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Abstract
1
 

We present a cooperative distribution protocol requiring 

clients that watch a video to forward it to the next client.  

As a result, the video server will only have to distribute 

parts of a video that no client can forward.  Our protocol 

works best when clients have sufficient buffer capacity to 

store each video they are watching until they are done: 

when this is the case, the instantaneous server bandwidth 

never exceeds the video consumption rate. 

In addition, we also show how multicasting can further 

reduce the server and the network bandwidth requirements 

of the protocol.   

1. Introduction 

One of the major impediments to the success of video-on-

demand (VOD) services is their high bandwidth 

requirements.  Assuming that the videos are in MPEG-2 

format, each user request will require the delivery of around 

six megabits of data per second.  Hence a video server 

allocating a separate stream of data to each request would 

need an aggregate bandwidth of six gigabit per second to 

accommodate one thousand concurrent customers.  

This situation has led to numerous proposals aimed at 

reducing the bandwidth requirements of VOD services.  

These proposals can be broadly classified into two groups.  

Proposals in the first group are said to be proactive because 

they distribute each video according to a fixed schedule that 

is not affected by the presence–or the absence–of requests 

for that video.  They are also known as broadcasting 

protocols.  Other solutions are purely reactive: they only 

transmit data in response to a specific customer request.  

Unlike proactive protocols, reactive protocols do not 

consume bandwidth in the absence of customer requests.   

All these proposals assume a clear separation of functions 

between the server, which distributes the video, and the 

customers, who watch it on their personal computer or on 

their television set.  They do not address the case of 

collaborative video-on-demand services where customers 
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are expected to contribute to the distribution of the video.  

Similar arrangements already exist in peer-to-peer file 

distribution systems.  For instance, the BitTorrent system 

[4] partitions each file to be distributed into fixed-size 

pieces and penalizes customers that are not willing to 

redistribute the file pieces they have already downloaded. 

We propose to extend the same philosophy to VOD 

services.  Essentially, we require each client watching a 

video to forward the video data it has received to the next 

customer requesting the video.  We also limit this 

obligation to the time window during which the customer 

actually watch the video.  As a result, some fraction of the 

video will still have to be distributed by the server itself. 

This new organization has two major advantages.  First, it 

considerably reduces the server workload.  Second, it is 

surprisingly simple and does not require any multicast 

capability from any of the entities involved in the video 

distribution process. 

The remainder of the paper is organized as follows. Section 

2 reviews previous work on reactive video distribution 

protocols.  Section 3 introduces our protocol and section 4 

discusses its performance while Section 5 discusses a 

possible extension using multicast to reduce the bandwidth 

requirements of our protocol.  Finally section 6 has our 

conclusions. 

2. Previous Work 

Two of the earliest reactive distribution protocols are 

batching and piggybacking.  Batching [5] reduces the 

bandwidth requirements of individual user requests by 

multicasting one single data stream to all customers who 

request the same video at the same time.  Some strategies 

even involve delaying customer requests for a short period 

of time in order to increase the number of customers 

sharing the same data stream.  Piggybacking [9] can be 

used alone or in combination with batching.  It adjusts the 

display rates of overlapping requests for the same video 

until their corresponding data streams can be merged into a 

single stream.  Consider for instance, two requests for the 

same video separated by a time interval of three minutes.  

Increasing the display rate of the second stream by 10 

percent will allow it to catch up with the first stream after 

30 minutes. 
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Figure 1: How chaining works 

Chaining [12] improves upon batching by constructing 

chains of clients such that (a) the first client in the chain 

receives its data from the server and (b) subsequent clients 

in the chain receive their data from their immediate 

predecessor.  As a result, video data are actually 

“pipelined” through the clients belonging to the same chain.  

Since chaining only requires clients to have very small data 

buffers, a new chain has to be restarted every time the time 

interval between two successive clients exceeds the 

capacity β of the buffer of the first client.  Figure 1 shows 
three sample customer requests.  Since customer a is the 

first customer, it will get all its data from the server. Since 

customer b arrives less than β minutes after customer a, it 
can receive all its data from customer a.  Finally customer c 

arrives more than β minutes after customer a and must be 
serviced directly by the server. 

Stream tapping [2, 3] or patching [11], assumes that each 

customer set-top box has a buffer capable of storing at least 

10 minutes of video data.  This buffer will allow the set-top 

box to “tap” into streams of data on the server originally 

created for other clients, and then store these data until they 

are needed.  In the best case, clients can get most of their 

data from an existing stream. 

In particular, stream tapping defines three types of streams. 

Complete streams read out of a video in its entirety.  These 

are the streams clients typically tap from.  Full tap streams 

can be used if a complete stream for the same video started 

β≤∆ minutes in the past, where β is the size of the client 
buffer, measured in minutes of video data. In this case, the 

client can begin receiving the complete stream right away, 

storing the data in its buffer. Simultaneously, it can receive 

the full tap stream and use it to display the first ∆ minutes 
of the video. After that, the client can consume directly 

from its buffer, which will then always contain a moving ∆-
minute window of the video.  Stream tapping also defines 

partial tap streams, which can be used when ∆ >  β. In this 
case clients must go through cycles of filling up and then 

emptying their buffer since the buffer is not large enough to 

account for the complete difference in video position. 

Complete streamCustomer a

Useful part of complete streamCustomer b

Tap

∆b ∆b

Useful part of complete streamCustomer c

Tap Tap

Useful part of previous tap

∆c ∆c
 

Figure 2: How stream tapping works 

To use tap streams, clients only have to receive at most two 

streams at any one time. If they can actually handle a higher 

bandwidth than this, they can use an option to the protocol 

called extra tapping.  Extra tapping allows clients to tap 

data from any stream on the VOD server, and not just from 

complete streams.  Figure 2 shows some sample customer 

requests.  Since customer a is the first customer, it is 

serviced by a complete stream, whose duration is equal to 

the duration D of the video. Since customer b arrives b∆  

minutes after customer a, it can share D – b∆  minutes of 

the complete stream and only requires a full tap of 

duration
b

∆  minutes.  Finally customer c can use extra 

tapping to tap data from both the complete stream and the 

previous full tap, and so its service time is smaller than c∆ . 

Eager and Vernon's dynamic skyscraper broadcasting 

(DSB) [6] is another reactive protocol based on Hua and 

Sheu’s skyscraper broadcasting protocol [10].  Like sky-

scraper broadcasting, it never requires the STB to receive 

more than two streams at the same time.  Their more recent 

hierarchical multicast stream merging (HMSM) protocol 

requires less server bandwidth than DSB to handle the same 

request arrival rate.  Its bandwidth requirements are indeed 

very close to the upper bound of the minimum bandwidth 

for a reactive protocol that does not require the STB to 

receive more than two streams at the same time, that is, 
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where 2/)51(2 +=η  and Ni is the request arrival rate. 

Selective catching combines both reactive and proactive 

approaches.  It dedicates a certain number of channels for 

periodic broadcasts of videos while using the other channels 

to allow incoming requests to catch up with the current  
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Figure 3: How our cooperative protocol works 

broadcast cycle.  As a result, its bandwidth requirements 

areO(log(λι Li) where λι is the request arrival rate and Lι the 

duration of the video [8]. 

3. Our Protocol 

We wanted a protocol that would minimize the server’s 

workload without imposing any unnecessary requirements 

on the service clients.  We thus assumed that: 

1. clients would never have to receive video data at a 

rate exceeding twice  their video consumption rate; 

2. clients would never have to forward video data at a 

rate exceeding that same video consumption rate; 

3. clients should not have to forward video data after 

they have finished watching a video; 

4. clients should have enough buffer space to store the 

previously viewed portion of the video they are 

watching until they have finished watching it. 

As we can see, our protocol makes few demands on the 

transmission capabilities of the client hardware.  The sole 

notable requirement is that requires clients capable of 

forwarding video data at a rate equal to the video 

consumption rate, which excludes clients connected to the 

Internet through a link having insufficient upload 

bandwidth.  In contrast, the protocol requires a rather large 

client buffer as storing an entire video in MPEG-2 format 

requires a few gigabytes.   Several factors motivated this 

choice.  First, requiring clients to store the previously 

viewed portion of the video they are watching is essential to 

guaranteeing that the instantaneous server bandwidth will 

never exceed the video consumption rate.  Second, the 

diminishing cost of every kind of storage let it be RAM, 

flash memory or disk drives, makes this requirement less 

onerous today than it would have been a few years ago.  

Finally, we expected many clients to keep in their buffer the 

previously viewed portion of the video they are watching in 

order to provide the equivalent of a VCR rewind feature.  

Request 1

Request 2

Request 3

…

Request i

Server

t2 – t1

t3 – t2

ti – t(i – 1)

To customer 1 To 2 To 3 To i…

Figure 4: How the protocol handles a batch of requests 

Consider now a video of duration D and a request for that 

video from a customer c arriving at the server at time t.  

Let∆t denote the time interval between that request and the 

last request for the same video and let b designate the 

customer who issued that last request.  Our basic 

cooperative protocol will operate in the following fashion: 

1. If ∆t ≥ D, there is no overlap between the current 
request and the previous request for the same video; 

the server will then initiate a new transmission of the 

video, starting at time t and ending at time t + D. 

2. If ∆t < D, there is an overlap between the current 

request and the previous request for the same video; 

as the servicing of that previous request will end at 

time t – ∆t + D; the server will thus instruct client b to 

forward the first D – ∆t minutes of that video to client 

c.  In addition, it will schedule a transmission of the 

last ∆t minutes of the video to client c, starting at 

time t – ∆t + D and ending at time t + D. 

Consider for instance how the protocol would handle the 

three requests displayed in Figure 3.  The first request to the 

video will be entirely serviced by the server.  The second 

request arrives before the first request is still being serviced.  

The server will thus instruct customer a to forward the first 

D – ∆t minutes of the video to customer b and schedule a 

transmission of the last ∆t minutes of the video to the same 

customer.  Similarly, the server instruct customer b to 

forward the first D – ∆t’ minutes of the video to customer c 

and schedule a transmission of the last ∆t’ minutes of the 

video to the same customer. 

More generally, the amount of time spent by the server to 

service a request will always be given by max(D, ∆t), where 

D is the duration of the video and ∆t is the time interval 

between the request being serviced and its immediate 

predecessor.  In addition, the service times of these requests 

will never overlap, which means that the server instantane-

ous bandwidth will never exceed the video consumption 

rate. 
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To demonstrate this property, let us consider an arbitrary 

batch of n consecutive requests for a given video.  Let us 

further assume (a) that these requests overlap, that is, they 

arrive at arbitrary times t1, t2, …, tn such that ti+1 – ti < D for 

i = 2, 3, …, n and (b) that the first request does not overlap 

with any previous request.  As seen on Figure 4, the server 

will start servicing the first request at time t1 and end it at 

time t1 + D.  The second request will get the first D (t2 – ti) 

minutes of the video from the customer that issued the first 

request, and the remaining t2 – t1 minutes from the server, 

which will start its transmission at time t1 + D and end it at 

time t2 + D.  Similarly, the third request will be get the first 

D – (t3 – t2) minutes of the video from the customer that 

issued the second request, and the remaining t3 – t2 minutes 

from the server, which will start its transmission at time 

t2 + D and end it at time t3 + D.  More generally, the ith 

request will be get the first D – (ti – ti–1) minutes of the video 

from the customer that issued the (i – 1)th request, and the 

remaining ti – ti–1 minutes from the server, which will start 

its transmission at time ti–1 + D and end it at time ti + D.  In 

other words, the server will never have to send data to a 

customer before it has finished sending data to the previous 

customer.  Since the server always sends these data  at the 

video consumption rate, its instantaneous bandwidth will 

never exceed that rate 

While our protocol is built upon Sheu, Hua and 

Tavanapong’s chaining technique [12], it makes a much 

more extensive use of the wider customer buffer spaces that 

are available today.  As a result, it requires much less server 

bandwidth. 

We should also note that our protocol does not require 

clients to receive data at any rate than their video 

consumption rate and does not require any multicasting 

either at the server or at the clients. 

3.1 Fault-Tolerance Issues 

To operate correctly, our protocol requires all customers of 

the video service to forward the video data they have 

received to the next customer requesting the video.  As a 

result, any customer site failure will deprive all subsequent 

customers from their video data.  This is clearly not an 

acceptable state of affairs and we need a mechanism 

allowing the protocol to handle customer site failures either 

resulting from an equipment malfunction or from a volun-

tary disconnection. 

There is a simple solution to the problem.  Consider for 

instance the scenario of Figure 3 where customer c receives 

most of her video data from customer b, who receives most 

of her video data from customer a.  Hence any failure of 

customer b will immediately stop the flow of data to 

customer c.  Fortunately for us, a failure of customer b will 

also free customer a from her obligation of forwarding her 

video data to customer b thus allowing to forward her video 

data to customer c.   
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Figure 5:  Server bandwidth requirements of the coopera-

tive video distribution protocol 

Making the protocol fault-tolerant will thus require provid-

ing each customer with the addresses of the last two of 

three customers that have requested the video.  Whenever a 

customer detects a failure of her immediate predecessor, 

she will thus be able to notify her next to last predecessor 

and her server and request them to adjust their data 

flows.Once that next to last predecessor and the server have 

completed this task, everything will happen as if the 

customer that failed never requested the video.  

3.2 Handling Customers with Small Buffers 

We have assumed so far that all customers had enough 

buffer space to store the previously viewed portion of the 

video they are watching until they have finished watching 

it.  This will not always be possible either because the 

limitations of some customer equipment or the durations of 

some videos. 

Consider for instance the case when customers can only 

store in their buffers a fraction α of the video they are 

watching.  These customers will only keep in their buffers 

the first minutes of the video for αD minutes. After that, 
these data will be overwritten. 

The easiest way to integrate these customers into our coop-

erative video distribution protocol is to modify the 

threshold used to decide whether the server will initiate a 

new transmission of the video.  Our protocol now becomes: 

1. If ∆t ≥ αD, the server will initiate a new transmission 
of the video. 

2. If ∆t < αD, the server will instruct the previous 
customer to forward the first D – ∆t minutes of the 

video to new customer and   In addition, it will 

schedule at later time a transmission of the last ∆t 

minutes of the video. 
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Figure 6:  Server bandwidth requirements of the 

cooperative video distribution protocol at low arrival rates 

This simple solution has only one drawback.  As we will 

see, it increases the server workload whenever the time 

interval ∆t is greater than αD but lesser than D. 

4. Performance Evaluation 

Figure 5 compares the server bandwidth requirements of 

our cooperative video distribution protocol with those of the 

stream tapping protocol for arrival rates varying between 

one and one thousand customers per hour.  The two curves 

labeled “Coop α=0.2” and “Coop α=0.5” refer to versions 
of the protocol accommodating customers that can only 

keep in their buffer a fraction α of each video, that is 20 
percent of the video for α=0.2 and 50 percent for α=0.5. 
Figure 6 displays in more detail the server bandwidth 

requirements of our protocol at arrival rates lesser than ten 

arrivals per hour.  In both cases, we assumed that the server 

was broadcasting a two-hour video and that request arrivals 

could be modeled by a Poisson process.  All bandwidths are 

expressed in “channels,” that is, in multiples of the video 

consumption rate. 

As we can see, our new protocol performs much better than 

stream tapping when customers can store at least 50 percent 

of the video in their local buffer.  Assuming that customers 

can only store 20 percent of the video significantly 

increases the server bandwidth requirements of 

of the protocol for request arrival rates between 2 and 5 

arrivals per hour.  Even then, the server bandwidth 

requirements of the protocol never exceed two times the 

video consumption rate. 

In addition, all versions of our protocol perform much 

better than stream tapping whenever the customer arrival 

rate exceeds 5 requests per hour. 

From serverCustomer a

Tapping

Customer b

From cust. b

Customer c

From cust. a
∆t
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Figure 7: How clients could “tap” data from a server stream 

5. A Possible Extension 

A major drawback of our protocol is its heavy consumption 

of network bandwidth.  Since it does not use multicasting 

the total network bandwidth BN required by our protocol is 

given by 

BN = ADb, 

where A is the request arrival rate, D the video duration and 

b the video consumption rate.  Consider, for instance, the 

case of a two-hour video in MPEG-2 format.  Its average 

bandwidth requirements are likely to be around six 

megabits per second.  An arrival rate of 5 customers per 

hour would then result in an average network bandwidth of 

sixty megabits per second. 

The best way to reduce this bandwidth consumption is 

through the use of multicast since it would allow the same 

data streams to be shared by many customers.  Given that 

most of the network bandwidth required by our protocol 

results from client-to-client data transfers, implementing 

multicast at the server alone would not solve the problem.  

Multicast should be used instead by the server and all 

clients that forward data.  This could be done through 

overlay or application-level multicast [1, 13]. 

Consider, for instance, the case of a customer b requesting a 

video just after the previous customer a has received its 

video data directly from the server.  As shown on Figure 7, 

customer b could get most of its video data by “tapping” 

into the video stream sent by the server to customer a.  This 

would save bandwidth because 

1. customer a would now send to customer b the ∆t first 

minutes of the video rather than the D – ∆t first 

minutes of the video, and 

2. the server would not have to send to customer b the ∆t 

last minutes of the video. 
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Figure 8: How clients could “tap” data from a client stream 

The same approach could be followed by the next 

customer:  it would “tap” into the video stream sent by the 

server to customer a and get from customer b the ∆t + ∆t’ 

first minutes of the video.   

Another significant bandwidth savings could occur 

whenever a customer c follows a customer b that got the 

D – ∆t first minutes of the video from a previous customer 

a and the ∆t last minutes of the video from the server.  As 

shown on Figure 8, customer c could tap the streams 

respectively sent to customer b by customer a and the 

server.  This would save bandwidth because 

1. customer b would now send to customer b the ∆t’ first 

minutes of the video rather than the D – ∆t’ first 

minutes of the video, and 

2. the server would not have to send to customer b the ∆t’ 

last minutes of the video. 

Both techniques assume that clients can “tap” a stream 

while receiving data from another stream, which means that 

they should be able to receive data from two different 

sources at a total rate equal to twice the video consumption 

rate. 

Both techniques assume that clients can “tap” a stream 

while receiving data from another stream, which means that 

they should be able to receive data from two different 

sources at a total rate equal to twice the video consumption 

rate. 

Figures 9 and 10 compare the bandwidth requirements of 

cooperative protocols that use and do not use multicasting 

to reduce network traffic.  As before, we assumed that the 

server was broadcasting a two-hour video and that request 

arrivals could be modeled by a Poisson process.  To avoid 

counterproductive tappings, we compared the bandwidth 

cost of each potential new tap with the bandwidth cost of all 

requests sharing the same stream.  Tapping is then allowed 

if the former is less than 1 + ε times the latter.  Otherwise, a 
new stream is initiated.  This criterion is similar, but not 

identical to that used by Carter and Long in their stream 

tapping protocol [2, 3]. 

Our data show that multicasting would dramatically alter 

the bandwidth requirements of our protocol.  First, the 
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server bandwidth requirements of the cooperative protocols 

actually decrease when the customer arrival rate increases 

above one request per hour.  More importantly, the network 

bandwidth requirements of the protocol always remain 

below 63 times the video consumption rate, even at 

customer arrival rates as high as 1,000 requests per hour. 

We should emphasize that these results are very 

preliminary.  In particular, we did not investigate the actual 

limitations of user-level multicast nor did we explore the 

possible tradeoffs between reducing the server workload 

and the network bandwidth requirements of our protocol. 
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6. Conclusions 

We have presented a cooperative distribution protocol 

requiring clients that watch a video to forward it to the next 

client.  As a result, the video server will only have to 

distribute the parts of a video that no client can forward.  

Our protocol works best when clients have sufficient buffer 

capacity to store the previously viewed portion of the video 

they are watching until they have finished watching it.  In 

that case, the server bandwidth requirements of the protocol 

never exceed one time the video consumption rate. 

We also showed how multicasting can further reduce the 

server and the network bandwidth requirements of the 

protocol.  More work is still needed to investigate the actual 

limitations of user-level multicasting as well as cooperative 

protocols taking into account the physical locations of  the 

customers on the network. 
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