
Proc. Mexican International Conference on Computer Science (ENC 2005), Puebla, Mexico, pages 240–246, Sep. 2005

 240

A COOPERATIVE DISTRIBUTION PROTOCOL

FOR VIDEO-ON-DEMAND

Jehan-François Pâris
1

Department of Computer Science
University of Houston

Houston, TX 77204-3010

Abstract
1

We present a cooperative distribution protocol requiring

clients that watch a video to forward it to the next client.

As a result, the video server will only have to distribute

parts of a video that no client can forward. Our protocol

works best when clients have sufficient buffer capacity to

store each video they are watching until they are done:

when this is the case, the instantaneous server bandwidth

never exceeds the video consumption rate.

In addition, we also show how multicasting can further

reduce the server and the network bandwidth requirements

of the protocol.

1. Introduction

One of the major impediments to the success of video-on-

demand (VOD) services is their high bandwidth

requirements. Assuming that the videos are in MPEG-2

format, each user request will require the delivery of around

six megabits of data per second. Hence a video server

allocating a separate stream of data to each request would

need an aggregate bandwidth of six gigabit per second to

accommodate one thousand concurrent customers.

This situation has led to numerous proposals aimed at

reducing the bandwidth requirements of VOD services.

These proposals can be broadly classified into two groups.

Proposals in the first group are said to be proactive because

they distribute each video according to a fixed schedule that

is not affected by the presence–or the absence–of requests

for that video. They are also known as broadcasting

protocols. Other solutions are purely reactive: they only

transmit data in response to a specific customer request.

Unlike proactive protocols, reactive protocols do not

consume bandwidth in the absence of customer requests.

All these proposals assume a clear separation of functions

between the server, which distributes the video, and the

customers, who watch it on their personal computer or on

their television set. They do not address the case of

collaborative video-on-demand services where customers

1
 Supported in part by the National Science Foundation under

grant CCR-9988390.

are expected to contribute to the distribution of the video.

Similar arrangements already exist in peer-to-peer file

distribution systems. For instance, the BitTorrent system

[4] partitions each file to be distributed into fixed-size

pieces and penalizes customers that are not willing to

redistribute the file pieces they have already downloaded.

We propose to extend the same philosophy to VOD

services. Essentially, we require each client watching a

video to forward the video data it has received to the next

customer requesting the video. We also limit this

obligation to the time window during which the customer

actually watch the video. As a result, some fraction of the

video will still have to be distributed by the server itself.

This new organization has two major advantages. First, it

considerably reduces the server workload. Second, it is

surprisingly simple and does not require any multicast

capability from any of the entities involved in the video

distribution process.

The remainder of the paper is organized as follows. Section

2 reviews previous work on reactive video distribution

protocols. Section 3 introduces our protocol and section 4

discusses its performance while Section 5 discusses a

possible extension using multicast to reduce the bandwidth

requirements of our protocol. Finally section 6 has our

conclusions.

2. Previous Work

Two of the earliest reactive distribution protocols are

batching and piggybacking. Batching [5] reduces the

bandwidth requirements of individual user requests by

multicasting one single data stream to all customers who

request the same video at the same time. Some strategies

even involve delaying customer requests for a short period

of time in order to increase the number of customers

sharing the same data stream. Piggybacking [9] can be

used alone or in combination with batching. It adjusts the

display rates of overlapping requests for the same video

until their corresponding data streams can be merged into a

single stream. Consider for instance, two requests for the

same video separated by a time interval of three minutes.

Increasing the display rate of the second stream by 10

percent will allow it to catch up with the first stream after

30 minutes.

 241

Customer a

Customer b

Customer c

Stream from server

β

Stream from customer a

Stream from server

β

Figure 1: How chaining works

Chaining [12] improves upon batching by constructing

chains of clients such that (a) the first client in the chain

receives its data from the server and (b) subsequent clients

in the chain receive their data from their immediate

predecessor. As a result, video data are actually

“pipelined” through the clients belonging to the same chain.

Since chaining only requires clients to have very small data

buffers, a new chain has to be restarted every time the time

interval between two successive clients exceeds the

capacity β of the buffer of the first client. Figure 1 shows
three sample customer requests. Since customer a is the

first customer, it will get all its data from the server. Since

customer b arrives less than β minutes after customer a, it
can receive all its data from customer a. Finally customer c

arrives more than β minutes after customer a and must be
serviced directly by the server.

Stream tapping [2, 3] or patching [11], assumes that each

customer set-top box has a buffer capable of storing at least

10 minutes of video data. This buffer will allow the set-top

box to “tap” into streams of data on the server originally

created for other clients, and then store these data until they

are needed. In the best case, clients can get most of their

data from an existing stream.

In particular, stream tapping defines three types of streams.

Complete streams read out of a video in its entirety. These

are the streams clients typically tap from. Full tap streams

can be used if a complete stream for the same video started

β≤∆ minutes in the past, where β is the size of the client
buffer, measured in minutes of video data. In this case, the

client can begin receiving the complete stream right away,

storing the data in its buffer. Simultaneously, it can receive

the full tap stream and use it to display the first ∆ minutes
of the video. After that, the client can consume directly

from its buffer, which will then always contain a moving ∆-
minute window of the video. Stream tapping also defines

partial tap streams, which can be used when ∆ > β. In this
case clients must go through cycles of filling up and then

emptying their buffer since the buffer is not large enough to

account for the complete difference in video position.

Complete streamCustomer a

Useful part of complete streamCustomer b

Tap

∆b ∆b

Useful part of complete streamCustomer c

Tap Tap

Useful part of previous tap

∆c ∆c

Figure 2: How stream tapping works

To use tap streams, clients only have to receive at most two

streams at any one time. If they can actually handle a higher

bandwidth than this, they can use an option to the protocol

called extra tapping. Extra tapping allows clients to tap

data from any stream on the VOD server, and not just from

complete streams. Figure 2 shows some sample customer

requests. Since customer a is the first customer, it is

serviced by a complete stream, whose duration is equal to

the duration D of the video. Since customer b arrives b∆

minutes after customer a, it can share D – b∆ minutes of

the complete stream and only requires a full tap of

duration
b

∆ minutes. Finally customer c can use extra

tapping to tap data from both the complete stream and the

previous full tap, and so its service time is smaller than c∆ .

Eager and Vernon's dynamic skyscraper broadcasting

(DSB) [6] is another reactive protocol based on Hua and

Sheu’s skyscraper broadcasting protocol [10]. Like sky-

scraper broadcasting, it never requires the STB to receive

more than two streams at the same time. Their more recent

hierarchical multicast stream merging (HMSM) protocol

requires less server bandwidth than DSB to handle the same

request arrival rate. Its bandwidth requirements are indeed

very close to the upper bound of the minimum bandwidth

for a reactive protocol that does not require the STB to

receive more than two streams at the same time, that is,









+

2
2 1ln

η
η iN

where 2/)51(2 +=η and Ni is the request arrival rate.

Selective catching combines both reactive and proactive

approaches. It dedicates a certain number of channels for

periodic broadcasts of videos while using the other channels

to allow incoming requests to catch up with the current

 242

From serverCustomer a

From customer aCustomer b

From cust. bCustomer c

To a To b To cSERVER

From server

From server

∆t

∆t’

Figure 3: How our cooperative protocol works

broadcast cycle. As a result, its bandwidth requirements

areO(log(λι Li) where λι is the request arrival rate and Lι the

duration of the video [8].

3. Our Protocol

We wanted a protocol that would minimize the server’s

workload without imposing any unnecessary requirements

on the service clients. We thus assumed that:

1. clients would never have to receive video data at a

rate exceeding twice their video consumption rate;

2. clients would never have to forward video data at a

rate exceeding that same video consumption rate;

3. clients should not have to forward video data after

they have finished watching a video;

4. clients should have enough buffer space to store the

previously viewed portion of the video they are

watching until they have finished watching it.

As we can see, our protocol makes few demands on the

transmission capabilities of the client hardware. The sole

notable requirement is that requires clients capable of

forwarding video data at a rate equal to the video

consumption rate, which excludes clients connected to the

Internet through a link having insufficient upload

bandwidth. In contrast, the protocol requires a rather large

client buffer as storing an entire video in MPEG-2 format

requires a few gigabytes. Several factors motivated this

choice. First, requiring clients to store the previously

viewed portion of the video they are watching is essential to

guaranteeing that the instantaneous server bandwidth will

never exceed the video consumption rate. Second, the

diminishing cost of every kind of storage let it be RAM,

flash memory or disk drives, makes this requirement less

onerous today than it would have been a few years ago.

Finally, we expected many clients to keep in their buffer the

previously viewed portion of the video they are watching in

order to provide the equivalent of a VCR rewind feature.

Request 1

Request 2

Request 3

…

Request i

Server

t2 – t1

t3 – t2

ti – t(i – 1)

To customer 1 To 2 To 3 To i…

Figure 4: How the protocol handles a batch of requests

Consider now a video of duration D and a request for that

video from a customer c arriving at the server at time t.

Let∆t denote the time interval between that request and the

last request for the same video and let b designate the

customer who issued that last request. Our basic

cooperative protocol will operate in the following fashion:

1. If ∆t ≥ D, there is no overlap between the current
request and the previous request for the same video;

the server will then initiate a new transmission of the

video, starting at time t and ending at time t + D.

2. If ∆t < D, there is an overlap between the current

request and the previous request for the same video;

as the servicing of that previous request will end at

time t – ∆t + D; the server will thus instruct client b to

forward the first D – ∆t minutes of that video to client

c. In addition, it will schedule a transmission of the

last ∆t minutes of the video to client c, starting at

time t – ∆t + D and ending at time t + D.

Consider for instance how the protocol would handle the

three requests displayed in Figure 3. The first request to the

video will be entirely serviced by the server. The second

request arrives before the first request is still being serviced.

The server will thus instruct customer a to forward the first

D – ∆t minutes of the video to customer b and schedule a

transmission of the last ∆t minutes of the video to the same

customer. Similarly, the server instruct customer b to

forward the first D – ∆t’ minutes of the video to customer c

and schedule a transmission of the last ∆t’ minutes of the

video to the same customer.

More generally, the amount of time spent by the server to

service a request will always be given by max(D, ∆t), where

D is the duration of the video and ∆t is the time interval

between the request being serviced and its immediate

predecessor. In addition, the service times of these requests

will never overlap, which means that the server instantane-

ous bandwidth will never exceed the video consumption

rate.

 243

To demonstrate this property, let us consider an arbitrary

batch of n consecutive requests for a given video. Let us

further assume (a) that these requests overlap, that is, they

arrive at arbitrary times t1, t2, …, tn such that ti+1 – ti < D for

i = 2, 3, …, n and (b) that the first request does not overlap

with any previous request. As seen on Figure 4, the server

will start servicing the first request at time t1 and end it at

time t1 + D. The second request will get the first D (t2 – ti)

minutes of the video from the customer that issued the first

request, and the remaining t2 – t1 minutes from the server,

which will start its transmission at time t1 + D and end it at

time t2 + D. Similarly, the third request will be get the first

D – (t3 – t2) minutes of the video from the customer that

issued the second request, and the remaining t3 – t2 minutes

from the server, which will start its transmission at time

t2 + D and end it at time t3 + D. More generally, the ith

request will be get the first D – (ti – ti–1) minutes of the video

from the customer that issued the (i – 1)th request, and the

remaining ti – ti–1 minutes from the server, which will start

its transmission at time ti–1 + D and end it at time ti + D. In

other words, the server will never have to send data to a

customer before it has finished sending data to the previous

customer. Since the server always sends these data at the

video consumption rate, its instantaneous bandwidth will

never exceed that rate

While our protocol is built upon Sheu, Hua and

Tavanapong’s chaining technique [12], it makes a much

more extensive use of the wider customer buffer spaces that

are available today. As a result, it requires much less server

bandwidth.

We should also note that our protocol does not require

clients to receive data at any rate than their video

consumption rate and does not require any multicasting

either at the server or at the clients.

3.1 Fault-Tolerance Issues

To operate correctly, our protocol requires all customers of

the video service to forward the video data they have

received to the next customer requesting the video. As a

result, any customer site failure will deprive all subsequent

customers from their video data. This is clearly not an

acceptable state of affairs and we need a mechanism

allowing the protocol to handle customer site failures either

resulting from an equipment malfunction or from a volun-

tary disconnection.

There is a simple solution to the problem. Consider for

instance the scenario of Figure 3 where customer c receives

most of her video data from customer b, who receives most

of her video data from customer a. Hence any failure of

customer b will immediately stop the flow of data to

customer c. Fortunately for us, a failure of customer b will

also free customer a from her obligation of forwarding her

video data to customer b thus allowing to forward her video

data to customer c.

0

1

2

3

4

5

6

7

8

9

10

1 10 100 1000

Requests/hour

B
a
n
d
w
id
th
 (
c
h
a
n
n
e
ls
)

Stream Tapping

Coop α=0.2

Coop α=0.5

Coop

Figure 5: Server bandwidth requirements of the coopera-

tive video distribution protocol

Making the protocol fault-tolerant will thus require provid-

ing each customer with the addresses of the last two of

three customers that have requested the video. Whenever a

customer detects a failure of her immediate predecessor,

she will thus be able to notify her next to last predecessor

and her server and request them to adjust their data

flows.Once that next to last predecessor and the server have

completed this task, everything will happen as if the

customer that failed never requested the video.

3.2 Handling Customers with Small Buffers

We have assumed so far that all customers had enough

buffer space to store the previously viewed portion of the

video they are watching until they have finished watching

it. This will not always be possible either because the

limitations of some customer equipment or the durations of

some videos.

Consider for instance the case when customers can only

store in their buffers a fraction α of the video they are

watching. These customers will only keep in their buffers

the first minutes of the video for αD minutes. After that,
these data will be overwritten.

The easiest way to integrate these customers into our coop-

erative video distribution protocol is to modify the

threshold used to decide whether the server will initiate a

new transmission of the video. Our protocol now becomes:

1. If ∆t ≥ αD, the server will initiate a new transmission
of the video.

2. If ∆t < αD, the server will instruct the previous
customer to forward the first D – ∆t minutes of the

video to new customer and In addition, it will

schedule at later time a transmission of the last ∆t

minutes of the video.

 244

0

1

2

3

4

1 10

Requests/hour

B
a
n
d
w
id
th
 (
c
h
a
n
n
e
ls
)

Stream Tapping

Coop α=0.2

Coop α=0.5

Coop

Figure 6: Server bandwidth requirements of the

cooperative video distribution protocol at low arrival rates

This simple solution has only one drawback. As we will

see, it increases the server workload whenever the time

interval ∆t is greater than αD but lesser than D.

4. Performance Evaluation

Figure 5 compares the server bandwidth requirements of

our cooperative video distribution protocol with those of the

stream tapping protocol for arrival rates varying between

one and one thousand customers per hour. The two curves

labeled “Coop α=0.2” and “Coop α=0.5” refer to versions
of the protocol accommodating customers that can only

keep in their buffer a fraction α of each video, that is 20
percent of the video for α=0.2 and 50 percent for α=0.5.
Figure 6 displays in more detail the server bandwidth

requirements of our protocol at arrival rates lesser than ten

arrivals per hour. In both cases, we assumed that the server

was broadcasting a two-hour video and that request arrivals

could be modeled by a Poisson process. All bandwidths are

expressed in “channels,” that is, in multiples of the video

consumption rate.

As we can see, our new protocol performs much better than

stream tapping when customers can store at least 50 percent

of the video in their local buffer. Assuming that customers

can only store 20 percent of the video significantly

increases the server bandwidth requirements of

of the protocol for request arrival rates between 2 and 5

arrivals per hour. Even then, the server bandwidth

requirements of the protocol never exceed two times the

video consumption rate.

In addition, all versions of our protocol perform much

better than stream tapping whenever the customer arrival

rate exceeds 5 requests per hour.

From serverCustomer a

Tapping

Customer b

From cust. b

Customer c

From cust. a
∆t

∆t’

Tapping

Figure 7: How clients could “tap” data from a server stream

5. A Possible Extension

A major drawback of our protocol is its heavy consumption

of network bandwidth. Since it does not use multicasting

the total network bandwidth BN required by our protocol is

given by

BN = ADb,

where A is the request arrival rate, D the video duration and

b the video consumption rate. Consider, for instance, the

case of a two-hour video in MPEG-2 format. Its average

bandwidth requirements are likely to be around six

megabits per second. An arrival rate of 5 customers per

hour would then result in an average network bandwidth of

sixty megabits per second.

The best way to reduce this bandwidth consumption is

through the use of multicast since it would allow the same

data streams to be shared by many customers. Given that

most of the network bandwidth required by our protocol

results from client-to-client data transfers, implementing

multicast at the server alone would not solve the problem.

Multicast should be used instead by the server and all

clients that forward data. This could be done through

overlay or application-level multicast [1, 13].

Consider, for instance, the case of a customer b requesting a

video just after the previous customer a has received its

video data directly from the server. As shown on Figure 7,

customer b could get most of its video data by “tapping”

into the video stream sent by the server to customer a. This

would save bandwidth because

1. customer a would now send to customer b the ∆t first

minutes of the video rather than the D – ∆t first

minutes of the video, and

2. the server would not have to send to customer b the ∆t

last minutes of the video.

 245

Watching the videoCustomer a

Tapping

Customer b

From b

Customer c

From

server

∆t

∆t’

From customer a

Taps

streams

from a and

from server

Figure 8: How clients could “tap” data from a client stream

The same approach could be followed by the next

customer: it would “tap” into the video stream sent by the

server to customer a and get from customer b the ∆t + ∆t’

first minutes of the video.

Another significant bandwidth savings could occur

whenever a customer c follows a customer b that got the

D – ∆t first minutes of the video from a previous customer

a and the ∆t last minutes of the video from the server. As

shown on Figure 8, customer c could tap the streams

respectively sent to customer b by customer a and the

server. This would save bandwidth because

1. customer b would now send to customer b the ∆t’ first

minutes of the video rather than the D – ∆t’ first

minutes of the video, and

2. the server would not have to send to customer b the ∆t’

last minutes of the video.

Both techniques assume that clients can “tap” a stream

while receiving data from another stream, which means that

they should be able to receive data from two different

sources at a total rate equal to twice the video consumption

rate.

Both techniques assume that clients can “tap” a stream

while receiving data from another stream, which means that

they should be able to receive data from two different

sources at a total rate equal to twice the video consumption

rate.

Figures 9 and 10 compare the bandwidth requirements of

cooperative protocols that use and do not use multicasting

to reduce network traffic. As before, we assumed that the

server was broadcasting a two-hour video and that request

arrivals could be modeled by a Poisson process. To avoid

counterproductive tappings, we compared the bandwidth

cost of each potential new tap with the bandwidth cost of all

requests sharing the same stream. Tapping is then allowed

if the former is less than 1 + ε times the latter. Otherwise, a
new stream is initiated. This criterion is similar, but not

identical to that used by Carter and Long in their stream

tapping protocol [2, 3].

Our data show that multicasting would dramatically alter

the bandwidth requirements of our protocol. First, the

0

1

2

1 10 100 1000
Requests/hour

B
a
n
d
w
id
th
 (
c
h
a
n
n
e
ls
)

Coop

Coop with Multicast

Figure 9: Server bandwidth requirements of the coopera-

tive video distribution protocol with and without multi-

casting

1

10

100

1000

1 10 100 1000

Requests/hour

B
a
n
d
w
id
th
 (
c
h
a
n
n
e
ls
)

Coop

Coop with Multicast

Figure 10: Total bandwidth requirements of the coopera-

tive video distribution protocol with and without multi-

casting

server bandwidth requirements of the cooperative protocols

actually decrease when the customer arrival rate increases

above one request per hour. More importantly, the network

bandwidth requirements of the protocol always remain

below 63 times the video consumption rate, even at

customer arrival rates as high as 1,000 requests per hour.

We should emphasize that these results are very

preliminary. In particular, we did not investigate the actual

limitations of user-level multicast nor did we explore the

possible tradeoffs between reducing the server workload

and the network bandwidth requirements of our protocol.

 246

6. Conclusions

We have presented a cooperative distribution protocol

requiring clients that watch a video to forward it to the next

client. As a result, the video server will only have to

distribute the parts of a video that no client can forward.

Our protocol works best when clients have sufficient buffer

capacity to store the previously viewed portion of the video

they are watching until they have finished watching it. In

that case, the server bandwidth requirements of the protocol

never exceed one time the video consumption rate.

We also showed how multicasting can further reduce the

server and the network bandwidth requirements of the

protocol. More work is still needed to investigate the actual

limitations of user-level multicasting as well as cooperative

protocols taking into account the physical locations of the

customers on the network.

Acknowledgements

We wish to thank Professor Ying Cai for having pointed to

us the chaining method.

References

[1] Banerjee S., C. Kommareddy, K. Kar, B.
Bhattacharjee, . Khuller Construction of an efficient
overlay multicast infrastructure for real-time
applications. Proc. IEEE INFOCOM Conf., San
Francisco, pp. 1-11. April 2003.

[2] Carter, S. W. and D. D. E. Long. Improving video-

on-demand server efficiency through stream tapping.

Proc. 5
th

 Int’l. Conf. on Computer Communications

and Networks, pp. 200-207, Sep. 1997.

[3] Carter, S. W. and D. D. E. Long. Improving

bandwidth efficiency on video-on-demand servers.

Computer Networks and ISDN Systems, 30(1–2):99–

111.

[4] Cohen, B. Incentive Build Robustness in Bit

Torrent. Proc. Workshop on Economics of Peer-to-

Peer Systems, Berkeley, CA, 2003.

[5] Dan, A., P. Shahabuddin, D. Sitaram and D.

Towsley. Channel allocation under batching and

VCR control in video-on-demand systems. Journal

of Parallel and Distributed Computing, 30(2):168–

179, Nov. 1994.

[6] Eager, D. L. and M. K. Vernon. Dynamic skyscraper

broadcast for video-on-demand. Proc. 4
th

Int’l

Workshop on Advances in Multimedia Information

Systems, pages 18–32, Sep. 1998.

[7] Eager, D. L., M. K. Vernon and J. Zahorjan.

Minimizing bandwidth requirements for on-demand

data delivery. Proc. 5
th

Int’l Workshop on Advances

in Multimedia Information Systems, , Oct. 1999.

[8] Gao, L., Z.-L Zhang and D. Towsley. Catching and

selective catching: efficient latency reduction

techniques for delivering continuous multimedia

streams. Proc. of the 1999 ACM Multimedia Conf.,

pp. 203–206, Nov. 1999.

[9] Golubchik, L., J. Lui, and R. Muntz. Adaptive

piggybacking: a novel technique for data sharing in

video-on-demand storage servers. ACM Multimedia

Systems Journal, 4(3): 140–155, 1996.

[10] Hua, K. A. and S. Sheu. Skyscraper broadcasting: a

new broadcasting scheme for metropolitan video-on-

demand systems. Proceedings of the ACM

SIGCOMM '97 Conf., pp. 89–100, Sept. 1997.

[11] Hua, K. A., Y. Cai, and S. Sheu. Patching: a multi-

cast technique for true video-on-demand services.

Proc. 6
th

 ACM Multimedia Conf., pp. 191–200, Sep.

1998.

[12] Sheu, K. A. Hua, and W. Tavanapong. Chaining: A

Generalized Batching Technique for Video-on-

Demand Systems Proc. IEEE Int'l Conf. on

Multimedia Computing and Systems, pp. 110-117,

June 1997.

[13] Xu, Z., Xu, C. Tang, S. Banerjee, and S.-J. Lee.

RITA: Receiver Initiated Just-in-Time Tree

Adaptation for Rich Media Distribution, Proc. 13th

Int’l Workshop on Network and Operating Systems

Support for Digital Audio and Video, pp. 50–59,

June 2003.

