153.6

‘ H BINV ‘ ATTL ‘ FTTL‘ OTTL‘ PA ‘ SINV‘ PINV‘

Table 4: Statistics of a read-dominated page in a more com-
plex topology.

BINV | ATTL | FTTL| OTTL| PA SINV | PINV
Il i
AS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TB 6.38 6.47 6.45 6.24 6.48 6.38 26.68
CR 0.76 0.91 0.89 0.76 0.91 0.76 0.68
SH 131 192 186 130 193 131 1

SB 156.1 156.8 156.5 | 154.2 | 161.0 | 156.1 | 274.8

Table 5: Statistics of a write-dominated page in a more
complex topology.

ratio of 2 at each level, and embedded it into a 300 node
random transit-stub network topology created by the GT-
ITM [5] topology generator. The top-level cache and all
intermediate caches are on transit nodes. All leaf caches are
in the stub network associated with the transit node where
the parent intermediate cache resides, and each intermediate
cache is in a different stub network.

Tables 4 and 5 present the results from simulations on
this topology with RD and WD pages, respectively. The
basic relative trends in the data appear unaffected by intro-
ducing a more complicated topology. For the RD page, the
TTL approaches have worse response time and server hit
counts than BINV, and the push approaches offer reduced
response time, server hit counts, and staleness without in-
curring any additional bandwidth. Compared with the RD
case, BINV’s advantages are greatly reduced in the WD case.

5.3 More Complex Workload

The Poisson workload used so far is not intended to be an
accurate model of reality; rather, it is merely a simple test
case. We have augmented the simulations presented here
with simulations on a wide variety of other workloads. We
have considered compound pages, where the page contains
multiple objects (such as embedded graphics). We have also
considered reading and writing processes that are heavy-
tailed and processes that are uniformly distributed. The re-
sults from these simulations are presented in [32]. Those re-
sults were qualitatively similar to these presented here, and
space limitations prevent us from including them. However,
we do want to present data from one additional workload.
Our previous data was generated using artificial read and
write processes. To get a sense of a more realistic scenario,
we now consider a trace-driven workload consisting of the
read sequence of a single page extracted from a real trace.
We pick two pages, one popular and one unpopular, from a
5-day segment of the UCB Home-IP trace [14], and apply
the consistency algorithms to the two pages. The popular
page has 62,582 requests, and the unpopular page has 21.
No page modification data is available for these traces, so we
used a Poisson model with an average of one modification



BINV | ATTL | FTTL| OTTL| PA SINV | PINV
Il v i
AS 1.32 1.36 1.65 0.00 0.00 0.05 0.01
MS 4.69 10.90 8.76 0.00 0.00 2.11 0.18
SR 0.07 0.04 0.06 0.00 0.00 0.01 0.01
TB 27.16 | 75.15 62.07 | 22.03 | 91.75 | 27.07 | 27.07
CR 0.01 0.45 0.33 0.01 0.60 0.01 0.01
SH 119 39087 25182 | 119 58124 | 2 1

SB 72.6 8342 5380 41.8 12381 | 64.8 64.1

Table 6: Statistics of a popular page in the UCB Home-IP
trace.

(0.2) (2800)
AS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TB 279.8 | 281.8 279.2 | 279.2 | 283.0 | 279.8 | 2781.5
CR 0.61 0.80 0.80 0.77 0.83 0.61 0.55
SH 18 19 21 17 21 18 0
SB 42.5 43.1 43.5 42.6 43.5 42.5 217.5

‘ H BINV ‘ ATTL ‘ FTTL OTTL‘ PA ‘ SINV‘ PINV‘

Table 7: Statistics of an unpopular page in the UCB Home-
IP trace.

per hour (based on data in [10]). With this modification
rate, the popular page is read-dominated, and the unpopular
page is write-dominated. Tables 6 and 7 present the results
from simulations for these two pages.

These results are consistent with our previous results.
The only novelty here is the fact that for the popular page
the IMS overhead of the TTL approaches is more evident.
In order to maintain the same staleness as BINV, ATTL
required 3 times as much bandwidth as BINV, and FTTL
more than doubled bandwidth.

5.4 The Effect of Packet Losses

Up to this point, our simulations do not include any packet
losses. We now return to our basic scenario and introduce
per-link packet loss rates in order to evaluate the effect of
packet losses on the consistency protocols.

In our protocol, both invalidations and pushed updates
are sent out via unreliable multicast. When packet loss is
present, we expect that performance will degrade. Because
invalidations are piggybacked in several consecutive heart-
beats, but pushes are sent only once, we expect that inval-
idations are less vulnerable to packet loss than pushes. In
order to test these expectations, we introduced 3% per-link
losses into our basic scenario. For the network shown in
Figure 3, 3% per-link loss rate corresponds to end-to-end
loss rates between 3% and 6% (which is intended to match
the loss rates of between 2.65% and 5.28% found in [22]).
Results are shown in Tables 8 and 9; the data presented are
averages over 9 runs.

Packet loss increases the bandwidth and response time
for all the protocols. BINV’s stale hit rate and average stal-
eness increase slightly, and the maximum staleness increases
significantly, because the lost invalidations need at least an-
other heartbeat interval to reach leaf caches. SINV behaves
similarly to BINV but, as expected, PINV, is more signifi-
cantly affected by packet loss; its average staleness and max-
imum staleness are increased substantially.

When loss rate grows even bigger, some caches will time
out due to consecutively lost heartbeats, and our failure re-
covery mechanism will be triggered (see Section 6). This will

BINV | ATTL | FTTL| OTTL| PA SINV | PINV
Il A i
AS 9.88 12.5 12.2 0.00 0.00 0.73 0.43
MS 7.15 20.77 11.42 | 0.00 0.00 1.81 1.38
SR 0.41 0.27 0.30 0.00 0.00 0.09 0.06
TB 7.16 9.19 8.88 6.01 9.92 7.56 7.58
CR 0.09 0.74 0.67 0.09 0.93 0.05 0.05
SH 128 2543 2154 128 3260 8 1

SB 198.7 | 754.5 669.8 | 180.5 | 936.3 | 194.8 | 192.3

Table 8: Statistics of a read-dominated page in the basic
scenario with 3% per-link loss rate.

BINV | ATTL | FTTL| OTTL| PA SINV | PINV
Nl i
AS 34.9 544.4 333.1 | 0.00 0.00 34.9 1.22
MS 4.40 76.19 76.19 | 0.00 0.00 4.40 0.29
SR 0.84 0.84 0.84 0.00 0.00 0.84 0.42
TB 1.59 1.57 1.54 1.50 1.59 1.59 6.27
CR 0.53 0.93 0.95 0.75 0.89 0.53 0.36
SH 155 239 222 151 239 149 1

SB 224.3 | 236.5 219.1 | 223.0 | 238.8 | 212.1 | 316.4

Table 9: Statistics of a write-dominated page in the basic
scenario with 3% per-link loss rate.

impose a transient increase in response latency (because all
affected cached pages are invalidated, and an IMS will be
generated by the next request).

5.5 Related Work

There have been several recent papers comparing the effec-
tiveness of TTL and invalidation approaches: Worrell [30],
Gwertzman and Seltzer [15], and Cao and Liu [6]. Wor-
rell claimed that when FTTL has similar bandwidth con-
sumption as unicast invalidation, it has 20% stale hits, and
therefore concluded that unicast invalidation is preferable
for strong consistency. Gwertzman and Seltzer argued that
bimodal lifetime of web pages makes ATTL the preferred
choice; their trace-driven simulation showed that ATTL had
few stale hits (<5%) and took much less bandwidth than
unicast invalidation. Using real systems in trace-driven ex-
periments, Cao and Liu confirmed that ATTL had few stale
hits, but they found that ATTL and unicast invalidation had
similar bandwidth usage. Moreover, they found that unicast
invalidation at times led to increased latency because of the
message processing overhead at the server.

Our results differ from those in previous work for a cou-
ple of reasons. Compared to simple unicast invalidation, our
invalidation protocol can avoid much of the redundant inval-
idation traffic. Thus, in most cases, it takes less or the same
bandwidth as ATTL while achieving the same level of page
staleness and resulting in much less server load and client
response time. At the same time, our work is somewhat
complementary to the previous investigations. Because we
focus on single-page workloads when evaluating this pro-
tocol, we are able to identify more precisely the effect of
different reading and writing processes on the results. In ad-
dition, we focus on average staleness, rather than the stale
hit rate, as the crucial staleness metric. Finally, because we
assume that perishable pages require very low staleness, we
focus our simulations on operating regimes with much lower
staleness measures than previous studies.



6 Additional Design Issues

We have presented the basic design of our protocol in an
ideal environment with infinite caches that never fail, a sin-
gle stable hierarchy with synchronized clocks, and with all
pages included in the architecture. In this appendix we dis-
cuss additional aspects of the design to cope with more re-
alistic settings.

Clock Skew In Section 3 we assumed that the clocks in the
caching hierarchy were perfectly synchronized. However, if
the maximal clock skew between a cache and its upstream
and downstream neighbors is bounded by e then the cache
timeout period should be T'—e¢ instead of T'. We assume that
in typical cases T > € so this modification in the protocol
will have little impact.

Finite Cache Caches are, in reality, finite. While we argue
in Appendix A that our design does not require unrealisti-
cally large amounts of state in caches, it is important that
the design can cope with situations where the cache has ex-
ceeded its capacity. First, to keep the invalidation contract
in force, a cache need only remember the meta-data (the
URL and the last-modification time) about the page, and
can freely discard the actual contents of the page. Second,
if the cache is forced to discard the meta-data itself, then
it must send an invalidation for that page to its children
and/or its parent depending on whether the page has been
read from those directions. While this may impact perfor-
mance, the correctness of the protocol is unaffected.

Failure Recovery The algorithm as described deals with
the case where a cache fail-stops. However, it does not de-
scribe how a cache can recover from a failure. We require
that caches recover in a naive state; that is, they invalidate
all pages in the cache and send a LEAVE message to their
parent and child caches. This allows all affected invalidation
contracts to be broken before the cache reattaches. We have
the following property:

Property 4 As long as caches that have failed recover in a
naive state then the three properties in Section 3.1 hold even
in the presence of failures and recoveries.

One remaining problem is how to recover the server rout-
ing entries that were evicted during a partition or lost during
a failure. There are two cases. First, if a parent cache C1
times out a child cache C2 from whom it sourced servers, it
needs to send a JOIN_QUERY after hearing from C2 again.
C1 can piggyback the JOIN_.QUERY in a heartbeat, just as
it does with invalidations. Second, if C2 times out C1, C2
needs to send C1 a JOIN which contains its server routing
table, i.e., all of the servers from which it has heard JOINs.
In both cases, when C1 recovers its routing table, it needs
to notify its parent of its current routing table.

Direct Request Using a hierarchy (or cache mesh) to for-
ward requests to servers can introduce significant delay [1].
Because requests in our hierarchy might travel both up and
down the hierarchy, this risk of delay is higher. However,
we can extend our design so that the client’s primary cache
can, upon a cache miss, go directly to the server to get
the data. When the cache receives the data, it then, after
handing the data to the client, establishes the invalidation
contract by sending a pro forma request up the hierarchy.

The pro-forma request is used merely to establish the re-
quired correct state in the hierarchy, and does not elicit a
reply of data from the caches or the server. The pro-forma
carries with it the Last-Modified time of the page returned
by the server. It stops being forwarded when it hits a cache
which has that version of the page, or meta-data for it, in
residence. If the pro-forma hits a cache (or server) that has
a more recent version of the page in residence, an invalidate
is generated and sent back down the path. If the pro-forma
hits a cache with a valid older version of the page, no action
need be taken since an invalidate is on the way. In this man-
ner, the caching hierarchy provides invalidations while the
delivery of actual web pages bypasses this hierarchy. This
alleviates some of the disadvantages of a web caching hierar-
chy, such as parent cache overloading and increased response
time [26)].

Multiple Hierarchies and Multi-Homing There will obvi-
ously be multiple caching hierarchies in the Internet, al-
though we expect the number to be relatively limited (less
than, say, 100). Our design can easily be extended to handle
these multiple hierarchies by having the Top-level cache of
one hierarchy contact caches in other hierarchies. This can
be accomplished using a single multicast group comprised
of the members of all Top-level caches. Each top-level cache
multicasts its heartbeats to this group, as well as to its multi-
cast group in its own hierarchy. Whenever a top-level cache,
call it TLC1, gets a request for an unknown web server, it
queries the server about its top-level cache, call it TLC2,
and then forwards the request to TLC2 as if TLC2 were a
parent cache.

While our design requires that a server only attaches to
a single cache in a given hierarchy, we allow it to attach to
multiple hierarchies; we call this a multi-homed server. The
design works without significant modification.

Supplying Service to a Subset of Pages We do not expect
that all pages will need the level of consistency provided by
our architecture. In order to provide invalidations on a sub-
set of all web pages, we propose a new HTTP header field
that describes whether or not the page should be subject
to this consistency architecture. The simplest approach is
to have the server set this field. There are some situations
where it might be appropriate to allow a client to set this
field, thereby requesting invalidation service for the page.
Of course, the server must be willing to support this ser-
vice by participating in the sending out of heartbeats and
invalidations. There are some subtle issues in both of these
approaches which are too detailed to discuss here but are
covered in [32].

Deploying in Existing Cache Hierarchies In order to im-
plement our protocol in existing cache hierarchies, we can
enhance ICP [29], the de facto inter-cache communication
protocol, to support our consistency protocol. Four new
types of ICP messages are needed: heartbeat, JOIN, LEAVE,
request notification, and PUSH. If direct request is desired,
another message type, pro forma is needed. Because these
messages do not interact with existing ICP messages, adding
them to ICP is straightforward.

7 Conclusion

In this paper we have presented and evaluated a web cache
consistency protocol based on invalidation. Owur proposal



builds on previous work in the literature, combining the
ideas of multicast invalidations with volume leases and in-
corporating them within a caching hierarchy to make the
design more scalable. Our performance evaluation suggests
that when the heartbeat rate h is larger than the writing
rate times the number of hops (wH), then the invalidation
approach is very effective in keeping pages relatively fresh.
When pages are write-dominated, then the invalidation ap-
proach offers few advantages since all the protocols, if they
are to ensure freshness, must go back to the server to get a
valid page. However, when pages are read-dominated, which
we think will be the common case for perishable pages (e.g.,
CNN and other news pages), then the invalidation approach
offers significant reductions in server hit counts and client re-
sponse time. In both cases, our invalidation scheme requires
similar or less bandwidth than the TTL-style protocols.

Our analysis focused exclusively on the technical aspects
of the protocol. However, the remaining questions, and the
barriers to deployment, may be more economic and institu-
tional in nature. Our design uses a set of relatively stable
and well-managed caching hierarchies (though it can work
with other cache organizations). Currently this does not
describe the current state of web caching, and so assuming
the existence of caching hierarchies may seem like a dubi-
ous foundation on which to build our architecture. How-
ever, the institutional trends in ISPs appear to be one of
consolidation, and in the future these large ISPs may very
well provide such a caching hierarchy as part of their ser-
vice (and the mirroring service provided by @Home is some
evidence in this direction). Moreover, the hierarchy we en-
vision does not require central management (since parents
need not know the list of their children explicitly) nor must
it be deployed ubiquitously to be useful, so the barriers to
its realization are somewhat reduced.

In addition, the deployment of any such a web cache
consistency protocol would only be undertaken if ISPs de-
termine that there is sufficient demand for relatively fresh
versions of perishable pages. It seems clear that perishable
pages comprise only a small fraction of current web usage.
On this basis one might be tempted to dismiss the consis-
tency problem as unimportant. However, if the web is to
serve as the foundation on which much of the information
infrastructure is built, then perhaps it should be augmented
to meet the needs of this class of pages.

Clearly the whole issue of deployment, depending as it
does on such unknowables as the future usage and economics
of the web, and the nature of the ISP business, is far beyond
our ken. We only caution that the growth path of the web
caught many of us by surprise, and we should be humble in
our confidence to predict, based on its current usage and ex-
isting institutional arrangements (where we expect the case
for its deployment is weak) whether the future of the web
would be significantly aided by deploying such a consistency
architecture, and whether it is organizationally feasible. Our
goal here was merely to demonstrate that it is indeed tech-
nically feasible.
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A Estimation of State and Bandwidth Requirements

Our architecture requires cache state and inter-cache com-
munication in order to provide loose consistency. In this
section we provide some very crude estimates on the cache
state and inter-cache bandwidth required by our scheme.
These estimates, which should not be taken as a definitive
quantitative statement about the overhead of the protocol,
indicate that the scheme is indeed feasible.

A.1 State Requirements

Our protocol introduces two additional items into the cache
state: page metadata and the server routing table. We first
estimate the amount of metadata that might be stored in
a cache. If we assume that that a top-level cache holds no
more than 320 million pages (the estimate of all publicly
indexable web pages [18]), and one meta-data record con-
tains 80 bytes (which is enough for a URL, last-modification
time, push counter and several flags), this results in about
25.6GB of metadata. This is quite small compared to mod-
ern large caches [16], and is dwarfed by the storage require-
ments needed to store the actual pages.

Next, we estimate the size of the server routing table.
The top-level cache, if there is only a single hierarchy, has a
list of every server. We assume there are roughly 4 million
web servers (Netcraft’s web server survey [20]). The result-
ing size of the server routing table is on the order of 32MB,
assuming 4 bytes to store each server address and 4 bytes for
each child cache address. This again poses no challenge to
well-equipped caches. Thus, for the purposes of analyzing
our design, we can reasonably assume that caches are effec-
tively infinite (at least as far as meta-data is concerned).

A.2 Invalidation traffic

Our design generates an invalidation every time a read page
is written, and we now seek to estimate how much traffic this

produces. Let’s characterize every page P by a reading rate
rp and a writing rate wp. The number of invalidations gen-
erated by a page is bounded above by max[rp, wp]; we will
call a page write-dominated if rp < wp and read-dominated
if rp > wp. A bound on the invalidation rate for a given
cacheis ), . . max[rp,wp] where the sum is over all
valid pages in the cache.

We first estimate the traffic seen at a top-level cache.
If there is significant logical locality to requests, so that
pages tend to be more frequently requested by clients close
to them in the hierarchy, then there will be many pages
that are never cached at the top-level cache. However, we
have no way of estimating the extent of this effect, and so
will assume the worst case that all pages are indeed cached
at the top-level cache. We estimate that the entire Web
has 1 billion pages, which is three times the size of pub-
licly indexable pages [18]. To estimate rp and wp, we use
numbers from the DEC proxy traces cited in [10]. This
trace covers a large population (7400 distinct clients), and
contains 505,000 requests of 204,000 distinct pages over a
period of 2 days. Most pages, roughly 80%, have only
one access in the trace, and we consider these to be write-
dominated pages. It is difficult to estimate rp from the
trace due to its limited duration. Instead, we use the av-
erage number of such pages read by each user, then extend
that rate to the web population. In the DEC trace, about
50% of the requests went to these write-dominated pages.
We can compute the read rate of such pages by each user:
0.5 523000 » L =0.0002 (request/user/second). We
now extend this to the entire web user population. It is es-
timated that the web has 151 million users as of December,
1998 [21], and we assume that 1% of these users are as active
as those in the DEC trace, and the rest are 100 times less ac-
tive. This yields a total sum of rp over all write-dominated
pages of 0.0002 * (1.51 4 149.49 % 0.01) % 10° = 601 (invali-
dation/second).

We consider the other 20% of pages read-dominated.
From figures in [10], we conservatively estimate their av-
erage change rate as once every 1 hour (wp = 0.00028 per
second). Without any evidence on which to base a more ed-
ucated guess, we conservatively assume that 0.1% of all Web
pages are sufficiently popular to be read-dominated. Recall
we estimate there are 1 billion web pages, so the sum of wp
over all read-dominated pages is 0.00028 % 0.001 % 10° = 280
(invalidations/second).

If we assume that each invalidation is repeated 5 times,
and 32 bytes per invalidation, this yields a total traffic level
of (280 +601) * 1280 = 1.1Mbps. Repeating this calculation
for the AT&T trace in [10] yields an estimate of 1.7Mbps.

We next estimate the traffic at an intermediate-level cache.
We assume that the DEC and AT&T traces are reasonable
representatives of intermediate-level caches; using their es-
timates of the number of readers and the number of pages
in residence (rather than the global numbers used in the
top-level estimates), we arrive at estimates of 75Kbps and
90Kbps for the DEC and AT&T traces, respectively.

The above estimates assume all pages are included in
the comsistency architecture; we do not expect that most
pages will be considered perishable, and so the consistency
architecture will be carrying all web pages only a small frac-
tion of the total web traffic. Moreover, we completely ne-
glected any locality of reference, and made rather generous
assumptions about the number of popular pages (.1% of the
web!). Nonetheless, in spite of these rather pessimistic as-
sumptions, the overall bandwidth levels are rather reason-
able.




