
ETRI Journal, Volume 27, Number 1, February 2005 Jinsuk Baek et al. 1

We propose a heuristic buffer management scheme that
uses both positive and negative acknowledgments to provide
scalability and reliability. Under our scheme, most receiver
nodes only send negative acknowledgments to their repair
nodes to request packet retransmissions while some
representative nodes also send positive acknowledgments to
indicate which packets can be discarded from the repair
node’s buffer. Our scheme provides scalability because it
significantly reduces the number of feedbacks sent by the
receiver nodes. In addition, it provides fast recovery of
transmission errors since the packets requested from the
receiver nodes are almost always available in their buffers.
Our scheme also reduces the number of additional
retransmissions from the original sender node or upstream
repair nodes. These features satisfy the original goal of tree-
based protocols since most packet retransmissions are
performed within a local group.

Keywords: Reliable multicast, tree-based protocol,
missing probability, additional retransmission, recovery
delay.

Manuscript received Apr. 5, 2004; revised July 29, 2004.
This work was supported in part by the National Science Foundation under grant CCR-9988390.
Jinsuk Baek (phone: +1 281 752 5796, email: jsbaek@cs.uh.edu) and Jehan-François Pâris (email:

paris@cs.uh.edu) are with the Computer Science Department, University of Houston, USA.

I. Introduction

A growing number of network applications require a sender
to distribute the same data to a large group of receivers.
Multicasting is an efficient way to support this kind of
applications. One of the most difficult issues in end-to-end
multicasting is that of providing an error-free transmission
mechanism. Ensuring reliability requires efficient buffer
management schemes including a packet-discarding policy and
retransmission control.

The standard method for providing a reliable unicast can be
achieved by using positive acknowledgements (ACKs). This
method requires the receiver to send an ACK for each packet that
it has received. The sender keeps track of these ACKs and
retransmits all packets that have not been properly acknowledged
within a given time window. TCP [1] is a well-known protocol
using positive ACKs to provide a reliable unicast.

The same approach fails when applied to reliable multicasts
because of the ACK implosion [2]–[15] it creates. Since each
receiver has to acknowledge each packet it has correctly
received, the sender’s ability to handle these ACKs limits the
number of nodes participating in a reliable multicast.

This situation has led to numerous proposals aiming at
providing scalable reliable schemes. The IETF Reliable
Multicast Transport (RMT) Working Group has standardized
three RMT protocols based on these proposals: asynchronous
layered coding (ALC) [16], a negative acknowledgement
(NAK)-based protocol [17], and tree-based protocols [3]–[12].

Among the protocols mentioned above, the tree-based
protocols are known to provide high scalability as well as

A Heuristic Buffer Management and
Retransmission Control Scheme for

Tree-Based Reliable Multicast

Jinsuk Baek and Jehan-François Pâris

2 Jinsuk Baek et al. ETRI Journal, Volume 27, Number 1, February 2005

reliability. They construct a logical tree at the transport layer for
error recovery. This logical tree comprises three types of nodes:
a sender node, repair nodes, and receiver nodes. The sender
node is the root of the logical multicast tree and controls the
overall tree construction. Each repair node maintains in its
buffer all the packets it has recently received and performs
local error recovery for all its children nodes. As a result, tree-
based protocols achieve scalability by distributing the server
retransmission workload among the repair nodes.

There are still two open issues in tree-based protocols. The
first is how to construct a logical tree in an efficient manner.
One of the authors has recently proposed two efficient hybrid
schemes for constructing a well-organized logical tree [3], [4].
Both schemes combine the advantages of previous schemes by
constructing a logical tree in a semi-concurrent manner while
minimizing the number of control messages.

The second open issue is when to discard packets from the
buffers of repair nodes. Discarding packets that might still be
needed is unacceptable because it would force the receiver
nodes to contact its upstream node—which can be the sender
node itself—whenever one of them needs a retransmission of a
discarded packet. On the other hand, discarding packets too late
would result in an inefficient use of the available buffer space
on the repair nodes. Schemes addressing this issue can be
broadly divided into ACK-based [8]–[12] and NAK-based
schemes [6], [17]–[19]. As we will see, both approaches suffer
from their own limitations.

In the ACK-based schemes, receiver nodes send an ACK to
their repair node every time they have correctly received a
packet. This allows each repair node to discard from its buffer
all packets that have been acknowledged by all receiver nodes.
However, the ACK-based approach does not scale up well due
to the ACK implosion occurring at the repair nodes.

NAK-based schemes solve this ACK implosion problem by
requiring the receiver nodes to send a NAK to their repair node
each time they detect a packet loss. Unfortunately, they provide
no efficient mechanism to safely discard packets from the repair
node buffers. Hence, the repair nodes must discard the packets
without knowing if the packets are still needed. Most tree-based
protocols require these missing packets to be retransmitted by
some upstream repair nodes. Unfortunately, these additional
retransmissions can lead to a NAK implosion at the upstream
repair nodes. Since the repair node cannot retransmit the
requested packet immediately, these retransmissions also
increase the error recovery delay. If the upstream repair node
does not have the packets in its buffer, the requests will reach the
original sender node. In this case, the error recovery delay will
often become unacceptable for many time-sensitive applications.
Also, these additional retransmissions will increase the sender’s
workload.

We believe that the buffers of these repair nodes should be
managed in an efficient manner because the unnecessary
packets stored in their buffer waste storage resources.
Moreover, if their buffer size is limited, the loss recovery time
is increased.

We propose a heuristic approach to provide an efficient way
to discard packets from the repair node’s buffer. Under our
scheme, each repair node predicts the packet that will not
require retransmission and removes that packet from the buffer.
Also, it predicts which receiver nodes are likely to have the
missing packets. The missing packets are retransmitted by
these receiver nodes rather than by the original sender node or
some upstream repair node.

Our proposal has two major advantages over previous
schemes. First, our heuristic reduces the amount of feedback
from the receiver nodes. This feature provides scalability, since
each repair node will be able to handle more receiver nodes.
Second, our heuristic provides fast recovery of transmission
errors since most of the packets requested by the receiver nodes
are retransmitted from one of the members of their local group.
This feature satisfies the original goal of tree-based protocols
because each local group performs the error recovery by itself.
It also reduces the size of the NAK implosion at the upstream
repair nodes. As a result, our scheme provides an acceptable
compromise between ACK-based and NAK-based schemes.
In addition, it can be extended to provide flow control and
eliminate any risk of buffer overflow.

The remainder of this paper is organized as follows. Section
II summarizes the existing buffer management schemes for
providing buffer refreshment functionality in a reliable
multicast. Section III introduces our new buffer management
scheme. In section IV, we show the performance of the
proposed scheme. Finally, section V contains our conclusions.

II. Related Work

This section describes the buffer management protocols of
existing reliable multicast protocols. These protocols essentially
differ in the strategies they use for deciding which participants
should buffer packets for retransmission and how long these
packets should be retained.

Scalable reliable multicast (SRM) [17] is a well-known
receiver-initiated multicast protocol that guarantees out-of-
order reliable delivery using NAKs from receivers. Whenever
a receiver detects a lost packet, it multicasts NAKs to all
participants in the multicast session. This allows the nearest
receiver to retransmit the packet by multicasting. As a result,
the protocol distributes the error recovery load from one sender
to all receivers of the multicast session. The sole drawback of
the SRM protocol is that all receivers have to keep all of the

ETRI Journal, Volume 27, Number 1, February 2005 Jinsuk Baek et al. 3

packets in their buffer for retransmission. Hence, the SRM
protocol cannot provide an efficient buffer management
mechanism at the transport layer.

The first tree-based reliable multicast protocol was the
reliable multicast transport protocol (RMTP) [11]. RMTP
provides reliable multicasting by constructing a physical tree of
the network layer. It allocates a designated receiver in each
local region and makes this receiver responsible for error
recovery for all the other receivers in that region. To reduce the
size of an ACK implosion, each receiver periodically unicasts
an ACK to its designated receiver instead of sending an ACK
for every received packet. This ACK contains the maximum
packet number that each receiver has successfully received.
Unfortunately, this periodic feedback policy significantly
delays error recovery. Hence, RMTP is not suitable for
applications that transmit time-sensitive multimedia data. In
addition, RMTP stores the whole multicast session data in the
secondary memory of the designated receiver for
retransmission, which makes it poorly suited for transfers of
large amounts of data. Some of these problems were addressed
in RMTP-II [12] by the addition of NAKs.

Guo [8] proposed a stability detection algorithm that
partitions receivers into groups and requires all receivers in a
group to participate in error recovery. This is achieved by
letting receivers periodically exchange history information
about the set of packets they have received. Eventually, one
receiver in the group becomes aware that all the receivers in the
group have successfully received a given packet and broadcasts
this to all the members in the group. Then, all members can
safely discard that packet from their buffers. This feature
causes high message traffic overhead because the algorithm
requires frequent exchanges of messages.

Ozkasap [19] proposed an efficient buffering policy where
only a small set of receivers buffer the packet to reduce the
amount of total buffer requirements. Receivers that have not
correctly received a given packet use a hash function to select
the members that have the packet in their buffers and request a
retransmission of the packet from one of them. Unfortunately,
their selection method does not consider geographic locations
between different receivers. Hence, its scalability is constrained
because the latency for error recovery increases with the
number of participants.

The randomized reliable multicast protocol [21] is an
extended version of the bimodal multicast protocol [18]. The
bimodal multicast protocol uses a simple buffer management
policy in which each member buffers packets for a fixed
amount of time. The randomized reliable multicast protocol
uses a two-phase buffering policy: feedback-based short-term
buffering and randomized long-term buffering. In the first
phase, every member that receives a packet buffers it for a

short period of time in order to facilitate retransmission of lost
packets in its local region. After that, only a small random
subset of members in each region continues to buffer the
packet. The drawback of this protocol is that it takes a long
time for the receiver to search and find the correct repair nodes
when the number of participants increases.

The search party protocol [20] uses a timer to discard the
packet from the buffer: each member in the group simply
discards packets after a fixed amount of time. The protocol
remains vague on the problem of selecting the proper time
interval for discarding packets.

We recently proposed a randomized scheme [5] requiring
each receiver node to use both positive and negative
acknowledgments to manage these buffers in an efficient
manner. Under this scheme, the receiver nodes send negative
acknowledgments to the repair nodes to request packet
retransmissions. This NAK contains the sequence number of
the last packet it has correctly received. At infrequent intervals,
they also send randomized positive acknowledgments to indi-
cate which packets can be safely discarded from the buffer of
their repair node. The scheme reduces delay in error recovery,
because the packets requested from the repair nodes are always
available in their buffers. It achieves this goal without
increasing the server workload because (a) each receiver node
only sends infrequent positive acknowledgments and (b) their
sending times are randomized among all the receiver nodes. In
addition, it greatly reduces the number of repair nodes required
to handle a given number of receiver nodes. More work is still
needed to ascertain the optimal randomization intervals for
both receiver nodes and repair nodes.

Most of the NAK-based multicast protocols remain equally
vague on that issue because the absence of a NAK from a
given receiver for a given packet is not a definitive indication
that the receiver has received the packet. Yamamoto et al.
[13], [22] have proposed an interesting flow-control scheme
for NAK-based multicast protocols. Their scheme requires
the sender to reduce its transmission rate whenever it receives
NAKs for too many of its packets. The sender also keeps a
log of its past transmission rates to prevent excessive rate
decreases. While the scheme was found to be efficient, we
should observe that it minimizes occurrences of buffer
overflows rather than eliminating them, as a sliding window
protocol would do.

III. Our Scheme

We propose a heuristic approach to provide an efficient way
to discard packets from the repair node’s buffer. Our heuristic
scheme will allow most retransmissions to be handled by repair
nodes, rather than the original sender node. Also, it minimizes

4 Jinsuk Baek et al. ETRI Journal, Volume 27, Number 1, February 2005

the number of feedbacks sent by receiver nodes. This feature
increases the scalability and reduces recovery delay in the error
recovery phase.

1. Buffer Refreshment

Our basic idea is that every group of receivers will include
one or more members that experience higher error rates than
the other members of the group. Hence, any packet that has
been correctly received by these receivers will be likely to have
been received by all the other members of the group. We also
assume that most groups of receivers will include one or more
members with slower links and that the NAKs returned by
these members will almost always arrive to the repair nodes
after those coming from the other members of the group. As a
result, most NAKs coming from the other group members will
likely reach the repair node before the NAKs coming from
these slower receivers.

Our scheme requires each repair node to select one or more
representative nodes from two distinct subsets of receiver nodes.
First, the repair node will pick one or more representative nodes
among the receivers having the highest loss probability. Then, it
will select one or more additional representative nodes among
the receivers having the slowest round-trip times. The repair
node will discard packets from its buffer based on the feedbacks
sent by these representative nodes.

In order to provide reliable multicasting, other schemes [11],
[12], [23] have also proposed combining ACKs with NAKs.
RMTP [11], [12] requires each receiver node to send ACKs at
randomized intervals. The main characteristic of these ACKs is
that they include NAKs. Hence, the repair nodes can be
managed in a scalable manner, since they only deal with a
reduced number of ACKs. However, RMTP fails to provide
fast error recovery, because each receiver node will not request
the lost packet immediately.

The pragmatic general multicast congestion control
(PGMcc) protocol [23] also uses both ACKs and NAKs. It
selects in each local group a specific node—called the
ACKer—that acknowledges all packets while other nodes only
send NAKs. Our scheme differs in two ways from PGMcc.
First, PGMcc provides congestion control but does not address
the issue of repair node buffer management. As a result, it
selects as the ACKer of a group the node with the lowest
throughput. Second, PGMcc uses a single ACKer per group,
while our scheme allows for several representative nodes.

A. Picking Representative Nodes for Packet Discarding

In this subsection, we describe which receiver nodes are
selected as representatives for their local group. We make the
following assumptions:

• There are N receiver nodes for one repair node. Hence, the
repair node is responsible for resending the packets
requested with NAKs from N receiver nodes.

• Each of the N receiver nodes attached to a repair node has
an independent packet loss probability, Li, for i = 1, 2,…, N.

• The repair node also has an independent loss probability, Lrp.
• Each of these receiver nodes has an independent NAK timer,

NAK_TIMERi.

The repair node calculates the packet loss probability of its N
receiver nodes by counting the number of NAKs from each
receiver node. Also, each receiver node sends its NAK_TIMER
value to its repair node. Based on this information, the repair
node selects Ra = R1 + R2 representative nodes as follows:

• Each repair node selects first the R1 least reliable receiver
nodes among the N receiver nodes it serves. These R1 nodes
will be the R1 receiver nodes with the highest Li for i = 1,
2,…, N. Set R1 is the set containing these R1 least reliable
receiver nodes, and |R1| = R1.

• Each repair node also selects the R2 slowest receiver nodes.
These R2 nodes will be the nodes with the highest NAK
delays times. Set R2 is the set containing these R2 slowest
receiver nodes, and |R2| = R2.

• Ra = R1 ∪ R2 is the set of representatives.

These selections are not static. The repair node will
periodically reselect new representative nodes to adapt to
dynamic network events such as the aborted connections of
one or more representative nodes, dynamic joins, and leaves.

These representative nodes will be asked to acknowledge all
correctly received packets to their repair node. Our scheme
uses these acknowledgments combined with the NAKs from
the other nodes to decide when it is safe for a repair site to
discard packets. Essentially, a repair node will keep its copy of
a given packet until all the receiver nodes with the least reliable
and the slowest connections have acknowledged its safe
delivery. This will ensure that packets whose retransmission is
requested by any other receiver node will almost always be
available in the repair node’s buffer.

We brought two modifications to this basic idea in order to
increase the scalability of our scheme. First, we use cumulative
acknowledgments to acknowledge all correctly received packets
with ACK(n), meaning that the receiver node has correctly
received up to packet n. Second, we delay these
acknowledgments to let them better mimic the behavior of
NAKs. The delayed acknowledgment (DAK) for representative
node i will be delayed by a time-interval

 OTTs,i+ S_coeff ⋅ NAK_TIMERi, i∈ Ra , (1)

where OTTs,i is the one-way transit time between the sender

ETRI Journal, Volume 27, Number 1, February 2005 Jinsuk Baek et al. 5

node and representative node i, NAK_TIMERi is the NAK
timer value specified by representative node i, and S_coeff is a
safety coefficient.

Adding an extra one-way transit time, OTTs,i, and
multiplying the NAK_TIMER value by a safety coefficient will
reduce the probability of having DAKs from representative
nodes reach the repair node before NAKs from the other nodes.
S_coeff takes into account (a) the fact that the delayed ACKs
still can be returned faster than NAKs and (b) normal statistical
variations.

Let P(MHeuristic) represent the probability that a given packet
was not correctly received by a node and could not be found in
the buffer of its repair node. This event will occur whenever
some receiver nodes request retransmission of packets that
have already been discarded by the repair node because it had
already received all the ACKs sent by the representative nodes.
We adjust the S_coeff value to reduce P(MHeuristic). This is done
by applying the same multiplicative increase and additive
decrease algorithm used in the recent TCP flow control
protocol [13].

If the missing probability is larger than a predefined threshold,
S_coeff is multiplied by factor ks. The arrival time of delayed
acknowledgment DAKi to its repair node is then given by

 OTTs,i + S_coeff ⋅ NAK_TIMERi + OTTi,rp, i∈ Ra , (2)

where OTTi,rp is the one-way transit time between
representative node i and its repair node rp.

Due to these adjustments, the DAK sent by a receiving node
will almost always reach the repair node later than any NAK
sent by the same node.

B. Packet Discarding

Each repair node will use the NAKs and DAKs sent by its
representative nodes to predict which can be safely discarded
from its buffer. Let LPi be the last DAK packet sent by
representative node i. Assuming that there is no pending packet
retransmission, the repair node will now discard up to packet D
such that

D ≤ min{LPi | i∈ Ra }. (3)

As a result, our scheme guarantees that the repair node will
almost always have in its buffer all the packets that can be
requested by any of its representative nodes.

Receiver nodes that leave a multicast session without any
notice can disrupt the multicast session. The repair node will
use a timeout mechanism to detect them and cut them off.
Receiver nodes must also be able to handle the sudden loss of
their repair node. Since this loss would leave the receiver nodes
detached from the tree, they should immediately bind with the

sender node and remain in that state until they can be properly
reattached to the tree using the bind procedure described in our
hybrid-tree-construction scheme [4] or some variant thereof.

Let us turn our attention to the probability that a repair node
is not able to retransmit a requested packet. Let P(MHeuristic)
represent that probability.

There are two cases to consider. First, the requested packet
can be missing because the repair node never received it.
Hence, additional retransmissions will be required until the
packet arrives at the repair node. We call this case M1. If we
assume all receiver nodes have a feedback loss probability
equal to their packet loss probability Li, the probability P(M1)
can be given by

P(M1) = P (the repair node did not receive the packet)
 × P (some other nodes did not receive the packet

and their NAKs were not lost)
 = P (the repair node did not receive the packet)
 × (1 − P (all receiver nodes either received the packet

or did not receive the packet
and their NAKs were lost))

 = ∏
=

+−−
N

i
iirp LLL

1

2))1(1(. (4)

Second, the packet will not be available if the receiver nodes
request it after the repair node has already discarded it. We call
this case M2. However, our safety coefficient S_coeff will
ensure that some packets will still remain available if some
NAKs arrive before the latest DAK. Let us call this probability
A. The probability might be very close to 1 if the repair node
has a large enough timer value or a large safety coefficient
S_coeff. If we assume that A is equal to 0.9, the repair node will
only be unable to deal with 10% of the retransmission requests
sent by other nodes because the requested packet will be
removed before any NAK arrives. We also need to take into
account the impact of lost NAKs. If the NAKs of all the
receiver nodes that did not receive the packet fail to reach the
repair node, then the repair node will discard the packet before
it receives a second request for that packet from one of the
receiver nodes. This probability P(M2) can be given by

P(M2) = P (the repair node correctly received the packet)
 × (1−A)×P (all representative nodes have received
 the packet and their ACKs were not lost)
 × P (some receiver nodes did not receive the packet)
 + P (the repair node correctly received the packet)
 × A × P (all representative nodes have received the
 packet and their ACKs were not lost)
 × P (all other nodes that did not receive the packet
 failed to notify the repair node)

6 Jinsuk Baek et al. ETRI Journal, Volume 27, Number 1, February 2005

])1(1)()1((

))1(1()1()[1(

])))1(()1()()1((

))1(1)()1()(1)[(1(

22

2

22

2

∏ ∏

∏∏

∏ ∏ ∏

∏ ∏

∈ ∉

∉∈

∈ ∉ ∉

∈ ∉

+−−−−

−−−−=

−−+−−+

−−−−−=

Ra Ra

RaRa

Ra Ra Ra

Ra Ra

i i
iii

i
i

i
irp

i i i
iiii

i i
iirp

LLLA

LLL

LLLLA

LLAL

 (5)

As one can see, keeping A as close as possible to 1 will
minimize the probability that a packet requested by a non-
representative node will not be in the buffer of the repair node.
The best way to achieve this is to select an appropriate delay
for the DAKs sent by the representative nodes. Our algorithm
achieves this goal by adjusting the value of its safety coefficient
S_coeff value.

2. An Augmented Scheme

Let us now show how we can augment our scheme in order
to let the local group handle even more packet retransmissions.

We can assume that every group of receivers will have one
or more members that experience lower error probability than
the other members of the group. Hence, any packet that is
requested by other members but has already been discarded by
the repair node will be likely to be correctly received by one of
these members.

Our augmented scheme requires each repair node to select
Rb trusted nodes in addition to the Ra representative nodes
mentioned above. These Rb trusted nodes will be the Rb
receiver nodes with the lowest packet loss probabilities Li for i
= 1, 2,…, N. Set Rb is the set containing these Rb trusted nodes,
and |Rb| = Rb.

These trusted nodes will be asked to buffer all received
packets for a finite interval of time. This will ensure that the
packets, whose retransmission are requested by any other
receiver nodes but have been discarded by the repair node, will
almost always be available in the buffer of one of these trusted
nodes.

Whenever a repair node cannot satisfy a retransmission
request with a packet from its own buffer, it will contact the
trusted node that has the lowest loss probability. The trusted
node will respond to the repair node with that packet if it has it.
The repair node will then be able to retransmit the packet to the
receiver node that requested it.

Two cases should be considered. First, the repair node might
not have received the requested packet. In that case, the repair
node will send a single NAK to its upstream repair node and
hold onto the remaining NAKs for its receiver nodes, as it
knows it will probably be able to service these requests from a
trusted node without having to wait for the reply from its

upstream repair node. The single NAK from the repair node
should not be counted as an additional retransmission, as the
upstream repair node does not make any distinction between
repair nodes and receiver nodes. Since all other retransmission
requests are handled within the local group, this feature
eliminates NAK implosion problems at the upstream repair node.

In the second case, the repair node has already received and
then discarded the requested packet. As in the first case, most
retransmission requests will be handled within the local group.
If we assume all trusted nodes have a long enough timer value
for discarding packets, the packet-missing probability of our
heuristic scheme can be given by

P(MHeuristic) = (P(M1) + P(M2))
 × P (no representative node received the packet)

 = (P(M1) + P(M2)) × ∏
∈Rbi

iL . (6)

Even with A = 1, we need to consider the case when all the
NAKs sent by non-representative nodes will be lost. In that
case, the repair node will expel the missing packet before
receiving a second NAK from one of the non-representative
nodes that did not receive the packet. One possible solution is
to let the repair node request the packet from its upstream
repair node. Unfortunately, this solution cannot guarantee that
this upstream repair node has the packet. Consider for instance
the case where all repair nodes specify the same timer value
and discard the same packets at the same time. In addition, we
need to consider that the upstream repair node serves receiver
nodes that have more reliable and faster connections. The
problem is that this upstream repair node could not have the
packet in its buffer because its own estimation of the network
condition could have let it select a shorter timer value than the
current repair node. As a result, most of the requested packets
could have to be re-sent by the sender node. This will result in
unnecessary traffic thus decreasing the whole network
performance.

We also need to mention that our scheme is different from
the case using two or more statically assigned repair nodes in
the local group. Our scheme uses instead a dynamic approach
that periodically reselects new representative nodes to adapt to
changing network conditions.

IV. Performance Analysis

In this section, we show the performance of the proposed
buffer management scheme by computer simulation. In our
simulator, we consider the case of one-to-many bulk data
transfers, i.e., a multicast session consisting of one sender node
and many receiver nodes.

ETRI Journal, Volume 27, Number 1, February 2005 Jinsuk Baek et al. 7

Figure 1 shows the network topology we use in simulation.
All the simulation experiments are performed for up to 100
receiver nodes per repair node. We assume that there are either
15 or 30 representative nodes in a local group, since we focus
on the performance affected by the number of representative
nodes.

We also need to consider the height of the repair tree. If the
requested packet is not available in the repair node’s buffer, the
error recovery delay becomes more prominent as the height of
the repair tree increases. In order to reach a reasonable
evaluation of the error recovery delays of the proposed scheme
and NAK-based scheme, we assumed that the height of the
repair tree was equal to 3. That is, the tree comprises a sender
node, receiver nodes, repair nodes, and upstream repair nodes.

Tree-based multicast protocols require each receiver node to
join the logical error recovery tree. A logical tree construction
includes several steps: 1) advertising the multicast session, 2)
discovering a repair node for each receiver node, and 3)
binding a receiver node to the repair node. In the multicast
session advertisement phase, all nodes obtain the multicast
group address, the address of the sender node, and other
necessary information for tree construction. This process can
be realized by using a mechanism such as a web page
announcement. After that, each receiver node starts to find one
or more candidate repair nodes that are available in the session
for its error recovery. Finally, each receiver node selects and
binds to the best repair node, the one with the shortest time-to-
live distance among the candidate repair nodes. This logical
tree can be constructed using a bottom-up [7], [8], a top-down
[9], or a hybrid scheme [3], [4]. We assume there are Nrp repair
nodes and the repair nodes are pre-determined. This is the
standard hypothesis made by all tree construction schemes [3],
[4], [7]–[9].

Once they are attached to the tree, each receiver node must

Fig. 1. Network topology.

50 receiver nodes 50 receiver nodes

100 receiver nodes 100 receiver nodes

Upstream
repair node

Sender node

Repair node Repair node
… …

… …

select its NAK_TIMER delay before requesting lost packets. In
real networks, the underlying transport protocol needs to detect
packet duplications especially in case of retransmission. Hence,
a dynamic estimation algorithm for the NAK timer value
should be provided for an effective detection of feedbacks.
Since we are only interested in the availability of the packet at
the repair node, we assumed in our simulation that each
receiver node sets its NAK_TIMER value to 40 ms, which is an
average value of the current round-trip time value.

1. Feedback Implosion

Under our scheme, most receiver nodes only send one NAK
per incorrectly received packet. Only the few representative
nodes acknowledge every packet. Over a session involving the
transmission of m packets, the maximum number of feedbacks
from its N receiver node will obey the inequality

)(∑
∉

+≤
Rai

iaHeuristic LRmF , (7)

where Ra is the set of representative nodes for the repair node.
Under the same assumptions, the number of feedbacks FACK

for an ACK-based scheme, where all receiver nodes
acknowledge all the packets they receive, will be given by

FACK mN= .

The difference ∆min between the numbers of feedbacks of the
two schemes will be given by

)(min ∑
∉

−−=∆
Rai

ia LRNm .

Figure 2 shows how this difference increases as N increases
when the repair node selects different percentages of receiver
nodes as its representative nodes.

Fig. 2. Difference ∆min vs. the number N of receiver nodes per
repair node.

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100

Number of receiver nodes

D
iff

er
en

ce
 in

 th
ou

sa
nd

s
of

 fe
ed

ba
ck

s

Ra = 10% of N
Ra = 30% of N
Ra = 50% of N

8 Jinsuk Baek et al. ETRI Journal, Volume 27, Number 1, February 2005

We also assumed that the individual loss probabilities Li are
uniformly distributed between 0 and 1. We selected the number
of transmitted packets as m = 10,000, which roughly represents
a transfer of 10 megabytes with a packet size equal to 1
kilobyte. When there are 100 receiver nodes and the repair
node selects 30 receiver nodes as its representative nodes, the
minimum difference is about 650,000 feedbacks. This result
indicates that our scheme provides efficient buffer management
functionality for the repair node by reducing the number of
feedbacks sent by the receiver nodes. This feature provides
scalability since each repair node will be able to handle more
receiver nodes.

2. Additional Retransmissions

Under our scheme, the repair node discards some packets
based on ACKs sent by receiver nodes, which are on the least
reliable and slowest connection. Hence, the repair node will
have in its buffer most packets that can be requested by any of
its receiver nodes. Also, the proposed scheme requires the
repair node to request the missing packets to some
representative nodes to be selected on the basis of their
connection reliability. Therefore, the proposed scheme does not
require many additional retransmissions either from its
upstream repair nodes or sender node. These features provide
fast error recovery for receiver nodes and a reduction in
network traffic between the repair nodes.

In NAK-based schemes, the repair node batches NAKs for a
packet and retransmits the packet periodically as long as there
is a pending NAK for that packet. Let us call the period δ and
assume that the packets arrive at a repair node with a Poisson
process with mean arrival rate λ. If the repair node has B
buffers, we can define the random variable NA (δ) to represent
the number of packet arrivals at the repair node within a time
interval of length δ. In order to perform at least one
retransmission successfully, the following condition should be
satisfied:

,0
!

)(1)
1

0
=−=≥ ∑

−

=

−B

n

n

A n
eBNP

λδλδδ) (((8)

which simplifies into λδλδ e
n

B

n

n

=∑
−

=

1

0 !
)(.

Since we have ∑
∞

=

=
0 !

)(
n

n

n
e λδλδ , (8) can only be satisfied

when B goes to infinity.
Hence, a NAK-based scheme must require the repair nodes

to buffer all packets for an infinitely long amount of time to
achieve full coverage of all retransmission requests by the
repair node.

In NAK-based schemes using a timer mechanism, the repair
nodes discard packets from their buffers after a time interval I
without considering whether these packets were received by all
their receiver nodes. As a result, some packets might be
removed from the repair node buffer while their retransmission
could still be requested by one of the receiver nodes. In this
case, the missing packets will have to be re-sent from either an
upstream repair node or the sender node. In most cases, the
packets will have to be re-sent by the sender node, especially
when all repair nodes apply the same buffer management
policy and discard the same packets at the same time. This
generates unnecessary traffic, decreasing the whole Internet
performance.

We evaluate how many additional retransmissions are
required in a NAK-based scheme using a timer mechanism for
discarding packets. The number of additional retransmissions
depends on the missing packet probability P(MNAK), which will
vary between

))1(1)(1())1(1()(
11

2 ∏∏
==

−−−++−−=
N

i
irp

N

i
iirpNAK LLLLLMP

for A = 0, and

))1()1()(1(

))1(1()(

11

2

1

2

∏∏

∏

==

=

−−+−−+

+−−=

N

i
i

N

i
iirp

N

i
iirpNAK

LLLL

LLLMP

for A = 1.
Under the same assumptions, the missing packet probability

P(MHeuristic) for the proposed scheme is given by

P(MHeuristic) = (P(M1) + P(M2))
 × P (no representative node received the packet)
 = (P(M1) + P(M2)) × ∏

∈Rbi
iL . (9)

Given the difficulty of finding a closed-form expression for
the parameter A, we decided to simulate the behavior of a
system with 100 receiver nodes per repair node. The
parameters of this model are summarized in Table 1.

To generate the loss probability of each receiver node, we
applied the formula S = 1.22/(iis LRTT ,) from [24], where S
is the packet-sending rate in packets/sec, RTTs,i is the round trip
time from the sender node to receiver node i, and Li is the loss
probability between the sender node and receiver node i. This
assumes that the sender node transmits packets in a TCP-
friendly manner and each node in the multicast session uses the
UDP protocol.

ETRI Journal, Volume 27, Number 1, February 2005 Jinsuk Baek et al. 9

Table 1. Configuration Parameters.

Sending rate S 128 packets/second

Avg_RTT 40 ms

Avg_OTT 15 ms

N 100 receiver nodes

Ra 15 and 30 representative nodes

Rb 3 representative nodes

Lrp 0.02

NAK_TIMERi, 1≤i≤N 40 ms

Safety Coefficient 1

m 10,000 packets (≅10 Mbyte)

Fig. 3. Simulated round trip time.

0

10

20

30

40

50

60

0 20 40 60 80 100

Receiver node id#

R
ou

nd
 tr

ip
 ti

m
e

(m
s)

max = 57 ms
min = 26 ms
avg = 40 ms

We simulated round-trip times RTTi,j as Poisson random
variables, each having mean Avg_RTT. Similarly, the one-way
transit times OTTi,rp between a receiver node i and its repair
node rp were also simulated by Poisson random variables with
mean Avg_OTT. Figures 3, 4, and 5 respectively show our
measurements for round trip times, packet loss probabilities,
and one-way transit times for 100 receiver nodes.

Figure 6 shows the NAK and DAK arrival times for each
receiver node when the repair node selects 30% of the receiver
nodes as its representative nodes (20% for worst nodes and
10% for slowest node) and the propagation delay in the
network is set up to 5 ms. The representative nodes correspond
to the nodes numbered 71 to 100 in the figure. We can see that
our delayed ACK mechanism ensures that acknowledgments
from the representative nodes always arrive to the repair node
after the NAKs from the other nodes. Hence, most of the
requested packets from other nodes with NAKs will still be
available in the repair node’s buffer.

Using the configuration parameters in Table 1, we can
evaluate the probability that a requested packet will not be
present in the repair node. In particular, we compared the

Fig. 4. Simulated loss probability.

0
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100

Receiver node id#

Lo
ss

 p
ro

ba
bi

lit
y

max = 0.1343
min = 0.0279
avg = 0.0633

Fig. 5. Simulated one-way transit time.

0

5

10

15

20

25

30

0 20 40 60 80 100

Receiver node id#

O
ne

-w
ay

 tr
an

si
t t

im
e

(m
s)

 max = 26 ms
min = 7 ms
avg = 15 ms

Fig. 6. NAK and DAK arrival times for each receiver node.

0

20

40

60

80

100

0 20 40 60 80 100

Receiver node id#

Fe
ed

ba
ck

 a
rr

iv
al

 ti
m

e
(m

s)

Delayed ACKs

NAKs

performance of our scheme with that of a NAK-based scheme
keeping all packets in the repair node buffer for 120 ms. Recall
that our scheme lets repair nodes discard packets once they
have received DAKs from all representative nodes in Ra. The
packets are then kept in the buffer of the Rb representative
nodes for 40 additional milliseconds.

We assumed that the repair node selected three representative
nodes for retransmission control, namely the node with the
most reliable connection (the “best” node) and two “next best”

10 Jinsuk Baek et al. ETRI Journal, Volume 27, Number 1, February 2005

Fig. 7. Packet missing probability.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100

Number of receiver nodes

P
ac

ke
t m

is
si

ng
 p

ro
ba

bi
lit

y

P(MNAK)
P(M1)
P(M2), Ra=30%
P(M2), Ra=15%
P(MHeuristic), Ra=30%
P(MHeuristic), Ra=15%

receiver nodes to act as a backup of the best node in case of a
failed connection. As our probabilistic analysis will show, the
result is acceptable even when the repair node has only one
best receiver node as a representative node.

Figure 7 shows how the number of receiver nodes per repair
node affects the probability of not finding a requested packet in
the repair node buffer. We can see that the performance of the
NAK-based scheme improves as the number of receiver nodes
increases. Recalling that

))1()1()(1(

))1(1()(

11

2

1

2

∏∏

∏

==

=

−−+−−+

+−−=

N

i
i

N

i
iirp

N

i
iirpNAK

LLLL

LLLMP

for A = 1, we observe that the second term

))1()1()(1(
11

2 ∏∏
==

−−+−−
N

i
i

N

i
iirp LLLL

decreases as the group size N increases. The contribution of this
term is labeled as M2 on the graph. Unfortunately, the first term
(M1)

∏
=

+−−
N

i
iirp LLL

1

2))1(1(

tends to Lrp when the same group size N increases. As a result,
the packet-missing probability for the NAK scheme will
always be greater than or equal to Lrp. As a result, the NAK-
based scheme will always perform significantly worse than our
scheme despite having a larger timer delay.

We can also see that our heuristic scheme always achieves

very low packet-missing probabilities for all numbers of
receiver nodes considered.

This probability is about 10-10 when there are 100 receiver
nodes including 30 Ra type representative nodes (20 worst
receiver nodes and 10 slowest receiver nodes) and 3 Rb type
representative nodes (one best receiver node and two backup
receiver nodes).

We should also mention that the conditions under which the
comparison is performed are unfavorable to our scheme as we
assumed that all receiver nodes had an identical failure rate and
transmission delay distributions. In most real situations, some
receiver nodes will either experience longer transmission
delays or less reliable links. Selecting these worse receiver
nodes as representatives will provide even lower missing
packet probabilities without all the disadvantages of having to
select a very large timer delay.

The performance of the NAK-based scheme will improve
whenever the repair nodes have very large buffers as well as
long enough timer values. However, this would result in an
inefficient use of the available buffer space because too many
packets will remain in buffer for a long time. In addition, the
absence of an efficient buffer management scheme is likely to
cause a buffer overflow sooner or later.

Fig. 8. Difference between the error recovery delays.

0

5

10

15

20

25

30

0 20 40 60 80 100

Number of receiver nodes

Av
er

ag
e

er
ro

r r
ec

ov
er

y
de

la
y

fo
r e

ac
h

re
ce

iv
er

 n
od

e
(s

ec
on

d)

NAK-based scheme
Heuristic scheme, Ra=15%
Heuristic scheme, Ra=30%

3. Estimating the Error Recovery Delay

Additional retransmissions increase the error recovery delay
since the repair node cannot retransmit the requested packet
immediately. The packets will then have to be retransmitted by
either the original sender node or some upstream repair node.
This might double or triple the error recovery delay. Also, these
additional retransmissions cause unnecessary traffic between
the repair nodes.

To evaluate the minimum delay difference between both

ETRI Journal, Volume 27, Number 1, February 2005 Jinsuk Baek et al. 11

schemes, we assume that the additional retransmission is
always correctly transmitted from the upstream repair node.
Otherwise, the difference would be much more prominent. We
also assume that the round trip time between the two repair
nodes is 30 ms.

Under these assumptions, each receiver node measures the
average recovery delay over all the packet loss it experienced.
The results are shown in Fig. 8.

Even under simulated parameter values, the proposed
scheme performs better than the NAK-based scheme. Note that
the difference decreases as the number of receiver nodes per
repair node increases since the probability of finding an
extremely slow node among a larger number of receiver nodes
increases. This is to some extent an artifact of our model
because we model transmission delays by unbounded Poisson
variables while actual transmission delays are bounded.

Fig. 9. Difference between the numbers of feedbacks per repair
node.

0

50000

100000

150000

200000

250000

300000

350000

400000

0 20 40 60 80 100

Number of receiver nodes

N
um

be
r o

f f
ee

db
ac

ks

NAK-based scheme
Heuristic scheme with Ra = 15%
Heuristic scheme with Ra = 30%

4. The Number of Representative Nodes

As we can see in Figs. 8 and 9, the number of representative
nodes selected by the repair node slightly affects the overall
performance of the proposed scheme.

There is a tradeoff between the number of feedbacks sent by
the receiver nodes and the number of additional
retransmissions. Hence, the repair node needs to limit the
number of representative nodes by considering how many
feedbacks it can handle.

V. Conclusion

We have proposed a heuristic buffer management scheme
combining NAKs and delayed ACKs to provide scalability and
reliability in a multicast session. Under our scheme, most

receiver nodes send only negative acknowledgments to repair
nodes to request packet retransmissions. Our scheme selects a
few receiver nodes among the nodes with the slowest links and
those with the least reliable links. These receiver nodes send
delayed ACKs to their repair nodes to indicate which packets
can be discarded by the repair node. Our improved scheme
also selects a few receiver nodes with the most reliable links
and requires them to keep a copy of all received packets for a
finite interval of time. Whenever the repair node cannot satisfy
a retransmission request from its own buffer, it will request the
missing packet from one of these trusted nodes rather than
from its upstream repair node. These representative nodes send
the requested packet to the repair node if they have the packet.
Hence, more nodes participate in error recovery, which
provides a fast recovery of the transmission error.

Our scheme shows a better performance than an ACK-based
scheme in terms of the number of feedbacks sent by the
receiver nodes. In addition, the number of additional
retransmissions is reduced compared to a NAK-based scheme.
Hence, it provides an acceptable trade-off between ACK-based
and NAK-based schemes, using both positive and negative
acknowledgments to achieve reliability and scalability.

References

[1] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018, Oct. 1996.

[2] R. Yavatkar, J. Griffieon, and M. Sudan, “A Reliable Dissemination
Protocol for Interactive Collaborative Applications,” Proc. of the 3rd
ACM Int’l Conf. on Multimedia, San Francisco, USA, Nov. 1995,
pp. 333-344.

[3] J. Baek, “A Hybrid Configuration of ACK Tree for Multicast
Protocol,” Proc. of the 2002 Int’l Symp. on Performance
Evaluation of Computer and Telecommunication Systems
(SPECTS 2002), San Diego, USA, July 2002, pp. 852-856.

[4] J. Baek, “An Improved Logical Tree Construction Scheme for
Tree-Based Reliable Multicast,” Proc. of the 2003 Int’l Conf. on
Telecommunication Systems (ICTS 2003), Monterey, USA, Oct.
2003, pp. 110-121.

[5] J. Baek and J.F. Paris, “A Buffer Management Scheme for Tree-
Based Reliable Multicast Using Infrequent Acknowledgments,”
Proc. of the 23rd IEEE Int’l Performance Computing and Comm.
Conf. (IPCCC 2004), Phoenix, USA, Apr. 2004, pp. 13-20.

[6] S.K. Kasera, J. Kurose, and D. Towsley, “Buffer Requirements
and Replacement Polices for Multicast Repair Service,” Proc. of
the 2nd Network Group Communication Workshop (NGC 2000),
Stanford University, USA, Nov. 2000, pp. 5-14.

[7] C. Maihofer and K. Rothermel, “A Robust and Efficient
Mechanism for Constructing Multicast Acknowledgment Trees,”
Proc. of the 8th IEEE Int’l Conf. on Computer Comm. and

12 Jinsuk Baek et al. ETRI Journal, Volume 27, Number 1, February 2005

Networks, Boston-Natick, USA, Oct. 1999, pp. 139-145.
[8] K. Guo and I. Rhee, “Message Stability Detection for Reliable

Multicast,” Proc. of the 19th IEEE Conf. on Computer Comm.
(INFOCOM 2000), New York, USA, Mar. 2000, pp. 814-823.

[9] S.J. Koh, E. Kim, J. Park, S.G. Kang, K.S. Park, and C.H. Park,
“Configuration of ACK Trees for Multicast Transport Protocols,”
ETRI J., vol. 23, no. 3, Sept. 2001, pp. 111-120.

[10] M. Kadansky, B. Whetten, B. Cain, D.M. Chiu, B. Levine, D.
Thaler, S. Koh, and G. Taskale, “Reliable Multicast Transport
Building Block: Tree Auto-Configuration,” IETF Internet Draft,
draft-ietf-rmt-bb-tree-config-01.txt, Nov. 2000.

[11] J.C. Lin and S. Paul, “RMTP: A Reliable Multicast Transport
Protocol,” Proc. of the 15th IEEE Conf. on Computer Comm.
(INFOCOM ’96), San Francisco, USA, Mar. 1996, pp. 1414-
1424.

[12] B. Whetten and G. Taskale, “The Overview of Reliable Multicast
Transport Protocol II,” IEEE Networks, vol. 14, no. 1, Jan.-Feb.
2000, pp. 37-47.

[13] K. Yamamoto, M. Yamamoto, and H. Ikeda, “Performance
Evaluation of ACK-Based and NAK-Based Flow Control
Mechanisms for Reliable Multicast Comm.,” IEICE Trans. on
Comm., vol. E84-B, no. 8, Aug. 2001, pp. 2313-2316.

[14] B. Levine and J.J. Garcia-Luna-Aceves, “A Comparison of
Reliable Multicast Protocols,” ACM Multimedia Systems J., vol. 6,
no. 5, Aug. 1998, pp. 334-344.

[15] S. Pingali, D. Towsley, and J.F. Kurose, “A Comparison of
Sender-Initiated and Receiver-Initiated Reliable Multicast
Protocols,” IEEE J. on Selected Areas in Comm., Apr. 1997, pp.
221-230.

[16] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J.
Crowcroft, “The Use of Forward Error Correction in Reliable
Multicast,” IETF draft-ietf-rmt-info-fec-02.txt, Oct. 2002.

[17] S. Floyd, V. Jacobsen, C.G. Liu, S. McCanne, and L. Zhang, “A
Reliable Multicast Framework for Lightweight Sessions and
Application-Level Framing,” IEEE/ACM Trans. on Networking,
vol. 5, no. 6, Dec. 1997, pp. 784-803.

[18] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y.
Minsky, “Bimodal Multicast,” ACM Trans. on Computer Systems,
vol. 17, no. 2, May 1999, pp. 41-88.

[19] O. Ozkasap, R. van Renesse, K.P. Birman, and Z. Xiao, “Efficient
Buffering in Reliable Multicast Protocols,” Proc. of the First Int’l
Workshop on Networked Group Communication (NGC’ 99), Pisa,
Italy, Nov. 1999, pp. 188-203.

[20] M. Costello and S. McCanne, “Search Party: Using Randomcast
for Reliable Multicast with Local Recovery,” Proc. of the 18th
IEEE Conf. on Computer Comm. (INFOCOM ‘99), New York,
USA, Mar. 1999, pp. 1256-1264.

[21] Z. Xiao, K.P. Birman, and R. Renesse, “Optimizing Buffer
Management for Reliable Multicast,” Proc. of the Int’l Conf. on
Dependable Systems and Networks (DSN’02), Washington, D.C.,

USA, June 2002, pp. 187-202.
[22] M. Yamamoto, Y. Sawa, S. Fukatsu, and H. Ikeda, “NAK-Based

Flow Control Scheme for Reliable Multicast Communications,”
IEICE Trans. on Comm., vol. E82-B, no. 5, May 1999, pp. 712-
720.

[23] L. Rizzo, “PGMcc: a TCP-Friendly Single-Rate Multicast
Congestion Control Scheme,” Proc. of the ACM SIGCOMM
2000, Stockholm, Aug. 2000, pp. 17-28.

[24] J. Mahdavi and S.Floyd, “TCP-Friendly Unicast Rate-Based Flow
Control,” http://www.psc.edu/networking/papers/tcp_friendly.html
(accessed Jan. 1997).

Jinsuk Baek received the BS and MS degrees
in computer science and engineering from
Hankuk University of Foreign Studies (HUFS)
in Yougin, Korea, in 1996 and 1998 and the
PhD in computer science from the University of
Houston in 2004. Dr. Baek is a member of the
Distributed Multimedia Research Group at the

University of Houston. His research interests include scalable reliable
multicast protocols, mobile computing, proxy caching systems and
formal verification of communication protocols. He is a member of
IEEE.

Jehan-François Pâris is a Professor of
computer science at the University of Houston.
He was formerly on the faculty at Purdue
University and the University of California, San
Diego. Dr. Pâris received his Ingénieur Civil
degree from the Université Libre de Bruxelles,
Belgium, his Diplôme d'Etudes Approfondies

from the Université de Paris VI, France, his Licence et Maîtrise en
Informatique from the Facultés Universitaires de Namur, Belgium and
his PhD in EECS from the University of California, Berkeley. His
research interests include memory hierarchies, scalable reliable
multicast protocols, distribution protocols for video-on-demand, and
distributed systems security. He is a member of ACM and a senior
member of IEEE.

