
A Two-Expert Approach to File Access Prediction

Wenjing Chen Christoph F. Eick Jehan-François Pâris1

Department of Computer Science
University of Houston

Houston, TX 77204-3010
tigerchenwj@yahoo.com, {ceick, paris}@cs.uh.edu

Abstract

We present a new technique for reducing the num-
ber of false predictions made by file access predictors.
Our Two-Expert Approach combines the outcomes of
two file access predictors, such as Stable Successor or
Recent Popularity, and declines to make a prediction
unless these two predictors agree. Experimental
evidence shows that our two-expert approach produces
significantly fewer false predictions than each of its
two component predictors.

1. Introduction

CPU speeds have been roughly doubling every other
year over the last twenty years. Memory sizes and disk
drive capacities have followed a similar evolution.
Disk drive access times are the exception. They have
only improved by a factor of 3 to 4 since the early
eighties. As a result, disk access times have become a
bottleneck in an increasing number of I/O intensive
applications. The situation is not likely to improve
soon because disk access times are limited by mechani-
cal constraints that do not apply to solid state devices.1

Two main techniques have been used to alleviate the
problem, namely caching and prefetching. Caching
keeps in memory the data that are the most likely to be
used again while prefetching attempts to bring data in
memory before they are needed. Both techniques have
been widely used at the block level and start now to be
applied at the file level. File-level prefetching is inher-
ently more difficult to implement than file-level
caching because prefetching files that are not needed
can have a direct negative impact on system
performance while keeping in a cache files that will not
be reused only reduces the cache effectiveness. A key

1 Supported in part by the National Science Foundation under grant
CCR-9988390.

requirement for a successful implementation of file
prefetching is thus a good file access predictor. This
predictor should have reasonable space and time
requirements, make as many correct predictions as
possible and as few false predictions as feasible.

Early file access predictors [5-10, 12, 14-16] relied
on sophisticated heuristics that required maintaining a
large amount of information about past file references.
More recent contributions [1, 2, 17] have shown that
very simple predictors requiring much less context
information could provide surprisingly accurate
predictions.

A common limitation of these simple predictors is
the relatively high number of false predictions they
make. One possible way to reduce that number would
be to develop more cautious predictors that would
decline to make a prediction whenever they do not
detect a strong access pattern and would thus be likely
to make fewer false predictions. We propose a differ-
ent solution: running two predictors in parallel,
comparing the predictions they make and accepting
these predictions if and only if they agree. As a result,
this Two-Expert Approach will only return a wrong
prediction when both its components agree on the same
wrong prediction. Experimental evidence shows that
our approach produces much less false predictions than
each of its two component predictors.

The remainder of this paper is organized as follows.
Section 2 reviews previous work. Section 3 introduces
the performance criteria that we used in our study.
Section 4 presents our Two-Expert Approach and com-
pares its performance with that of other predictors.
Finally, Section 5 states our conclusions.

2. Previous Work

Palmer and Zdonik [12] developed an associative
memory that recognized access patterns within a
context over time. Their predictive cache, named Fido,

learns file access patterns within isolated access
contexts. Griffioen and Appleton [6] presented in 1994
a file prefetching scheme relying on graph-based
relationships. Their probability graphs only tracked the
frequency of access within a particular “ look-ahead”
window size. Shriver et al. [14] proposed an analytical
performance model to study the effect of prefetching
for file system reads. Their model was based on a
4.4BSD-derived file system, and was validated against
several simple workloads. Predictions of the model
were found to be typically within 4 percent of meas-
ured values.

Tait et al. [15] investigated a client-side cache
management technique for detecting file access patterns
and for exploiting them to prefetch files from servers.
They hypothesized that the work patterns of most indi-
viduals give rise to file access patterns that define
working sets of files used for particular applications.
Lei and Duchamp [10] later extended this approach and
used a match threshold to quantify the degree of com-
patibility between stored pattern trees representing file
working sets and the working trees being formed.
These authors also introduced the Last Successor
predictor, which takes the most recently observed
successor of file F as the predicted successor of the
next occurrence of F. More recent work by Kroeger
and Long [9] compared the predictive performance of
that predictor to that of Griffioen and Appleton's
scheme and introduced more effective schemes based
on context modeling and data compression.

Stable Successor (or Noah) [1] and Recent
Popularity [2] extend the Last Successor predictor by
attempting to filter out noise in the observed file refer-
ence stream. Stable Successor keeps track of the last
observed successor of every file, but it does not update
its past prediction of file the successor of a file A
before having observed s successive instances of file B
immediately following instances of file A. Hence,
given the sequence

S: ABABABABACABACACABADADADA

Stable Successor with s = 3 will initially predict that
file B is the successor of file A and will not update this
prediction A until it encounters 3 consecutive instances
of file D immediately following instances of file A.
Increasing s from 3 to 4 would require 4, instead of 3,
consecutive instances of file D immediately following
instances of file A to update the predictor, thus
increasing the stability of the algorithm and
diminishing its responsiveness.

Figure 1 describes the algorithmic behavior of a
Stable Successor predictor. We immediately observe
that Stable Successor will either make predictions of
guesses depending on its level of confidence:

Assumptions:
G is file being currently accessed
F its direct predecessor
StableSuccessor(F) is last prediction made for the
successor of F
LastSuccessor(F) is last observed successor of F
Count(F) is a counter
s is the stability parameter of the algorithm
Algorithm:
if LastSuccessor(F) = G then
 Counter(F) ← Counter(F) + 1
else
 Counter(F) ← 0
end if
if Counter(F) ≥ s then
 LastSuccessor(F) ← G
 StableSuccessor(F) ←G
 Predict StableSuccessor(F)
else
 LastSuccessor(F) ← G
 Guess StableSuccessor(F)
end if

Figure 1. The Stable Successor predictor

(a) Stable Successor will predict that file G will the
successor of file F whenever G was the observed
successor of F for the last s instances of F; G will
then become the new stable successor of F.

(b) Stable Successor will only make a guess for the
successor of the F whenever the last s instances of
F did not have the same successor. That guess will
be the current stable successor of F.

Recent Popularity or Best j-out-of-k [2, 17] provides
the stability benefits of Stable Successor while allow-
ing for faster adaptation to workload changes. Recent
Popularity keeps track of the last k most recently
observed successors of a file. When attempting to
make a prediction for file F, it searches for the most
popular successor from the list. If the most popular
successor G occurs at least j times then it is becomes
the current j-out-of-k successor of F. When more than
one file qualifies as the “most popular,” recency is used
as the tiebreaker. Whittle et al. [17] added a third
parameter l ≤ j to let Recent Popularity predict the last
successful j-out-of-k if it appears at least l times in the
list of k last successors.

The Composite File Predictor [17] applies four
independent heuristics to the same context information
and select the one that is the most likely to deliver an
accurate prediction. These four heuristics are (1)
Stable Successor, (2) Predecessor Position, (3) Pre-

predecessor Position and (4) Recent Popularity. Given
the sequence

S: ACFBDEABCDFAB

Predecessor Position predicts that C will be the
successor of B because the file reference sequence
“ABC” occurred in the recent past. Pre-predecessor
Position extends the same approach one step further.
Given the sequence

S: ACFBDEABCDFABC

Predecessor Position predicts that D will be the
successor of C because the file reference sequence
“ABCD” occurred in the recent past.

The two parameters of the Composite Predictor are
a factor � ≤ 1 expressing the cost of a false prediction
and the number l of previous successors it maintains
foe each file (history length).

Finally, Brandt et al. [3] recently presented another
composite predictor that combines multiple predictors
or “experts” to reduce the number of false predictions.
Their set of experts includes �� ���

� �
� � � � � � 	 �
 � � � � � � � 	 �

	
 �	 � � � � � � � � � � � � � � � � � 	 �
 � � � � �
 � � � � � � � 	
 � � � � � � � �

 � �of
an accurate prefetch is low.

3. Performance Evaluation Issues

A good file predictor should make as many correct
predictions as possible and as few false predictions as
feasible. This is to say that the performance of a file
access predictor cannot be easily reduced into a single
number. Several complementary metrics have been
proposed, among which accuracy, coverage, and
success-per-reference rate.

Consider a file predictor making corrN correct
predictions and incorrN incorrect predictions when
applied to refN file references. Observe that

refincorrcorr NNN ≤+ because the predictor can
decline to make a prediction whenever it does not
detect a file access pattern. We define the accuracy a
of the predictor as its success-per-prediction ratio:

incorrcorr

corr

NN

N
a

+
=

and its coverage c by its prediction-per-reference ratio:

ref

incorrcorr

N

NN
c

+
= .

The success-per-reference rate s of the predictor is
then given by:

ac
N

N
s

ref

corr == .

Assumptions:
F is file being currently accessed
G1 is the prediction of the successor of F made by
the first component predictor
G2 is the prediction of the successor of F made by
the second component predictor
Algorithm:
if G1 = G2 then
 predict G1
else
 issue no prediction
end if

Figure 2. The Two-Expert Approach

Because of the dependent nature of these three
metrics, it is not possible to use anyone of them alone
when assessing the performance of any given predictor.
For example, a predictor that has 99 percent accuracy
would be useless if it could only be used on 5 percent
of the references. Conversely, a predictor that has a
high coverage may also give make an unacceptably
high number of incorrect predictions. Another disad-
vantage of these three metrics is that they discount the
performance improvement achieved by increasing the
success rate of a predictor from, say, 86 to 93%. It
makes this improvement appear marginal, even though
it represents a 50% reduction in the number of misses.

Whittle et al. [17] proposed a fourth metric that
captures both aspects of the predictor performance, the
effective-miss-ratio which is the ratio:

ref

incorrcorrref

N

NNN α+−

A zero value for α corresponds to the ideal situation
where false predictions would incur no penalty because
all predicted file fetches could be instantly preempted
when found to be incorrect. A unit value assumes that
there all ongoing fetches must be completed, whether
correctly predicted or not. The penalty for the incor-
rect prediction is then equivalent to one additional
cache miss. Intermediate α values represent situations
where preemption will reduce but not eliminate the
penalty for a false prediction.

4. Our Two-Expert Approach

Our premise is that any predictor having a reason-
able coverage will fail from time to time to predict the
correct successor of the current file. Our objective is to
reduce this number of false predictions. Rather than
trying to increase the accuracy of an existing predictor

Table I. The twelve component predictors

Predictor Predictor Parameters Coverage Accuracy Effective Miss Ratio

s � =0 � =0.5 � =1
2 94.35% 73.51% 30.38% 42.75% 55.11%

3 90.90% 74.42% 32.01% 43.47% 54.93%

Stable
Successor

4 88.18% 74.95% 33.51% 44.36% 55.21%

k j l

6 5 3 71.28% 88.72% 36.41% 40.26% 44.11%

7 5 3 75.28% 86.30% 34.64% 39.60% 44.55%

9 8 5 65.76% 91.11% 39.78% 42.55% 45.31%

Recent
Popularity

10 8 5 68.28% 89.94% 38.27% 41.55% 44.83%

� History Length

0 8 97.87% 77.86% 23.71% 34.50% 45.30%

0.5 10 85.41% 85.96% 26.39% 32.29% 38.19%

1 2 71.38% 89.72% 35.76% 39.32% 42.89%

1 8 83.38% 87.15% 27.15% 32.42% 37.68%

Composite
Predictor

1 10 83.88% 87.24% 26.64% 31.89% 37.15%

by tightening its prediction criterion, we propose to run
in parallel two different predictors, compare their
outputs and accept these if and only if they agree.
Figure 2 displays a more formal description of our
algorithm. The outcome of this Two-Expert Approach
(TEA) is a predictor that will only return a wrong
prediction when both its components agree on the same
wrong prediction.

Given the simplicity of the algorithm, its
performance will be determined by the characteristics
of its two component predictors. They should have
both wide coverage and high accuracy. They should
make a sufficient number of different predictions.
Finally, they should have reasonable run-time
overheads.

The two first criteria are obvious. The two compo-
nent predictors should have wide coverages with a
sufficient amount of overlap between themselves since
the coverage of the TEA predictor will never be larger
than that overlap. They should have high accuracies to
reduce the likelihood that they would make the same
wrong prediction. The two component predictors
should also return a sufficient number of different pre-
dictions as there is no point in running two component
predictors that always make the same predictions.
Finally, the two component predictors should have
reasonable run-time overheads. We have to consider
here both their space and their time overheads. The
space overheads of the predictors will depend on the

amount of history kept for each file while their time
overheads will represent the cost of maintaining and
analyzing these data. We will thus restrict our search
to simple predictors that maintain a limited amount of
context information for each file. To reduce even more
the space overhead, we should give preference to
predictors that share the same context information.

4.1. Selecting the component heuristics

We restricted our search to three groups of predic-
tors, namely Stable Successor [1], Recent Popularity
[2] and the more recent Composite Predictor [17]
because these predictors offered a wide coverage and a
high accuracy, had a low overhead and shared the same
context information.

To evaluate the performance of the candidate
predictors and to measure how frequently they
diverged, we simulated their execution over on two sets
of file traces. The first set consisted of four file traces
collected using Carnegie Mellon University’s
DFSTrace system [11]. The traces include mozart, a
personal workstation, ives, a system with the largest
number of users, dvorak, a system with the largest
proportion of write activity, and barber, a server with
the highest number of system calls per second. These
traces provide information at the system-call level, and
represent the original stream of access events not

Table II. Applying our approach to two Stable Successor predictors.

Effective Miss Ratio
s s Coverage Accuracy

� =0 � =0.5 � =1
2 3 83.03% 80.70% 33.86% 40.32% 46.77%
2 4 80.79% 82.28% 35.54% 40.62% 45.70%
3 4 83.85% 78.96% 34.41% 42.18% 49.95%

Table III. Applying our approach to a Stable Successor and a Recent Popularity predictor.

Stable
Successor

Recent
Popularity

Effective Miss Ratio

s k j l

Coverage Accuracy

� =0 � =0.5 � =1

2 6 5 3 69.59% 89.91% 37.14% 40.51% 43.88%

2 7 5 3 72.53% 88.21% 35.71% 39.83% 43.95%

2 9 8 5 64.74% 92.12% 40.10% 42.51% 44.93%

2 10 8 5 66.61% 91.26% 38.95% 41.72% 44.50%

3 6 5 3 70.36% 89.36% 36.81% 40.39% 43.97%

3 7 5 3 73.02% 87.70% 35.60% 39.91% 44.22%

3 9 8 5 65.26% 91.61% 39.92% 42.51% 45.10%

3 10 8 5 67.41% 90.63% 38.61% 41.62% 44.63%

4 6 5 3 70.24% 89.32% 36.93% 40.52% 44.10%

4 7 5 3 72.43% 87.85% 36.00% 40.21% 44.42%

4 9 8 5 65.39% 91.44% 39.91% 42.56% 45.21%

4 10 8 5 67.59% 90.40% 38.58% 41.67% 44.76%

filtered through a cache. They include between four
and five million file accesses. Our second set of traces
was collected in 1997 by Roselli [13] at the University
of California, Berkeley over a period of approximately
three months. To eliminate any interleaving issues,
these traces were processed to extract the workloads of
an instructional machine (instruct), a research machine
(research) and a web server (web).

Table I summarizes the coverages, accuracies and
effective miss ratios of the twelve predictors we
selected. These values are averages over the seven
traces as space considerations prevented us from
displaying more detailed results.

4.2. Applying the TEA to two Stable Successor
predictors

We investigated first applying our approach to pairs
of Stable Successor predictors. The results are
summarized in Table II. As before, the results are
average results over the seven traces. Comparing the

data from Tables I and II, we can see that the TEA
produces predictors that deliver lower effective miss
ratios whenever false predictions are penalized.

4.3. Applying the TEA to Stable Successor and
Recent Popularity predictors

Table III summarizes our findings. Combining a
Stable Successor and a Recent Popularity predictor can
bring the accuracy of the predictions above 90 percent.
The results for the effective miss ratio are less conclu-
sive as they are not better than those achieved by
Recent Popularity with k = 10, j = 8 and l = 5. The
explanation to this apparent paradox lies in the rela-
tively low coverage of the TEA predictors. Even
though they are more accurate than the best Recent
Popularity Predictors, they also make less correct
predictions, which results in higher effective miss
ratios. We should also note that the TEA applied to

Table IV. Applying our approach to a Stable Successor and a Composite predictor.

Composite Stable
Successor Effective Miss Ratio

History Length � s
Coverage Accuracy

� =0 � =0.5 � =1

8 0.0 2 74.33% 88.89% 33.71% 37.72% 41.74%
10 0.5 2 71.30% 91.20% 34.78% 37.82% 40.86%
2 1.0 2 64.67% 93.72% 39.23% 41.18% 43.14%
8 1.0 2 70.56% 91.54% 35.23% 38.12% 41.01%
10 1.0 2 71.00% 91.43% 34.90% 37.86% 40.81%
8 0.0 3 70.99% 91.03% 35.18% 38.27% 41.35%
10 0.5 3 69.50% 92.16% 35.77% 38.40% 41.04%
2 1.0 3 63.41% 94.54% 39.91% 41.57% 43.24%
8 1.0 3 68.80% 92.50% 36.19% 38.68% 41.17%
10 1.0 3 69.29% 92.32% 35.86% 38.44% 41.01%
8 0.0 4 68.86% 91.90% 36.54% 39.24% 41.94%
10 0.5 4 67.81% 92.74% 36.95% 39.32% 41.70%
2 1.0 4 62.25% 94.85% 40.82% 42.36% 43.89%
8 1.0 4 67.18% 93.04% 36.84% 39.10% 41.35%
10 1.0 4 67.66% 92.85% 37.01% 39.35% 41.68%

Table V. Applying our Approach to Two Composite Predictors.

Composite Composite Effective Miss Ratio

History Length � History Length �
Coverage Accuracy

� =0 � =0.5 � =1

8 0.0 10 0.5 84.68% 86.13% 26.86% 32.64% 38.41%
8 0.0 2 1.0 70.25% 91.01% 35.88% 38.94% 42.00%
8 0.0 8 1.0 83.38% 87.15% 25.68% 30.95% 36.22%
8 0.0 10 1.0 83.17% 87.43% 27.10% 32.24% 37.38%
10 0.5 2 1.0 69.91% 91.35% 35.94% 38.87% 41.80%
10 0.5 8 1.0 82.89% 87.57% 27.23% 32.29% 37.35%
10 0.5 10 1.0 83.88% 87.24% 26.64% 31.89% 37.15%
2 1.0 8 1.0 70.23% 91.02% 35.88% 38.94% 42.00%
2 1.0 10 1.0 69.91% 91.35% 35.94% 38.87% 41.80%
8 1.0 10 1.0 82.89% 87.57% 25.99% 31.05% 36.11%

Stable Successor and Recent Popularity predictors
performs better than the TEA applied to Stable Succes-
sors alone.

4.4. Applying the TEA to Stable Successor and
Composite predictors

Our highest accuracies were achieved by applying our
approach to a Stable Successor and a Composite

predictor. As we can see in Table IV, a TEA
combining these two predictors can reach up to 94.84
percent accuracies over a very wide range of traces
reflecting very different user behaviors. These
excellent results do not translate into lower effective
miss rates because of the accompanying decrease in the
coverage of the predictor.

4.5 Applying the TEA to two Composite
predictors

Our lowest effective miss ratios were obtained by
applying our approach to pairs of Composite
Predictors. Comparing the results displayed in Tables I
and V, we can see that a TEA combining two
Composite Predictors can achieve lower effective miss
rates than the best Composite Predictor. While the
margin is very narrow, the improvement is still
noteworthy because we are comparing a generic TEA
predictor with two Composite Predictors reaching they
best performance for the � value for which they were
tuned.

We also applied our approach to pairs of Stable
Successor and Recent Popularity predictors as well as
for pairs of Recent Popularity and Composite predic-
tors. We did not include them, as they were very
similar to the results we reported.

5. Conclusion

We have presented a Two-Expert Approach (TEA)
aiming at improving the accuracy of file access
predictors. Rather than relying on a single file
prediction heuristic, the TEA predictor combines the
outcomes of two file access predictors and declines to
make a prediction unless these two predictors agree.
As a result, our predictor will only return a wrong
prediction when both its components agree on the same
wrong prediction. Prediction overhead can be kept low
by selecting component predictors that maintain a
limited amount of context information.

We found out that the highest accuracies were
obtained by combining the outcomes of a Stable
Successor and a Composite Predictor. The best effec-
tive miss ratios, that is, miss ratios taking into account
the negative impact of false predictions, were achieved
by combining the outcomes of two Composite Predic-
tors.

In addition, our study confirms the excellent per-
formance of the Composite Predictor and indicates a
need for more sophisticated methods for combining the
outcomes of several predictors.

References

[1] A. Amer and D. D. E. Long, Noah: Low-cost file
access prediction through pairs, in Proc. 20th Interna-
tional Performance, Computing, and Communica-
tions Conference, pp. 27–33, April 2001.

[2] A. Amer, D. D. E. Long, J.-F. Pâris, and R. C. Burns,
File access prediction with adjustable accuracy, in
Proc. 21st International Performance of Computers
and Communication Conference, pp. 131-140, April
2002.

[3] � � � � � �� � 	 � � � � � � � � � � � �
 � � � �� � � � � � � � � � � � ��������� 	�
 � ��
��� ��������
�������������� 	�
 ��� � Proc. 12th International
Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems
(MASCOTS '04), Oct. 2004,.

[4] I. C. K. Chen, J. T. Coffey, and T. N. Mudge, Analy-
sis of branch prediction via data compression, in
Proc. International Conference on Architectural
Support for Programming Languages and Operating
Systems, pp. 128–137, Oct. 1996.

[5] K. M. Curewitz, P. Krishnan, and J. S. Vitter, Practi-
cal prefetching via data compression, in Proc. 1993
ACM SIGMOD Conference on Management of Data,
pp. 257–266, May 1993.

[6] J. Griffioen and R. Appleton, Reducing file system
latency using a predictive approach, in Proc. 1994
Summer USENIX Conference, pp. 197–207, 1994.

[7] P. Krishnan, Online prediction algorithms for data-
bases and operating systems, PhD Thesis, Dept. of
Computer Science, Brown University, 1995.

[8] T. M. Kroeger and D. D. E. Long, The case for effi-
cient file access pattern modeling, in Proc. 1996
USENIX Technical Conference, pp. 14–19, Jan. 1996.

[9] T. M. Kroeger and D. D. E. Long, Design and imple-
mentation of a predictive file prefetching algorithm, in
Proc. 2001 USENIX Annual Technical Conference,
pp. 105–118, June 2001.

[10] H. Lei and D. Duchamp, An analytical approach to
file prefetching, in Proc. 1997 USENIX Annual Tech-
nical Conference, Jan. 1997.

[11] L. Mummert and M. Satyanarayanan, Long term
distributed file reference tracing: implementation and
experience, Technical Report, School of Computer
Science, Carnegie Mellon University, 1994.

[12] M. L. Palmer and S. B. Zdonik, FIDO: a cache that
learns to fetch, in Proc. 17th International Conference
on Very Large Data Bases, pp. 255–264, Sept. 1991.

[13] D. Roselli, Characteristics of file system workloads,
Technical. Report CSD-98-1029, University of Cali-
fornia, Berkeley, 1998.

[14] E. Shriver, C. Small, and K. A. Smith, Why does file
system prefetching work? in Proc. 1999 USENIX
Technical Conference, pp. 71–83, June 1999.

[15] C. Tait and D. Duchamp, Detection and exploitation
of file working sets, in Proc. 11th International Con-
ference on Distributed Computing Systems, pp. 2–9,
May 1991.

[16] J. S. Vitter and P. Krishnan, Optimal prefetching via
data compression, in Proc. 32nd Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 121–
130, Oct. 1991.

[17] G. A. S. Whittle, J.-F. Pâris, A. Amer, D. D. E. Long
and R. Burns. Using multiple predictors to improve
the accuracy of file access predictions, in Proc. 20th
IEEE Symposium on Mass Storage Systems (MSS
2003), pp. 230–240, April 2003.

