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Abstract 
 

We present a new technique for reducing the num-
ber of false predictions made by file access predictors.  
Our Two-Expert Approach combines the outcomes of 
two file access predictors, such as Stable Successor or 
Recent Popularity, and declines to make a prediction 
unless these two predictors agree.  Experimental 
evidence shows that our two-expert approach produces 
significantly fewer false predictions than each of its 
two component predictors. 
 

1. Introduction 
 

CPU speeds have been roughly doubling every other 
year over the last twenty years.  Memory sizes and disk 
drive capacities have followed a similar evolution.  
Disk drive access times are the exception. They have 
only improved by a factor of 3 to 4 since the early 
eighties.  As a result, disk access times have become a 
bottleneck in an increasing number of I/O intensive 
applications.  The situation is not likely to improve 
soon because disk access times are limited by mechani-
cal constraints that do not apply to solid state devices.1 

Two main techniques have been used to alleviate the 
problem, namely caching and prefetching.  Caching 
keeps in memory the data that are the most likely to be 
used again while prefetching attempts to bring data in 
memory before they are needed.  Both techniques have 
been widely used at the block level and start now to be 
applied at the file level.  File-level prefetching is inher-
ently more difficult to implement than file-level 
caching because prefetching files that are not needed 
can have a direct negative impact on system 
performance while keeping in a cache files that will not 
be reused only reduces the cache effectiveness.  A key 
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requirement for a successful implementation of file 
prefetching is thus a good file access predictor.  This 
predictor should have reasonable space and time 
requirements, make as many correct predictions as 
possible and as few false predictions as feasible. 

Early file access predictors [5-10, 12, 14-16] relied 
on sophisticated heuristics that required maintaining a 
large amount of information about past file references.  
More recent contributions [1, 2, 17] have shown that 
very simple predictors requiring much less context 
information could provide surprisingly accurate 
predictions.   

A common limitation of these simple predictors is 
the relatively high number of false predictions they 
make.  One possible way to reduce that number would 
be to develop more cautious predictors that would 
decline to make a prediction whenever they do not 
detect a strong access pattern and would thus be likely 
to make fewer false predictions.  We propose a differ-
ent solution: running two predictors in parallel, 
comparing the predictions they make and accepting 
these predictions if and only if they agree. As a result, 
this Two-Expert Approach will only return a wrong 
prediction when both its components agree on the same 
wrong prediction.  Experimental evidence shows that 
our approach produces much less false predictions than 
each of its two component predictors.  

The remainder of this paper is organized as follows.  
Section 2 reviews previous work.  Section 3 introduces 
the performance criteria that we used in our study.  
Section 4 presents our Two-Expert Approach and com-
pares its performance with that of other predictors.  
Finally, Section 5 states our conclusions. 
 

2. Previous Work 
 

Palmer and Zdonik [12] developed an associative 
memory that recognized access patterns within a 
context over time.  Their predictive cache, named Fido, 



learns file access patterns within isolated access 
contexts.  Griffioen and Appleton [6] presented in 1994 
a file prefetching scheme relying on graph-based 
relationships.  Their probability graphs only tracked the 
frequency of access within a particular “ look-ahead”  
window size.  Shriver et al. [14] proposed an analytical 
performance model to study the effect of prefetching 
for file system reads.  Their model was based on a 
4.4BSD-derived file system, and was validated against 
several simple workloads.  Predictions of the model 
were found to be typically within 4 percent of meas-
ured values. 

Tait et al. [15] investigated a client-side cache 
management technique for detecting file access patterns 
and for exploiting them to prefetch files from servers.  
They hypothesized that the work patterns of most indi-
viduals give rise to file access patterns that define 
working sets of files used for particular applications.   
Lei and Duchamp [10] later extended this approach and 
used a match threshold to quantify the degree of com-
patibility between stored pattern trees representing file 
working sets and the working trees being formed.  
These authors also introduced the Last Successor 
predictor, which takes the most recently observed 
successor of file F as the predicted successor of the 
next occurrence of F.  More recent work by Kroeger 
and Long [9] compared the predictive performance of 
that predictor to that of Griffioen and Appleton's 
scheme and introduced more effective schemes based 
on context modeling and data compression. 

Stable Successor (or Noah) [1] and Recent 
Popularity [2] extend the Last Successor predictor by 
attempting to filter out noise in the observed file refer-
ence stream.  Stable Successor keeps track of the last 
observed successor of every file, but it does not update 
its past prediction of file the successor of a file A 
before having observed s successive instances of file B 
immediately following instances of file A.  Hence, 
given the sequence 

S: ABABABABACABACACABADADADA 

Stable Successor with s = 3 will initially predict that 
file B is the successor of file A and will not update this 
prediction A until it encounters 3 consecutive instances 
of file D immediately following instances of file A.  
Increasing s from 3 to 4 would require 4, instead of 3, 
consecutive instances of file D immediately following 
instances of file A to update the predictor, thus 
increasing the stability of the algorithm and 
diminishing its responsiveness.   

Figure 1 describes the algorithmic behavior of a 
Stable Successor predictor.  We immediately observe 
that Stable Successor will either make predictions of 
guesses depending on its level of confidence: 

Assumptions: 
G is file being currently accessed 
F its direct predecessor 
StableSuccessor(F) is last prediction made for the 
successor of F 
LastSuccessor(F) is last observed successor of F 
Count(F) is a counter 
s is the stability parameter of the algorithm 
Algorithm: 
if LastSuccessor(F) = G then 
 Counter(F) ← Counter(F) + 1 
else 
 Counter(F) ← 0 
end if 
if Counter(F) ≥ s then 
 LastSuccessor(F) ← G 
 StableSuccessor(F) ←G 
 Predict StableSuccessor(F)  
else 
 LastSuccessor(F) ← G 
 Guess StableSuccessor(F) 
end if 

Figure 1.  The Stable Successor predictor 

(a) Stable Successor will predict that file G will the 
successor of file F whenever G was the observed 
successor of F for the last s instances of F; G will 
then become the new stable successor of F. 

(b) Stable Successor will only make a guess for the 
successor of the F whenever the last s instances of 
F did not have the same successor.  That guess will 
be the current stable successor of F. 

Recent Popularity or Best j-out-of-k [2, 17] provides 
the stability benefits of Stable Successor while allow-
ing for faster adaptation to workload changes. Recent 
Popularity keeps track of the last k most recently 
observed successors of a file.  When attempting to 
make a prediction for file F, it searches for the most 
popular successor from the list.  If the most popular 
successor G occurs at least j times then it is becomes 
the current j-out-of-k successor of F.  When more than 
one file qualifies as the “most popular,”  recency is used 
as the tiebreaker.  Whittle et al. [17] added a third 
parameter l ≤ j to let Recent Popularity predict the last 
successful j-out-of-k if it appears at least l times in the 
list of k last successors. 

The Composite File Predictor [17] applies four 
independent heuristics to the same context information 
and select the one that is the most likely to deliver an 
accurate prediction.  These four heuristics are (1) 
Stable Successor, (2) Predecessor Position, (3) Pre- 
 



predecessor Position and (4) Recent Popularity.  Given 
the sequence 

S: ACFBDEABCDFAB 

Predecessor Position predicts that C will be the 
successor of B because the file reference sequence 
“ABC”  occurred in the recent past.  Pre-predecessor 
Position extends the same approach one step further.  
Given the sequence 

S: ACFBDEABCDFABC 

Predecessor Position predicts that D will be the 
successor of C because the file reference sequence 
“ABCD”  occurred in the recent past. 

The two parameters of the Composite Predictor are 
a factor �  ≤ 1 expressing the cost of a false prediction 
and the number l of previous successors it maintains 
foe each file (history length). 

Finally, Brandt et al. [3] recently presented another 
composite predictor that combines multiple predictors 
or “experts”  to reduce the number of false predictions.  
Their set of experts includes �� ���
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an accurate prefetch is low.  

 

3. Performance Evaluation Issues 
 

A good file predictor should make as many correct 
predictions as possible and as few false predictions as 
feasible.  This is to say that the performance of a file 
access predictor cannot be easily reduced into a single 
number.  Several complementary metrics have been 
proposed, among which accuracy, coverage, and 
success-per-reference rate.   

Consider a file predictor making corrN  correct 
predictions and incorrN  incorrect predictions when 
applied to refN  file references.  Observe that 

refincorrcorr NNN ≤+  because the predictor can 
decline to make a prediction whenever it does not 
detect a file access pattern.  We define the accuracy a 
of the predictor as its success-per-prediction ratio: 

incorrcorr

corr

NN

N
a

+
=  

and its coverage c by its prediction-per-reference ratio: 

ref

incorrcorr

N

NN
c

+
= . 

The success-per-reference rate s of the predictor is 
then given by: 

ac
N

N
s

ref

corr == . 

Assumptions: 
F is file being currently accessed 
G1 is the prediction of the successor of F made by 
the first component predictor 
G2 is the prediction of the successor of F made by 
the second component predictor 
Algorithm: 
if G1 = G2 then 
 predict G1 
else 
 issue no prediction 
end if 

Figure 2.  The Two-Expert Approach 

Because of the dependent nature of these three 
metrics, it is not possible to use anyone of them alone 
when assessing the performance of any given predictor.  
For example, a predictor that has 99 percent accuracy 
would be useless if it could only be used on 5 percent 
of the references.  Conversely, a predictor that has a 
high coverage may also give make an unacceptably 
high number of incorrect predictions.  Another disad-
vantage of these three metrics is that they discount the 
performance improvement achieved by increasing the 
success rate of a predictor from, say, 86 to 93%.  It 
makes this improvement appear marginal, even though 
it represents a 50% reduction in the number of misses. 

Whittle et al. [17] proposed a fourth metric that 
captures both aspects of the predictor performance, the 
effective-miss-ratio which is the ratio: 

ref

incorrcorrref

N

NNN α+−
 

A zero value for α corresponds to the ideal situation 
where false predictions would incur no penalty because 
all predicted file fetches could be instantly preempted 
when found to be incorrect.  A unit value assumes that 
there all ongoing fetches must be completed, whether 
correctly predicted or not.  The penalty for the incor-
rect prediction is then equivalent to one additional 
cache miss.  Intermediate α values represent situations 
where preemption will reduce but not eliminate the 
penalty for a false prediction.  
 

4. Our Two-Expert Approach 
 

Our premise is that any predictor having a reason-
able coverage will fail from time to time to predict the 
correct successor of the current file.  Our objective is to 
reduce this number of false predictions.  Rather than 
trying to increase the accuracy of an existing predictor 
 



Table I.  The twelve component predictors 

Predictor Predictor Parameters Coverage Accuracy Effective Miss Ratio 

s   � =0 � =0.5 � =1 
2 94.35% 73.51% 30.38% 42.75% 55.11% 

3 90.90% 74.42% 32.01% 43.47% 54.93% 

Stable 
Successor 

4 88.18% 74.95% 33.51% 44.36% 55.21% 

k j l  

6 5 3 71.28% 88.72% 36.41% 40.26% 44.11% 

7 5 3 75.28% 86.30% 34.64% 39.60% 44.55% 

9 8 5 65.76% 91.11% 39.78% 42.55% 45.31% 

Recent 
Popularity 

10 8 5 68.28% 89.94% 38.27% 41.55% 44.83% 

�   History Length  

0 8 97.87% 77.86% 23.71% 34.50% 45.30% 

0.5 10 85.41% 85.96% 26.39% 32.29% 38.19% 

1 2 71.38% 89.72% 35.76% 39.32% 42.89% 

1 8 83.38% 87.15% 27.15% 32.42% 37.68% 

Composite 
Predictor  

1 10 83.88% 87.24% 26.64% 31.89% 37.15% 
 

by tightening its prediction criterion, we propose to run 
in parallel two different predictors, compare their 
outputs and accept these if and only if they agree.  
Figure 2 displays a more formal description of our 
algorithm.  The outcome of this Two-Expert Approach 
(TEA) is a predictor that will only return a wrong 
prediction when both its components agree on the same 
wrong prediction. 

Given the simplicity of the algorithm, its 
performance will be determined by the characteristics 
of its two component predictors.  They should have 
both wide coverage and high accuracy.  They should 
make a sufficient number of different predictions. 
Finally, they should have reasonable run-time 
overheads. 

The two first criteria are obvious.  The two compo-
nent predictors should have wide coverages with a 
sufficient amount of overlap between themselves since 
the coverage of the TEA predictor will never be larger 
than that overlap.  They should have high accuracies to 
reduce the likelihood that they would make the same 
wrong prediction.  The two component predictors 
should also return a sufficient number of different pre-
dictions as there is no point in running two component 
predictors that always make the same predictions.  
Finally, the two component predictors should have 
reasonable run-time overheads.  We have to consider 
here both their space and their time overheads.  The 
space overheads of the predictors will depend on the 

amount of history kept for each file while their time 
overheads will represent the cost of maintaining and 
analyzing these data.  We will thus restrict our search 
to simple predictors that maintain a limited amount of 
context information for each file.  To reduce even more 
the space overhead, we should give preference to 
predictors that share the same context information. 
 
4.1. Selecting the component heuristics 
 

We restricted our search to three groups of predic-
tors, namely Stable Successor [1], Recent Popularity 
[2] and the more recent Composite Predictor [17] 
because these predictors offered a wide coverage and a 
high accuracy, had a low overhead and shared the same 
context information. 

To evaluate the performance of the candidate 
predictors and to measure how frequently they 
diverged, we simulated their execution over on two sets 
of file traces.  The first set consisted of four file traces 
collected using Carnegie Mellon University’s 
DFSTrace system [11].  The traces include mozart, a 
personal workstation, ives, a system with the largest 
number of users, dvorak, a system with the largest 
proportion of write activity, and barber, a server with 
the highest number of system calls per second.   These 
traces provide information at the system-call level, and 
represent the original stream of access events not  
 



Table II.  Applying our approach to two Stable Successor predictors. 

Effective Miss Ratio 
s s Coverage Accuracy 

� =0 � =0.5 � =1 
2 3 83.03% 80.70% 33.86% 40.32% 46.77% 
2 4 80.79% 82.28% 35.54% 40.62% 45.70% 
3 4 83.85% 78.96% 34.41% 42.18% 49.95% 

Table III.  Applying our approach to a Stable Successor and a Recent Popularity predictor. 

Stable 
Successor 

Recent 
Popularity 

Effective Miss Ratio 

s k       j      l  

Coverage Accuracy 

� =0 � =0.5 � =1 

2 6      5     3 69.59% 89.91% 37.14% 40.51% 43.88% 

2 7      5      3 72.53% 88.21% 35.71% 39.83% 43.95% 

2 9      8      5 64.74% 92.12% 40.10% 42.51% 44.93% 

2 10    8      5 66.61% 91.26% 38.95% 41.72% 44.50% 

3 6      5      3 70.36% 89.36% 36.81% 40.39% 43.97% 

3 7      5      3 73.02% 87.70% 35.60% 39.91% 44.22% 

3 9      8      5 65.26% 91.61% 39.92% 42.51% 45.10% 

3 10    8      5 67.41% 90.63% 38.61% 41.62% 44.63% 

4 6      5      3 70.24% 89.32% 36.93% 40.52% 44.10% 

4 7      5      3 72.43% 87.85% 36.00% 40.21% 44.42% 

4 9      8      5 65.39% 91.44% 39.91% 42.56% 45.21% 

4 10    8      5 67.59% 90.40% 38.58% 41.67% 44.76% 
 

filtered through a cache. They include between four 
and five million file accesses. Our second set of traces 
was collected in 1997 by Roselli [13] at the University 
of California, Berkeley over a period of approximately 
three months.  To eliminate any interleaving issues, 
these traces were processed to extract the workloads of 
an instructional machine (instruct), a research machine 
(research) and a web server (web). 

Table I summarizes the coverages, accuracies and 
effective miss ratios of the twelve predictors we 
selected.  These values are averages over the seven 
traces as space considerations prevented us from 
displaying more detailed results. 
 
4.2. Applying the TEA to two Stable Successor 
predictors 

We investigated first applying our approach to pairs 
of Stable Successor predictors.  The results are 
summarized in Table II.  As before, the results are 
average results over the seven traces.  Comparing the 

data from Tables I and II, we can see that the TEA 
produces predictors that deliver lower effective miss 
ratios whenever false predictions are penalized.   
 
4.3. Applying the TEA to Stable Successor and 
Recent Popularity predictors 
 

Table III summarizes our findings.  Combining a 
Stable Successor and a Recent Popularity predictor can 
bring the accuracy of the predictions above 90 percent.  
The results for the effective miss ratio are less conclu-
sive as they are not better than those achieved by 
Recent Popularity with k = 10, j = 8 and l = 5.  The 
explanation to this apparent paradox lies in the rela-
tively low coverage of the TEA predictors.  Even 
though they are more accurate than the best Recent 
Popularity Predictors, they also make less correct 
predictions, which results in higher effective miss 
ratios.  We should also note that the TEA applied to 
 



Table IV.  Applying our approach to a Stable Successor and a Composite predictor. 

Composite Stable 
Successor Effective Miss Ratio 

History Length    �  s 
Coverage Accuracy 

� =0 � =0.5 � =1 

8                        0.0 2 74.33% 88.89% 33.71% 37.72% 41.74% 
10                      0.5 2 71.30% 91.20% 34.78% 37.82% 40.86% 
2                        1.0 2 64.67% 93.72% 39.23% 41.18% 43.14% 
8                        1.0 2 70.56% 91.54% 35.23% 38.12% 41.01% 
10                      1.0 2 71.00% 91.43% 34.90% 37.86% 40.81% 
8                        0.0 3 70.99% 91.03% 35.18% 38.27% 41.35% 
10                      0.5 3 69.50% 92.16% 35.77% 38.40% 41.04% 
2                        1.0 3 63.41% 94.54% 39.91% 41.57% 43.24% 
8                        1.0 3 68.80% 92.50% 36.19% 38.68% 41.17% 
10                      1.0 3 69.29% 92.32% 35.86% 38.44% 41.01% 
8                        0.0 4 68.86% 91.90% 36.54% 39.24% 41.94% 
10                      0.5 4 67.81% 92.74% 36.95% 39.32% 41.70% 
2                        1.0 4 62.25% 94.85% 40.82% 42.36% 43.89% 
8                        1.0 4 67.18% 93.04% 36.84% 39.10% 41.35% 
10                      1.0 4 67.66% 92.85% 37.01% 39.35% 41.68% 

Table V.  Applying our Approach to Two Composite Predictors. 

Composite Composite Effective Miss Ratio 

History Length    �  History Length    �  
Coverage Accuracy 

� =0 � =0.5 � =1 

8                        0.0 10                     0.5 84.68% 86.13% 26.86% 32.64% 38.41% 
8                        0.0 2                        1.0 70.25% 91.01% 35.88% 38.94% 42.00% 
8                        0.0 8                        1.0 83.38% 87.15% 25.68% 30.95% 36.22% 
8                        0.0 10                      1.0 83.17% 87.43% 27.10% 32.24% 37.38% 
10                      0.5 2                        1.0 69.91% 91.35% 35.94% 38.87% 41.80% 
10                      0.5 8                        1.0 82.89% 87.57% 27.23% 32.29% 37.35% 
10                      0.5 10                      1.0 83.88% 87.24% 26.64% 31.89% 37.15% 
2                        1.0 8                        1.0 70.23% 91.02% 35.88% 38.94% 42.00% 
2                        1.0 10                      1.0 69.91% 91.35% 35.94% 38.87% 41.80% 
8                        1.0 10                      1.0 82.89% 87.57% 25.99% 31.05% 36.11% 
 

Stable Successor and Recent Popularity predictors 
performs better than the TEA applied to Stable Succes-
sors alone.   
 
4.4. Applying the TEA to Stable Successor and 
Composite predictors 
 
Our highest accuracies were achieved by applying our 
approach to a Stable Successor and a Composite 

predictor.  As we can see in Table IV, a TEA 
combining these two predictors can reach up to 94.84 
percent accuracies over a very wide range of traces 
reflecting very different user behaviors.  These 
excellent results do not translate into lower effective 
miss rates because of the accompanying decrease in the 
coverage of the predictor.   
 



4.5 Applying the TEA to two Composite 
predictors 
 

Our lowest effective miss ratios were obtained by 
applying our approach to pairs of Composite 
Predictors.  Comparing the results displayed in Tables I 
and V, we can see that a TEA combining two 
Composite Predictors can achieve lower effective miss 
rates than the best Composite Predictor.  While the 
margin is very narrow, the improvement is still 
noteworthy because we are comparing a generic TEA 
predictor with two Composite Predictors reaching they 
best performance for the �  value for which they were 
tuned. 

We also applied our approach to pairs of Stable 
Successor and Recent Popularity predictors as well as 
for pairs of Recent Popularity and Composite predic-
tors.  We did not include them, as they were very 
similar to the results we reported. 
 

5. Conclusion 
 

We have presented a Two-Expert Approach (TEA) 
aiming at improving the accuracy of file access 
predictors.  Rather than relying on a single file 
prediction heuristic, the TEA predictor combines the 
outcomes of two file access predictors and declines to 
make a prediction unless these two predictors agree.  
As a result, our predictor will only return a wrong 
prediction when both its components agree on the same 
wrong prediction.  Prediction overhead can be kept low 
by selecting component predictors that maintain a 
limited amount of context information.   

We found out that the highest accuracies were 
obtained by combining the outcomes of a Stable 
Successor and a Composite Predictor.  The best effec-
tive miss ratios, that is, miss ratios taking into account 
the negative impact of false predictions, were achieved 
by combining the outcomes of two Composite Predic-
tors. 

In addition, our study confirms the excellent per-
formance of the Composite Predictor and indicates a 
need for more sophisticated methods for combining the 
outcomes of several predictors. 
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