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We propose a heuristic buffer management scheme that 
uses both positive and negative acknowledgments to provide 
scalability and reliability. Under our scheme, most receiver 
nodes only send negative acknowledgments to their repair 
nodes to request packet retransmissions while some 
representative nodes also send positive acknowledgments to 
indicate which packets can be discarded from the repair 
node’s buffer. Our scheme provides scalability because it 
significantly reduces the number of feedbacks sent by the 
receiver nodes. In addition, it provides fast recovery of 
transmission errors since the packets requested from the 
receiver nodes are almost always available in their buffers. 
Our scheme also reduces the number of additional 
retransmissions from the original sender node or upstream 
repair nodes. These features satisfy the original goal of tree-
based protocols since most packet retransmissions are 
performed within a local group. 
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I. Introduction 

A growing number of network applications require a sender 
to distribute the same data to a large group of receivers. 
Multicasting is an efficient way to support this kind of 
applications. One of the most difficult issues in end-to-end 
multicasting is that of providing an error-free transmission 
mechanism. Ensuring reliability requires efficient buffer 
management schemes including a packet-discarding policy and 
retransmission control.  

The standard method for providing a reliable unicast can be 
achieved by using positive acknowledgements (ACKs). This 
method requires the receiver to send an ACK for each packet that 
it has received. The sender keeps track of these ACKs and 
retransmits all packets that have not been properly acknowledged 
within a given time window. TCP [1] is a well-known protocol 
using positive ACKs to provide a reliable unicast. 

The same approach fails when applied to reliable multicasts 
because of the ACK implosion [2]–[15] it creates. Since each 
receiver has to acknowledge each packet it has correctly 
received, the sender’s ability to handle these ACKs limits the 
number of nodes participating in a reliable multicast. 

This situation has led to numerous proposals aiming at 
providing scalable reliable schemes. The IETF Reliable 
Multicast Transport (RMT) Working Group has standardized 
three RMT protocols based on these proposals: asynchronous 
layered coding (ALC) [16], a negative acknowledgement 
(NAK)-based protocol [17], and tree-based protocols [3]–[12]. 

Among the protocols mentioned above, the tree-based 
protocols are known to provide high scalability as well as 

A Heuristic Buffer Management and 
Retransmission Control Scheme for 

Tree-Based Reliable Multicast 

Jinsuk Baek and Jehan-François Pâris  



2   Jinsuk Baek et al. ETRI Journal, Volume 27, Number 1, February 2005 

reliability. They construct a logical tree at the transport layer for 
error recovery. This logical tree comprises three types of nodes: 
a sender node, repair nodes, and receiver nodes. The sender 
node is the root of the logical multicast tree and controls the 
overall tree construction. Each repair node maintains in its 
buffer all the packets it has recently received and performs 
local error recovery for all its children nodes. As a result, tree-
based protocols achieve scalability by distributing the server 
retransmission workload among the repair nodes. 

There are still two open issues in tree-based protocols. The 
first is how to construct a logical tree in an efficient manner. 
One of the authors has recently proposed two efficient hybrid 
schemes for constructing a well-organized logical tree [3], [4]. 
Both schemes combine the advantages of previous schemes by 
constructing a logical tree in a semi-concurrent manner while 
minimizing the number of control messages. 

The second open issue is when to discard packets from the 
buffers of repair nodes. Discarding packets that might still be 
needed is unacceptable because it would force the receiver 
nodes to contact its upstream node—which can be the sender 
node itself—whenever one of them needs a retransmission of a 
discarded packet. On the other hand, discarding packets too late 
would result in an inefficient use of the available buffer space 
on the repair nodes. Schemes addressing this issue can be 
broadly divided into ACK-based [8]–[12] and NAK-based 
schemes [6], [17]–[19]. As we will see, both approaches suffer 
from their own limitations. 

In the ACK-based schemes, receiver nodes send an ACK to 
their repair node every time they have correctly received a 
packet. This allows each repair node to discard from its buffer 
all packets that have been acknowledged by all receiver nodes. 
However, the ACK-based approach does not scale up well due 
to the ACK implosion occurring at the repair nodes.  

NAK-based schemes solve this ACK implosion problem by 
requiring the receiver nodes to send a NAK to their repair node 
each time they detect a packet loss. Unfortunately, they provide 
no efficient mechanism to safely discard packets from the repair 
node buffers. Hence, the repair nodes must discard the packets 
without knowing if the packets are still needed. Most tree-based 
protocols require these missing packets to be retransmitted by 
some upstream repair nodes. Unfortunately, these additional 
retransmissions can lead to a NAK implosion at the upstream 
repair nodes. Since the repair node cannot retransmit the 
requested packet immediately, these retransmissions also 
increase the error recovery delay. If the upstream repair node 
does not have the packets in its buffer, the requests will reach the 
original sender node. In this case, the error recovery delay will 
often become unacceptable for many time-sensitive applications. 
Also, these additional retransmissions will increase the sender’s 
workload.  

We believe that the buffers of these repair nodes should be 
managed in an efficient manner because the unnecessary 
packets stored in their buffer waste storage resources. 
Moreover, if their buffer size is limited, the loss recovery time 
is increased. 

We propose a heuristic approach to provide an efficient way 
to discard packets from the repair node’s buffer. Under our 
scheme, each repair node predicts the packet that will not 
require retransmission and removes that packet from the buffer. 
Also, it predicts which receiver nodes are likely to have the 
missing packets. The missing packets are retransmitted by 
these receiver nodes rather than by the original sender node or 
some upstream repair node. 

Our proposal has two major advantages over previous 
schemes. First, our heuristic reduces the amount of feedback 
from the receiver nodes. This feature provides scalability, since 
each repair node will be able to handle more receiver nodes. 
Second, our heuristic provides fast recovery of transmission 
errors since most of the packets requested by the receiver nodes 
are retransmitted from one of the members of their local group. 
This feature satisfies the original goal of tree-based protocols 
because each local group performs the error recovery by itself. 
It also reduces the size of the NAK implosion at the upstream 
repair nodes. As a result, our scheme provides an acceptable 
compromise between ACK-based and NAK-based schemes. 
In addition, it can be extended to provide flow control and 
eliminate any risk of buffer overflow. 

The remainder of this paper is organized as follows. Section 
II summarizes the existing buffer management schemes for 
providing buffer refreshment functionality in a reliable 
multicast. Section III introduces our new buffer management 
scheme. In section IV, we show the performance of the 
proposed scheme. Finally, section V contains our conclusions. 

II. Related Work 

This section describes the buffer management protocols of 
existing reliable multicast protocols. These protocols essentially 
differ in the strategies they use for deciding which participants 
should buffer packets for retransmission and how long these 
packets should be retained. 

Scalable reliable multicast (SRM) [17] is a well-known 
receiver-initiated multicast protocol that guarantees out-of-
order reliable delivery using NAKs from receivers. Whenever 
a receiver detects a lost packet, it multicasts NAKs to all 
participants in the multicast session. This allows the nearest 
receiver to retransmit the packet by multicasting. As a result, 
the protocol distributes the error recovery load from one sender 
to all receivers of the multicast session. The sole drawback of 
the SRM protocol is that all receivers have to keep all of the 
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packets in their buffer for retransmission. Hence, the SRM 
protocol cannot provide an efficient buffer management 
mechanism at the transport layer.  

The first tree-based reliable multicast protocol was the 
reliable multicast transport protocol (RMTP) [11]. RMTP 
provides reliable multicasting by constructing a physical tree of 
the network layer. It allocates a designated receiver in each 
local region and makes this receiver responsible for error 
recovery for all the other receivers in that region. To reduce the 
size of an ACK implosion, each receiver periodically unicasts 
an ACK to its designated receiver instead of sending an ACK 
for every received packet. This ACK contains the maximum 
packet number that each receiver has successfully received. 
Unfortunately, this periodic feedback policy significantly 
delays error recovery. Hence, RMTP is not suitable for 
applications that transmit time-sensitive multimedia data. In 
addition, RMTP stores the whole multicast session data in the 
secondary memory of the designated receiver for 
retransmission, which makes it poorly suited for transfers of 
large amounts of data. Some of these problems were addressed 
in RMTP-II [12] by the addition of NAKs. 

Guo [8] proposed a stability detection algorithm that 
partitions receivers into groups and requires all receivers in a 
group to participate in error recovery. This is achieved by 
letting receivers periodically exchange history information 
about the set of packets they have received. Eventually, one 
receiver in the group becomes aware that all the receivers in the 
group have successfully received a given packet and broadcasts 
this to all the members in the group. Then, all members can 
safely discard that packet from their buffers. This feature 
causes high message traffic overhead because the algorithm 
requires frequent exchanges of messages.  

Ozkasap [19] proposed an efficient buffering policy where 
only a small set of receivers buffer the packet to reduce the 
amount of total buffer requirements. Receivers that have not 
correctly received a given packet use a hash function to select 
the members that have the packet in their buffers and request a 
retransmission of the packet from one of them. Unfortunately, 
their selection method does not consider geographic locations 
between different receivers. Hence, its scalability is constrained 
because the latency for error recovery increases with the 
number of participants. 

The randomized reliable multicast protocol [21] is an 
extended version of the bimodal multicast protocol [18]. The 
bimodal multicast protocol uses a simple buffer management 
policy in which each member buffers packets for a fixed 
amount of time. The randomized reliable multicast protocol 
uses a two-phase buffering policy: feedback-based short-term 
buffering and randomized long-term buffering. In the first 
phase, every member that receives a packet buffers it for a 

short period of time in order to facilitate retransmission of lost 
packets in its local region. After that, only a small random 
subset of members in each region continues to buffer the 
packet. The drawback of this protocol is that it takes a long 
time for the receiver to search and find the correct repair nodes 
when the number of participants increases.  

The search party protocol [20] uses a timer to discard the 
packet from the buffer: each member in the group simply 
discards packets after a fixed amount of time. The protocol 
remains vague on the problem of selecting the proper time 
interval for discarding packets. 

We recently proposed a randomized scheme [5] requiring 
each receiver node to use both positive and negative 
acknowledgments to manage these buffers in an efficient 
manner. Under this scheme, the receiver nodes send negative 
acknowledgments to the repair nodes to request packet 
retransmissions. This NAK contains the sequence number of 
the last packet it has correctly received. At infrequent intervals, 
they also send randomized positive acknowledgments to indi-
cate which packets can be safely discarded from the buffer of 
their repair node. The scheme reduces delay in error recovery, 
because the packets requested from the repair nodes are always 
available in their buffers. It achieves this goal without 
increasing the server workload because (a) each receiver node 
only sends infrequent positive acknowledgments and (b) their 
sending times are randomized among all the receiver nodes. In 
addition, it greatly reduces the number of repair nodes required 
to handle a given number of receiver nodes. More work is still 
needed to ascertain the optimal randomization intervals for 
both receiver nodes and repair nodes. 

Most of the NAK-based multicast protocols remain equally 
vague on that issue because the absence of a NAK from a 
given receiver for a given packet is not a definitive indication 
that the receiver has received the packet. Yamamoto et al. 
[13], [22] have proposed an interesting flow-control scheme 
for NAK-based multicast protocols. Their scheme requires 
the sender to reduce its transmission rate whenever it receives 
NAKs for too many of its packets. The sender also keeps a 
log of its past transmission rates to prevent excessive rate 
decreases. While the scheme was found to be efficient, we 
should observe that it minimizes occurrences of buffer 
overflows rather than eliminating them, as a sliding window 
protocol would do. 

III. Our Scheme 

We propose a heuristic approach to provide an efficient way 
to discard packets from the repair node’s buffer. Our heuristic 
scheme will allow most retransmissions to be handled by repair 
nodes, rather than the original sender node. Also, it minimizes 
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the number of feedbacks sent by receiver nodes. This feature 
increases the scalability and reduces recovery delay in the error 
recovery phase. 

1. Buffer Refreshment 

Our basic idea is that every group of receivers will include 
one or more members that experience higher error rates than 
the other members of the group. Hence, any packet that has 
been correctly received by these receivers will be likely to have 
been received by all the other members of the group. We also 
assume that most groups of receivers will include one or more 
members with slower links and that the NAKs returned by 
these members will almost always arrive to the repair nodes 
after those coming from the other members of the group. As a 
result, most NAKs coming from the other group members will 
likely reach the repair node before the NAKs coming from 
these slower receivers.  

Our scheme requires each repair node to select one or more 
representative nodes from two distinct subsets of receiver nodes. 
First, the repair node will pick one or more representative nodes 
among the receivers having the highest loss probability. Then, it 
will select one or more additional representative nodes among 
the receivers having the slowest round-trip times. The repair 
node will discard packets from its buffer based on the feedbacks 
sent by these representative nodes. 

In order to provide reliable multicasting, other schemes [11], 
[12], [23] have also proposed combining ACKs with NAKs. 
RMTP [11], [12] requires each receiver node to send ACKs at 
randomized intervals. The main characteristic of these ACKs is 
that they include NAKs. Hence, the repair nodes can be 
managed in a scalable manner, since they only deal with a 
reduced number of ACKs. However, RMTP fails to provide 
fast error recovery, because each receiver node will not request 
the lost packet immediately. 

The pragmatic general multicast congestion control 
(PGMcc) protocol [23] also uses both ACKs and NAKs. It 
selects in each local group a specific node—called the 
ACKer—that acknowledges all packets while other nodes only 
send NAKs. Our scheme differs in two ways from PGMcc. 
First, PGMcc provides congestion control but does not address 
the issue of repair node buffer management. As a result, it 
selects as the ACKer of a group the node with the lowest 
throughput. Second, PGMcc uses a single ACKer per group, 
while our scheme allows for several representative nodes. 

A. Picking Representative Nodes for Packet Discarding 

In this subsection, we describe which receiver nodes are 
selected as representatives for their local group. We make the 
following assumptions: 

• There are N receiver nodes for one repair node. Hence, the 
repair node is responsible for resending the packets 
requested with NAKs from N receiver nodes. 

• Each of the N receiver nodes attached to a repair node has 
an independent packet loss probability, Li, for i = 1, 2,…, N. 

• The repair node also has an independent loss probability, Lrp. 
• Each of these receiver nodes has an independent NAK timer, 

NAK_TIMERi. 

The repair node calculates the packet loss probability of its N 
receiver nodes by counting the number of NAKs from each 
receiver node. Also, each receiver node sends its NAK_TIMER 
value to its repair node. Based on this information, the repair 
node selects Ra = R1 + R2 representative nodes as follows: 

• Each repair node selects first the R1 least reliable receiver 
nodes among the N receiver nodes it serves. These R1 nodes 
will be the R1 receiver nodes with the highest Li  for i = 1, 
2,…, N. Set R1 is the set containing these R1 least reliable 
receiver nodes, and |R1| = R1. 

• Each repair node also selects the R2 slowest receiver nodes. 
These R2 nodes will be the nodes with the highest NAK 
delays times. Set R2 is the set containing these R2 slowest 
receiver nodes, and |R2| = R2.  

• Ra = R1 ∪ R2   is the set of representatives. 

These selections are not static. The repair node will 
periodically reselect new representative nodes to adapt to 
dynamic network events such as the aborted connections of 
one or more representative nodes, dynamic joins, and leaves. 

These representative nodes will be asked to acknowledge all 
correctly received packets to their repair node. Our scheme 
uses these acknowledgments combined with the NAKs from 
the other nodes to decide when it is safe for a repair site to 
discard packets. Essentially, a repair node will keep its copy of 
a given packet until all the receiver nodes with the least reliable 
and the slowest connections have acknowledged its safe 
delivery. This will ensure that packets whose retransmission is 
requested by any other receiver node will almost always be 
available in the repair node’s buffer. 

We brought two modifications to this basic idea in order to 
increase the scalability of our scheme. First, we use cumulative 
acknowledgments to acknowledge all correctly received packets 
with ACK(n), meaning that the receiver node has correctly 
received up to packet n. Second, we delay these 
acknowledgments to let them better mimic the behavior of 
NAKs. The delayed acknowledgment (DAK) for representative 
node i will be delayed by a time-interval 

  OTTs,i+ S_coeff ⋅ NAK_TIMERi,    i∈ Ra ,       (1) 

where OTTs,i is the one-way transit time between the sender 
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node and representative node i, NAK_TIMERi is the NAK 
timer value specified by representative node i, and S_coeff is a 
safety coefficient. 

Adding an extra one-way transit time, OTTs,i, and 
multiplying the NAK_TIMER value by a safety coefficient will 
reduce the probability of having DAKs from representative 
nodes reach the repair node before NAKs from the other nodes. 
S_coeff takes into account (a) the fact that the delayed ACKs 
still can be returned faster than NAKs and (b) normal statistical 
variations. 

Let P(MHeuristic) represent the probability that a given packet 
was not correctly received by a node and could not be found in 
the buffer of its repair node. This event will occur whenever 
some receiver nodes request retransmission of packets that 
have already been discarded by the repair node because it had 
already received all the ACKs sent by the representative nodes. 
We adjust the S_coeff value to reduce P(MHeuristic). This is done 
by applying the same multiplicative increase and additive 
decrease algorithm used in the recent TCP flow control 
protocol [13]. 

If the missing probability is larger than a predefined threshold, 
S_coeff is multiplied by factor ks. The arrival time of delayed 
acknowledgment DAKi to its repair node is then given by 

 OTTs,i + S_coeff ⋅ NAK_TIMERi + OTTi,rp,  i∈ Ra ,   (2) 

where OTTi,rp is the one-way transit time between 
representative node i and its repair node rp. 

Due to these adjustments, the DAK sent by a receiving node 
will almost always reach the repair node later than any NAK 
sent by the same node. 

B. Packet Discarding 

Each repair node will use the NAKs and DAKs sent by its 
representative nodes to predict which can be safely discarded 
from its buffer. Let LPi be the last DAK packet sent by 
representative node i. Assuming that there is no pending packet 
retransmission, the repair node will now discard up to packet D 
such that 

D ≤ min{LPi | i∈ Ra }.               (3) 

As a result, our scheme guarantees that the repair node will 
almost always have in its buffer all the packets that can be 
requested by any of its representative nodes. 

Receiver nodes that leave a multicast session without any 
notice can disrupt the multicast session. The repair node will 
use a timeout mechanism to detect them and cut them off. 
Receiver nodes must also be able to handle the sudden loss of 
their repair node. Since this loss would leave the receiver nodes 
detached from the tree, they should immediately bind with the 

sender node and remain in that state until they can be properly 
reattached to the tree using the bind procedure described in our 
hybrid-tree-construction scheme [4] or some variant thereof. 

Let us turn our attention to the probability that a repair node 
is not able to retransmit a requested packet. Let P(MHeuristic) 
represent that probability. 

There are two cases to consider. First, the requested packet 
can be missing because the repair node never received it. 
Hence, additional retransmissions will be required until the 
packet arrives at the repair node. We call this case M1. If we 
assume all receiver nodes have a feedback loss probability 
equal to their packet loss probability Li, the probability P(M1) 
can be given by 

P(M1) = P (the repair node did not receive the packet) 
       × P (some other nodes did not receive the packet 

and their NAKs were not lost) 
     = P (the repair node did not receive the packet)  
       × (1 − P (all receiver nodes either received the packet 

or did not receive the packet  
and their NAKs were lost)) 

   = ∏
=
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Second, the packet will not be available if the receiver nodes 
request it after the repair node has already discarded it. We call 
this case M2. However, our safety coefficient S_coeff will 
ensure that some packets will still remain available if some 
NAKs arrive before the latest DAK. Let us call this probability 
A. The probability might be very close to 1 if the repair node 
has a large enough timer value or a large safety coefficient 
S_coeff. If we assume that A is equal to 0.9, the repair node will 
only be unable to deal with 10% of the retransmission requests 
sent by other nodes because the requested packet will be 
removed before any NAK arrives. We also need to take into 
account the impact of lost NAKs. If the NAKs of all the 
receiver nodes that did not receive the packet fail to reach the 
repair node, then the repair node will discard the packet before 
it receives a second request for that packet from one of the 
receiver nodes. This probability P(M2) can be given by 

P(M2) = P (the repair node correctly received the packet) 
        × (1−A)×P (all representative nodes have received  
                 the packet and their ACKs were not lost) 
        × P (some receiver nodes did not receive the packet) 
       + P (the repair node correctly received the packet) 
        × A × P (all representative nodes have received the 
               packet and their ACKs were not lost) 
        × P (all other nodes that did not receive the packet 
            failed to notify the repair node) 
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As one can see, keeping A as close as possible to 1 will 
minimize the probability that a packet requested by a non-
representative node will not be in the buffer of the repair node. 
The best way to achieve this is to select an appropriate delay 
for the DAKs sent by the representative nodes. Our algorithm 
achieves this goal by adjusting the value of its safety coefficient 
S_coeff value. 

2. An Augmented Scheme 

Let us now show how we can augment our scheme in order 
to let the local group handle even more packet retransmissions.  

We can assume that every group of receivers will have one 
or more members that experience lower error probability than 
the other members of the group. Hence, any packet that is 
requested by other members but has already been discarded by 
the repair node will be likely to be correctly received by one of 
these members. 

Our augmented scheme requires each repair node to select 
Rb trusted nodes in addition to the Ra representative nodes 
mentioned above. These Rb trusted nodes will be the Rb 
receiver nodes with the lowest packet loss probabilities Li  for i 
= 1, 2,…, N. Set Rb is the set containing these Rb trusted nodes, 
and |Rb| = Rb. 

These trusted nodes will be asked to buffer all received 
packets for a finite interval of time. This will ensure that the 
packets, whose retransmission are requested by any other 
receiver nodes but have been discarded by the repair node, will 
almost always be available in the buffer of one of these trusted 
nodes.  

Whenever a repair node cannot satisfy a retransmission 
request with a packet from its own buffer, it will contact the 
trusted node that has the lowest loss probability. The trusted 
node will respond to the repair node with that packet if it has it. 
The repair node will then be able to retransmit the packet to the 
receiver node that requested it.  

Two cases should be considered. First, the repair node might 
not have received the requested packet. In that case, the repair 
node will send a single NAK to its upstream repair node and 
hold onto the remaining NAKs for its receiver nodes, as it 
knows it will probably be able to service these requests from a 
trusted node without having to wait for the reply from its 

upstream repair node. The single NAK from the repair node 
should not be counted as an additional retransmission, as the 
upstream repair node does not make any distinction between 
repair nodes and receiver nodes. Since all other retransmission 
requests are handled within the local group, this feature 
eliminates NAK implosion problems at the upstream repair node. 

In the second case, the repair node has already received and 
then discarded the requested packet. As in the first case, most 
retransmission requests will be handled within the local group. 
If we assume all trusted nodes have a long enough timer value 
for discarding packets, the packet-missing probability of our 
heuristic scheme can be given by 

P(MHeuristic) = (P(M1) + P(M2)) 
          × P (no representative node received the packet) 

         = (P(M1) + P(M2)) × ∏
∈Rbi

iL .              (6) 

Even with A = 1, we need to consider the case when all the 
NAKs sent by non-representative nodes will be lost. In that 
case, the repair node will expel the missing packet before 
receiving a second NAK from one of the non-representative 
nodes that did not receive the packet. One possible solution is 
to let the repair node request the packet from its upstream 
repair node. Unfortunately, this solution cannot guarantee that 
this upstream repair node has the packet. Consider for instance 
the case where all repair nodes specify the same timer value 
and discard the same packets at the same time. In addition, we 
need to consider that the upstream repair node serves receiver 
nodes that have more reliable and faster connections. The 
problem is that this upstream repair node could not have the 
packet in its buffer because its own estimation of the network 
condition could have let it select a shorter timer value than the 
current repair node. As a result, most of the requested packets 
could have to be re-sent by the sender node. This will result in 
unnecessary traffic thus decreasing the whole network 
performance. 

We also need to mention that our scheme is different from 
the case using two or more statically assigned repair nodes in 
the local group. Our scheme uses instead a dynamic approach 
that periodically reselects new representative nodes to adapt to 
changing network conditions. 

IV. Performance Analysis 

In this section, we show the performance of the proposed 
buffer management scheme by computer simulation. In our 
simulator, we consider the case of one-to-many bulk data 
transfers, i.e., a multicast session consisting of one sender node 
and many receiver nodes.  
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Figure 1 shows the network topology we use in simulation. 
All the simulation experiments are performed for up to 100 
receiver nodes per repair node. We assume that there are either 
15 or 30 representative nodes in a local group, since we focus 
on the performance affected by the number of representative 
nodes.  

We also need to consider the height of the repair tree. If the 
requested packet is not available in the repair node’s buffer, the 
error recovery delay becomes more prominent as the height of 
the repair tree increases. In order to reach a reasonable 
evaluation of the error recovery delays of the proposed scheme 
and NAK-based scheme, we assumed that the height of the 
repair tree was equal to 3. That is, the tree comprises a sender 
node, receiver nodes, repair nodes, and upstream repair nodes. 

Tree-based multicast protocols require each receiver node to 
join the logical error recovery tree. A logical tree construction 
includes several steps: 1) advertising the multicast session, 2) 
discovering a repair node for each receiver node, and 3) 
binding a receiver node to the repair node. In the multicast 
session advertisement phase, all nodes obtain the multicast 
group address, the address of the sender node, and other 
necessary information for tree construction. This process can 
be realized by using a mechanism such as a web page 
announcement. After that, each receiver node starts to find one 
or more candidate repair nodes that are available in the session 
for its error recovery. Finally, each receiver node selects and 
binds to the best repair node, the one with the shortest time-to-
live distance among the candidate repair nodes. This logical 
tree can be constructed using a bottom-up [7], [8], a top-down 
[9], or a hybrid scheme [3], [4]. We assume there are Nrp repair 
nodes and the repair nodes are pre-determined. This is the 
standard hypothesis made by all tree construction schemes [3], 
[4], [7]–[9]. 

Once they are attached to the tree, each receiver node must 
 

 

Fig. 1. Network topology. 
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select its NAK_TIMER delay before requesting lost packets. In 
real networks, the underlying transport protocol needs to detect 
packet duplications especially in case of retransmission. Hence, 
a dynamic estimation algorithm for the NAK timer value 
should be provided for an effective detection of feedbacks. 
Since we are only interested in the availability of the packet at 
the repair node, we assumed in our simulation that each 
receiver node sets its NAK_TIMER value to 40 ms, which is an 
average value of the current round-trip time value. 

1. Feedback Implosion 

Under our scheme, most receiver nodes only send one NAK 
per incorrectly received packet. Only the few representative 
nodes acknowledge every packet. Over a session involving the 
transmission of m packets, the maximum number of feedbacks 
from its N receiver node will obey the inequality 

 )( ∑
∉

+≤
Rai

iaHeuristic LRmF  ,            (7) 

where Ra is the set of representative nodes for the repair node. 
Under the same assumptions, the number of feedbacks FACK 

for an ACK-based scheme, where all receiver nodes 
acknowledge all the packets they receive, will be given by 

FACK mN= . 

The difference ∆min between the numbers of feedbacks of the 
two schemes will be given by 

                          )(min ∑
∉

−−=∆
Rai

ia LRNm .                        

Figure 2 shows how this difference increases as N increases 
when the repair node selects different percentages of receiver 
nodes as its representative nodes. 

 
 

Fig. 2. Difference ∆min vs. the number N of receiver nodes per 
repair node. 
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We also assumed that the individual loss probabilities Li are 
uniformly distributed between 0 and 1. We selected the number 
of transmitted packets as m = 10,000, which roughly represents 
a transfer of 10 megabytes with a packet size equal to 1 
kilobyte. When there are 100 receiver nodes and the repair 
node selects 30 receiver nodes as its representative nodes, the 
minimum difference is about 650,000 feedbacks. This result 
indicates that our scheme provides efficient buffer management 
functionality for the repair node by reducing the number of 
feedbacks sent by the receiver nodes. This feature provides 
scalability since each repair node will be able to handle more 
receiver nodes. 

2. Additional Retransmissions 

Under our scheme, the repair node discards some packets 
based on ACKs sent by receiver nodes, which are on the least 
reliable and slowest connection. Hence, the repair node will 
have in its buffer most packets that can be requested by any of 
its receiver nodes. Also, the proposed scheme requires the 
repair node to request the missing packets to some 
representative nodes to be selected on the basis of their 
connection reliability. Therefore, the proposed scheme does not 
require many additional retransmissions either from its 
upstream repair nodes or sender node. These features provide 
fast error recovery for receiver nodes and a reduction in 
network traffic between the repair nodes. 

In NAK-based schemes, the repair node batches NAKs for a 
packet and retransmits the packet periodically as long as there 
is a pending NAK for that packet. Let us call the period δ and 
assume that the packets arrive at a repair node with a Poisson 
process with mean arrival rate λ. If the repair node has B 
buffers, we can define the random variable NA (δ) to represent 
the number of packet arrivals at the repair node within a time 
interval of length δ. In order to perform at least one 
retransmission successfully, the following condition should be 
satisfied: 

,0
!

)(1)
1

0
=−=≥ ∑

−

=

−B

n

n

A n
eBNP

λδλδδ ) ( (       (8) 

which simplifies into λδλδ e
n

B

n

n

=∑
−

=

1

0 !
)( . 

Since we have ∑
∞

=

=
0 !

)(
n

n

n
e λδλδ , (8) can only be satisfied 

when B goes to infinity.     
Hence, a NAK-based scheme must require the repair nodes 

to buffer all packets for an infinitely long amount of time to 
achieve full coverage of all retransmission requests by the 
repair node. 

In NAK-based schemes using a timer mechanism, the repair 
nodes discard packets from their buffers after a time interval I 
without considering whether these packets were received by all 
their receiver nodes. As a result, some packets might be 
removed from the repair node buffer while their retransmission 
could still be requested by one of the receiver nodes. In this 
case, the missing packets will have to be re-sent from either an 
upstream repair node or the sender node. In most cases, the 
packets will have to be re-sent by the sender node, especially 
when all repair nodes apply the same buffer management 
policy and discard the same packets at the same time. This 
generates unnecessary traffic, decreasing the whole Internet 
performance. 

We evaluate how many additional retransmissions are 
required in a NAK-based scheme using a timer mechanism for 
discarding packets. The number of additional retransmissions 
depends on the missing packet probability P(MNAK), which will 
vary between 

))1(1)(1())1(1()(
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i
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for A = 1. 
Under the same assumptions, the missing packet probability 

P(MHeuristic) for the proposed scheme is given by 

P(MHeuristic) = (P(M1) + P(M2))                    
          × P (no representative node received the packet) 
        = (P(M1) + P(M2)) × ∏

∈Rbi
iL .             (9) 

Given the difficulty of finding a closed-form expression for 
the parameter A, we decided to simulate the behavior of a 
system with 100 receiver nodes per repair node. The 
parameters of this model are summarized in Table 1. 

To generate the loss probability of each receiver node, we 
applied the formula S = 1.22/( iis LRTT , ) from [24], where S 
is the packet-sending rate in packets/sec, RTTs,i is the round trip 
time from the sender node to receiver node i, and Li is the loss 
probability between the sender node and receiver node i. This 
assumes that the sender node transmits packets in a TCP-
friendly manner and each node in the multicast session uses the 
UDP protocol. 
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Table 1. Configuration Parameters. 

Sending rate S 128 packets/second 

Avg_RTT 40 ms 

Avg_OTT 15 ms 

N 100 receiver nodes 

Ra 15 and 30 representative nodes 

Rb 3 representative nodes 

Lrp 0.02 

NAK_TIMERi, 1≤i≤N 40 ms 

Safety Coefficient 1 

m 10,000 packets (≅10 Mbyte) 

 

 

Fig. 3. Simulated round trip time. 
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We simulated round-trip times RTTi,j as Poisson random 
variables, each having mean Avg_RTT. Similarly, the one-way 
transit times OTTi,rp between a receiver node i and its repair 
node rp were also simulated by Poisson random variables with 
mean Avg_OTT. Figures 3, 4, and 5 respectively show our 
measurements for round trip times, packet loss probabilities, 
and one-way transit times for 100 receiver nodes.  

Figure 6 shows the NAK and DAK arrival times for each 
receiver node when the repair node selects 30% of the receiver 
nodes as its representative nodes (20% for worst nodes and 
10% for slowest node) and the propagation delay in the 
network is set up to 5 ms. The representative nodes correspond 
to the nodes numbered 71 to 100 in the figure. We can see that 
our delayed ACK mechanism ensures that acknowledgments 
from the representative nodes always arrive to the repair node 
after the NAKs from the other nodes. Hence, most of the 
requested packets from other nodes with NAKs will still be 
available in the repair node’s buffer. 

Using the configuration parameters in Table 1, we can 
evaluate the probability that a requested packet will not be 
present in the repair node. In particular, we compared the  

 

Fig. 4. Simulated loss probability. 
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Fig. 5. Simulated one-way transit time. 
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Fig. 6. NAK and DAK arrival times for each receiver node. 
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performance of our scheme with that of a NAK-based scheme 
keeping all packets in the repair node buffer for 120 ms. Recall 
that our scheme lets repair nodes discard packets once they 
have received DAKs from all representative nodes in Ra. The 
packets are then kept in the buffer of the Rb representative 
nodes for 40 additional milliseconds. 

We assumed that the repair node selected three representative 
nodes for retransmission control, namely the node with the 
most reliable connection (the “best” node) and two “next best”  
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Fig. 7. Packet missing probability. 
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receiver nodes to act as a backup of the best node in case of a 
failed connection. As our probabilistic analysis will show, the 
result is acceptable even when the repair node has only one 
best receiver node as a representative node. 

Figure 7 shows how the number of receiver nodes per repair 
node affects the probability of not finding a requested packet in 
the repair node buffer. We can see that the performance of the 
NAK-based scheme improves as the number of receiver nodes 
increases. Recalling that 
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for A = 1, we observe that the second term 
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decreases as the group size N increases. The contribution of this 
term is labeled as M2 on the graph. Unfortunately, the first term 
(M1)  

∏
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2 ))1(1(  

tends to Lrp when the same group size N increases. As a result, 
the packet-missing probability for the NAK scheme will 
always be greater than or equal to Lrp. As a result, the NAK-
based scheme will always perform significantly worse than our 
scheme despite having a larger timer delay. 

We can also see that our heuristic scheme always achieves 

very low packet-missing probabilities for all numbers of 
receiver nodes considered.  

This probability is about 10-10 when there are 100 receiver 
nodes including 30 Ra type representative nodes (20 worst 
receiver nodes and 10 slowest receiver nodes) and 3 Rb type 
representative nodes (one best receiver node and two backup 
receiver nodes). 

We should also mention that the conditions under which the 
comparison is performed are unfavorable to our scheme as we 
assumed that all receiver nodes had an identical failure rate and 
transmission delay distributions. In most real situations, some 
receiver nodes will either experience longer transmission 
delays or less reliable links. Selecting these worse receiver 
nodes as representatives will provide even lower missing 
packet probabilities without all the disadvantages of having to 
select a very large timer delay. 

The performance of the NAK-based scheme will improve 
whenever the repair nodes have very large buffers as well as 
long enough timer values. However, this would result in an 
inefficient use of the available buffer space because too many 
packets will remain in buffer for a long time. In addition, the 
absence of an efficient buffer management scheme is likely to 
cause a buffer overflow sooner or later. 
 

 

Fig. 8. Difference between the error recovery delays. 
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3. Estimating the Error Recovery Delay 

Additional retransmissions increase the error recovery delay 
since the repair node cannot retransmit the requested packet 
immediately. The packets will then have to be retransmitted by 
either the original sender node or some upstream repair node. 
This might double or triple the error recovery delay. Also, these 
additional retransmissions cause unnecessary traffic between 
the repair nodes. 

To evaluate the minimum delay difference between both 
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schemes, we assume that the additional retransmission is 
always correctly transmitted from the upstream repair node. 
Otherwise, the difference would be much more prominent. We 
also assume that the round trip time between the two repair 
nodes is 30 ms.   

Under these assumptions, each receiver node measures the 
average recovery delay over all the packet loss it experienced. 
The results are shown in Fig. 8. 

Even under simulated parameter values, the proposed 
scheme performs better than the NAK-based scheme. Note that 
the difference decreases as the number of receiver nodes per 
repair node increases since the probability of finding an 
extremely slow node among a larger number of receiver nodes 
increases. This is to some extent an artifact of our model 
because we model transmission delays by unbounded Poisson 
variables while actual transmission delays are bounded. 
 

 

Fig. 9. Difference between the numbers of feedbacks per repair
node. 
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4. The Number of Representative Nodes 

As we can see in Figs. 8 and 9, the number of representative 
nodes selected by the repair node slightly affects the overall 
performance of the proposed scheme. 

There is a tradeoff between the number of feedbacks sent by 
the receiver nodes and the number of additional 
retransmissions. Hence, the repair node needs to limit the 
number of representative nodes by considering how many 
feedbacks it can handle.  

V. Conclusion 

We have proposed a heuristic buffer management scheme 
combining NAKs and delayed ACKs to provide scalability and 
reliability in a multicast session. Under our scheme, most 

receiver nodes send only negative acknowledgments to repair 
nodes to request packet retransmissions. Our scheme selects a 
few receiver nodes among the nodes with the slowest links and 
those with the least reliable links. These receiver nodes send 
delayed ACKs to their repair nodes to indicate which packets 
can be discarded by the repair node. Our improved scheme 
also selects a few receiver nodes with the most reliable links 
and requires them to keep a copy of all received packets for a 
finite interval of time. Whenever the repair node cannot satisfy 
a retransmission request from its own buffer, it will request the 
missing packet from one of these trusted nodes rather than 
from its upstream repair node. These representative nodes send 
the requested packet to the repair node if they have the packet. 
Hence, more nodes participate in error recovery, which 
provides a fast recovery of the transmission error. 

Our scheme shows a better performance than an ACK-based 
scheme in terms of the number of feedbacks sent by the 
receiver nodes. In addition, the number of additional 
retransmissions is reduced compared to a NAK-based scheme. 
Hence, it provides an acceptable trade-off between ACK-based 
and NAK-based schemes, using both positive and negative 
acknowledgments to achieve reliability and scalability. 
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