
Proc. 4
th
International Information and Telecommunication Technologies Symposium (I2TS ‘05), Florianopolis, SC, Brazil, pages

122–129, Dec. 2005

 122

Making Early Predictions of File Accesses

Natarajan Ravichandran Jehan-François Pâris
Department of Computer Science

University of Houston

Houston, TX 77204-3010 USA

Abstract—Nearly all extant file access predictors attempt to

identify the immediate successor to the file being currently

accessed. As a result, they leave almost no time to prefetch the

predicted file before it is accessed. We present here a Percep-

tron-based file predictor that identifies the files that will be

accessed up to five accesses ahead. Experimental evidence shows

that our early predictor can make between 30 and 78 percent of

correct predictions, depending on the nature of the file system

workload and the position of the access it attempts to predict.

I. INTRODUCTION

The wide gap between main memory and disk access times

is one of the most vexing issues in computer architecture. The

problem is not new and is likely to worsen as memory access

times continue to decrease at a much faster rate than disk

access times.

Two main techniques have been used to alleviate the

problem, namely caching and prefetching. Caching keeps in

memory the data that are the most likely to be used again

while prefetching attempts to bring data in memory before

they are needed. Both techniques have been widely used at

the block level and start now to be applied at the file level.

File-level prefetching is inherently more difficult to imple-

ment than file-level caching because prefetching files that are

not needed can have a direct negative impact on system

performance while keeping in a cache files that will not be

reused only reduces the cache effectiveness. A key require-

ment for a successful implementation of file prefetching is

thus a good file access predictor. This predictor should have

reasonable space and time requirements, make as many

correct predictions as possible and as few false predictions as

feasible.

Nearly all file predictors investigated so far have tried to

predict the immediate successor to the last file being

referenced. In that sense, they do very short-term predictions

and leave almost no time to prefetch the predicted file before

it is accessed. The sole exception is Kroeger and Long’s

Extended Partitioned Context Model [6], which can predict

sequences of future accesses. This approach left more time to

prefetch the predicted files and was shown to actually speed

up the throughput of the system.

We present here a more direct technique. Rather than

predicting sequences of future accesses, our Perceptron-based

file predictor attempts to predict which files will be accessed a

few accesses in the future without considering the intermedi-

ary accesses. As a result, our predictor has lower space

requirements. This does not prevent it from being successful

in predicting which files will be accessed up to five file

accesses ahead.

The remainder of the paper is organized as follows: Section

2 reviews previous work on file access prediction. Section 3

introduces our Perceptron-based file predictor and Section 4

discusses its performance. Finally, Section 5 has our conclu-

sions.

II. PREVIOUS WORK

Palmer et al. [9] used an associative memory to recognize

access patterns within a context over time. Their predictive

cache, named Fido, learns file access patterns within isolated

access contexts. Griffioen and Appleton presented, in 1994, a

file prefetching scheme relying on graph-based relationships

[5]. Shriver et al. [14] proposed an analytical performance

model to study the effects of prefetching for file system reads.

Tait and Duchamp [15] investigated a client-side cache

management technique used for detecting file access patterns

and for exploiting them to prefetch files from servers. Lei and

Duchamp [7] later extended this approach and introduced the

Last Successor predictor. More recent work by Kroeger and

Long introduced more effective schemes based on context

modeling [6]. Unlike previous predictors, their Extended

Partitioned Context Model could successfully predict several

references ahead.

Amer et al. recently proposed two much simpler predictors

[1, 2] that were found to perform very well on a wide variety

of workloads. The Stable Successor predictor is a refinement

of the Last Successor predictor that attempts to filter out noise

in the observed file reference stream. Stable Successor keeps

track of the last observed successor of every file, but it does

not update its past prediction of the successor of file X before

having observed m successive instances of file Y immediately

following instances of file X. Hence, given the sequence:

S: ABABABACABACABADADADA

Stable Successor with m = 3 will first predict that B is the

successor of A and will not update its prediction until it

encounters three consecutive instances of file D immediately

following instances of file A.

 123

The Recent Popularity or k-out-of-m predictor keeps track

of the m most recently observed successors of each file.

When attempting to make a prediction for a given file, Recent

Popularity searches for the most popular successor among

these m files. If the most popular successor occurs at least k

times, then it is submitted as a prediction. When more than

one file satisfies the criterion, recency is used as the tie-

breaker. Whittle et al. [16] added a third parameter l ≤ k to let

Recent Popularity predict the last successful j-out-of-k if it

appears at least l times in the list of m last successors.

The Composite File Predictor [16] applies four

independent heuristics to the same context information and

select the one that is the most likely to deliver an accurate

prediction. These four heuristics are (1) Stable Successor, (2)

Predecessor Position, (3) Pre-predecessor Position and (4)

Recent Popularity.

Shah et al. [13] showed that file predictors that identify

stable access patterns, and never alter their predictions, could

predict between 50 and 70 percent of next file accesses over a

period of one year.

Finally, Brandt et al. [4] presented a composite predictor

that combines multiple predictors or “experts” to reduce the

number of false predictions. Their set of experts includes a

null prediction expert that suppresses prefetching whenever

the likelihood of an accurate prefetch is low.

III. OUR PREDICTOR

We want to predict file accesses sufficiently ahead of time

to be able to fetch the predicted files before they are actually

accessed. Estimating the time delay Tfetch required to fetch a

specific file is a difficult proposition as we need to know the

size of the file, the characteristics of the disk drive on which it

is stored and its utilization. We took a much simpler approach

in this study. Rather than attempting to predict the file access

that will occur Tfetch time units after the current access, we try

to predict which file will be accessed n file accesses after the

current one. As seen on Fig. 1, we define a dead zone of n file

accesses that we assume to occur too quickly after the current

file access. In addition, we define a prediction window of

duration m and deem our prediction to be a success if the

predicted file is accessed within this prediction window. This

prediction window represents the fact that correctly predicting

the n+2th or the n+3th next file access will have the same

beneficial effect as correctly predicting the n+1
th
 next file

access.

A. The Perceptron
As seen on Fig. 2, a simple Perceptron [11] has n inputs, a

weight associated with each input and an output function to

determine the output. A pattern is entered through the input,

and the output is calculated according to the linear function:

∑=
i

ii XWOutput

where the Xi are the inputs to the Perceptron and the Wi are
the weights for the corresponding inputs. If the output value is

greater than a threshold value, the output of the Perceptron is

one else, it is zero. In some cases, fuzzy values are also used

to denote the inputs and output of the Perceptron.

The simple Perceptron is capable of solving linearly sepa-

rable classification problems. If the problem is linearly

separable, there exists a learning rule that converges in finite

time.

A Perceptron has two modes of operation: training and

classification. Training can be done using either unsupervised

or supervised learning schemes. In supervised learning, pairs

of data consisting of the input pattern and the target output are

presented to the Perceptron and the weights are modified

according to the training rule. The training rule is as follows:

New Weight = Old Weight +

(Expected Output – Actual Output)×Learning Rate

where Learning Rate is a constant to be adjusted experimen-

tally. It is important to note that the initial weight values and

the learning rate do not affect the classification capability of

the Perceptron. Their influence is restricted to the time it will

take for the training to be complete.

B. General organization of our predictor
The general organization of our predictor is very simple.

We associate one Perceptron to each file whose accesses we

want to predict. The inputs of each Perceptron are the files

present in the last k observed file accesses. We start by

running these Perceptrons in training mode and “teach” them

which patterns in these last k observed file accesses are the

best predictors of the n+1
th
 next file access. Ideally, a well-

trained Perceptron should return a value close to one when it

predicts that its associated file will be accessed and a value

close to zero otherwise.

A B C D E F l l l x y z

Last file accessed “Dead”

zone

Prediction

window
Far future

Fig. 1. Our prediction model

X1

X2

Xn

X0

Output

Fig. 2. A simple Perceptron

 124

While keeping this overall structure, we had to introduce

some modifications either to reduce the space and time costs

of the predictor or to adapt the Perceptron functions to the

nature of the problem.

We realized first that it would be impractical to have one

Perceptron for each file in the file system and decided instead

to limit ourselves to the so-called “hot” files that are refer-

enced much more frequently than the other files and are

responsible for 96 percent of the file accesses. This offers the

double advantage of reducing the space and time costs of our

predictor while focusing our effort on the files for which we

would have training samples that would be large enough.

Second, the set of input neurons for each Perceptron was to

include all files that were accessed during the training period.

To reduce the space and time requirements of our predictor,

we decided to use a rather small observation window that

would only comprise the last four file accesses (k = 4) and

limit the number of input neurons to seven by only keeping

the neuron inputs with the seven highest weights.

Finally, we needed a criterion defining when to make a

prediction and when to decline to make one. We decided to

let our system predict the file associated with the Perceptron

that had the highest output as long as at least two input

neurons of that Perceptron were firing. If this condition is not

met, no prediction is made.

The initialization phase of our predictor is fairly simple.

As Fig. 3 shows, we initialize one Perceptron for each “hot”

file.

The training phase consists of a single run through all the

training set. As seen on Fig. 4, the update rule is quite simple.

At each step of the algorithm, we compare each of the four

files that were accessed last with the input neurons of the

Perceptron. If they are equal, then the weight of the corre-

sponding input is updated as follows:

New Weight = Old Weight + Learning Rate.

If the file has no corresponding input neuron, then we add a

new input neuron to the Perceptron with a random weight.

This could lead to very large numbers of input neurons per

Perceptron, thus increasing its memory requirements. To

avoid this problem, we decided to prune the input space of the

Perceptron at that stage by only retaining the seven input

neurons that have the seven highest weights. This number of

input neurons was assigned arbitrarily.

The outcome of the training phase is one Perceptron for

each “hot” file. The input set of this Perceptron will contain

the seven most frequently accessed files n + 1, n + 2, n + 3,

and n + 4 accesses before.

C. Longevity of file access patterns
Shah et al. [13] found that some workloads had very stable

access patterns. Once we have found a good predictor of the

stable successor of a file for such a workload, there is hardly

any need to update this prediction. Conversely, they also

observed that some workloads were much less stable and

required the continual update of our predictions.

One of the advantages of the conventional Perceptron

learning rule is the option to train the Perceptron online to

respond to changing input patterns. Whenever the input

patterns observed during the classification phase start to differ

from the patterns identified during the training phase, the

Perceptron goes through a phase of a reduced degree of

Initialization

For each file in the “hot” list do

Initialize a Perceptron with the file name

End For

Fig. 3. The Initialization Phase

Continuous Retraining

Select a training window duration D

Do initial training during first window of file accesses

For all successive windows

Predict file accesses using Perceptrons trained

during the previous window

Retrain Perceptrons for the next window

End for

Fig. 5. How the Perceptrons are continuously retrained
Training

For each file from 4+n
th
 file to last file in the

training set do

If the file is not in “hot” list then

Go to the next file

Endif

Identify the four files accessed n file accesses

before the current file.

Identify the Perceptron corresponding to the

current file.

For each of the four files do

If the file is in the input set of the Perceptron

then

New weight = Old weight + 0.3.

Else

Add file to input list.

Weight = random()

Endif

If Perceptron has more than seven inputs

then

Keep the inputs with seven highest weights.

Delete all other inputs.

Endif

End for

End for

Fig. 4. The training phase

Initialization

For each file in the “hot” list do

Initialize a Perceptron with the file name

End For

Figure 3. The initialization phase

 125

correctness in classification. The Perceptron unlearns the stale

input patterns during this phase and the weights of the

Perceptron are adjusted to reflect the new patterns according

to the Perceptron learning rule. During this online learning

phase of mostly negative updates, the utility of the Perceptron

is seriously hampered by its reduced correctness.

In the case of file prediction, we are faced by the challenge

of changing file patterns. File patterns inevitably change over

time and we need to come up with a viable solution so that the

performance of the file predictor does not get hampered by

these changes.

Two direct solutions may be considered to overcome the

problem of changing file patterns. The first solution consists

in training the Perceptrons for the first half of the trace and

depending on the patterns learnt during that period to predict

files in the future. This approach has the double advantage of

requiring no online training and eliminating the phase of

negative updates when the performance of the Perceptrons are

below par. However, this approach assumes that a set of

simple Perceptrons can learn patterns encompassing a wide

range of changing values. It ignores the dynamics of file

pattern changes over time. In addition, the aspect of time in

the weights learned is missing. This approach also places

unreasonable expectation on a set of simple Perceptrons to

learn and classify complex patterns. As expected, the Percep-

trons do not perform well for large file traces. This led us to

conclude that this kind of training was not specific enough.

A better approach consists of training the Perceptrons with

an initial training set and updating the weights online to reflect

the changing patterns. Unfortunately, this approach forces the

Perceptron to go through a phase where its efficiency will

drop. This approach typically works for a simple Perceptron

working on a linearly separable classification domain with the

conventional learning rule. File access patterns are not simple

and do not necessarily confine themselves to a linearly sepa-

rable domain. Hence, not only is such an approach

computationally expensive and affects the accuracy of the

predictor it would also not work in most cases due to the

nature of the file access patterns.

Keeping the above factors in mind, we came up with a

scheme that predicts file accesses while retraining at the same

time the Perceptrons for the next prediction.

Our scheme overcomes the disadvantages associated with

the two methods explained above and presents a viable way to

deal with the problem of changing file patterns. After the

conclusion of the initial offline training, we do not carry out

any additional I/O for file training. We ensure that the file

patterns used for training are not stale by continuously

retraining our Perceptrons at regular intervals determined by

the prediction window size. This approach also ensures that

the prediction for the current window is not affected by the

training for the next window as a separate set of inputs and

weights are created for predicting in the next window.

In addition, our scheme does not occasion any additional

I/O because the accessed files have to be brought in to main

memory one way or another (either through file prefetching or

caching or via an access to disk in case both fails) and it is this

information of which files are accessed that is used to train the

set of inputs and weights for prediction in the next window.

There is little computational overhead because for every file

access after 4+n, only one Perceptron has to be updated in the

case of the accessed file being a “hot” file. The overhead in

terms of storing the weights and inputs for the next window of

prediction is reasonable and enables the file predictor to make

predictions with improved accuracy. Hence, we believe that

combining online prediction with offline training for the next

window provides a viable answer to the problem of changing

file patterns in file traces. The window can be set large or

small depending on the longevity of the file access patterns in

the trace.

Once the initial training is carried out, we are ready to start

predicting. Note that the prediction depends on the duration of

the dead zone for which the Perceptrons were trained. In other

words, we can predict only as far ahead as the Perceptrons

were trained.

After 4+n file accesses, the four files accessed before n file

accesses are supplied as inputs to all the Perceptrons. The

input(s) for Perceptrons having identical file identifiers in the

input set are set to one. The outputs for all Perceptrons are

calculated as the sum of the inputs and the corresponding

weights. Then the file associated with the Perceptron having

the highest output amongst all the Perceptrons in the current

calculation is predicted to be the next file. There is no updat-

ing of weights in either case of correct or wrong prediction

because training is simultaneously carried out for the next

window of prediction rendering unnecessary the adjustment of

weights for the current set of inputs.

Prediction Phase

For all file accesses from 4+n
th
 to last in the current window

do

For all Perceptrons do

Set to one each input that matches a file identifier in

the current input pattern

If at least two of the inputs are one then

Calculate output using current weights

Else

Set output to zero

Endif

If the output of at least one Perceptron is non zero

then

Find the Perceptron with the highest output value.

Predict the file associated with that Perceptron as

the next file n accessed ahead.

Else

Make no prediction.

Endif

End for

End for

Fig. 6. The prediction phase

 126

We quickly found out that this simple scheme had a major

problem. It always made a prediction unless none of the files

in the current input pattern was present in the input set of any

of the Perceptrons. As a result, our predictor made too many

wrong predictions based on non recurring weak patterns, thus

decreasing its overall accuracy. To solve the problem, each

Perceptron must now have at least two of its input neurons set

to one before making a prediction. This ensures that the

Perceptron does not make predictions for stray patterns. Fig.

6 summarizes our final algorithm for the prediction phase.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of our Perceptron predictor

by simulating its operation on two sets of file traces. The first

set consisted of four file traces collected using Carnegie

Mellon University’s DFSTrace system [8]. These traces

include mozart, a personal workstation, ives, a system with the

largest number of users, dvorak, a system with the largest

proportion of write activity, and barber, a server with the

highest number of system calls per second. They include

between four and five million file accesses collected over a

time interval of approximately one year. Our second set of

traces was collected in 1997 by Roselli [12] at the University

of California, Berkeley over a period of approximately three

months. To eliminate interleaving issues, these traces were

processed to extract the workloads of an instructional machine

(instruct), a research machine (research) and a web server

(web).

These traces presented the advantage of displaying a wide

variety of file access patterns and of having been used in

several previous studies [1, 2, 3, 13, 16]. We knew in particu-

lar that the barber and mozart traces from CMU exhibited

more stable behaviors than the five other traces, while the

research and web traces from UC Berkeley had the most

volatile behaviors.

Fig. 7 summarizes our results concerning the accuracy of

our predictor, that is, the number of correct predictions made

by the predictor over the total number of predictions it made.

As we can see, the determining factor affecting the accuracy

of our predictor is the file access patterns exhibited by each

trace. Our predictor achieves accuracies between 72 and 85

percent for three of the CMU traces while only obtaining

accuracies between 40 and 50 percent for the web trace.

We can also observe that the accuracy of the predictions

remains good even when we predict one, two, three or four

references ahead. The sole counter-example is again obtained

with the web trace for which we observe a measurable decline

between the accuracies of the predictions for the fourth and

the fifth next file access.

Another important aspect of the performance of a predictor

is its coverage, that is, the number of predictions it makes over

the total number of file accesses. As Fig. 8 indicates, our

Perceptron predictor makes predictions for between 74 and 94

percent of the file accesses. As expected, the predictor

declines more often to make a prediction when the trace has a

less stable behavior or when the predictor is asked to predict

file accesses that are further ahead. We should also note that

the characteristics of each trace affect the coverage of our

predictor at least as much as the prediction distance in the

future.

Fig. 9 displays the success rates per reference of our

Perceptron predictor. This index represents the number of

correct predictions our predictor makes over the total number

of file accesses and is thus equal to the product of the cover-

age of the predictor by its accuracy. As we can see, it is

significantly more sensitive to the characteristics of each trace

and the position of the access it attempts to predict than either

of the two other indexes.

Our study would not be complete without discussing how

our Perceptron predictor compares with other file access

predictors such as Last Successor, Stable Successor and Best

k-out-of-m. Since these predictors only attempt to predict the

next file access, we will limit our study to that case.

Fig 10 contrasts the overall success rates achieved by our

protocol when attempting to predict the next reference with

these achieved by Last Successor, Stable Successor and Best

k-out-of-m. As we can see, the Perceptron predictor is in a tie

with Last Successor and is always outperformed by both

Stable Successor and by Best k-out-of-m [10].

These results are still good if we consider that they were

obtained by a predictor that was not tuned in any fashion, only

considered the last four accesses to the file system and had a

very simplistic rule for deciding when to decline to make a

prediction. More sophisticated predictors would very likely

perform better just as Stable Successor and Best k-out-of-m

predictors perform better than the Last Successor.

V. CONCLUSIONS

Most conventional file access predictors try to predict the

immediate successor of the file being currently accessed. As a

result, they leave almost no time to prefetch the predicted file

before it is accessed. We have presented here a Perceptron-

based file predictor that attempts to predict the files that will

be accessed up to five file accesses ahead. Experimental

evidence shows that our predictor can make between 30 and

78 of correct predictions, depending on the file system work-

load and the position of the access it attempts to predict.

We can draw two important conclusions from our data.

First, even simple predictors can predict file accesses up to at

least six references ahead. Second, making early predictions

will not be feasible for all kinds of file access workloads. The

technique is likely to work very well with workloads

exhibiting stable access patterns and fail with workloads

characterized by less predictable access patterns, such as a

web access trace.

More work is still needed to reduce the number of incorrect

predictions, to investigate other early predictors, and to

evaluate the impact of file caching on the performance of our

predictor.

 127

0

10

20

30

40

50

60

70

80

90

Barber Dvorak Ives Mozart Instruct Research Web

File Trace

S
u
c
c
e
s
s
 R
a
te

Next access

One ahead

Two ahead

Three ahead

Four ahead

=

Fig. 7. Accuracy of the predictions made by our Perceptron Predictor

0

10

20

30

40

50

60

70

80

90

100

Barber Dvorak Ives Mozart Instruct Research Web

File Trace

P
r
e
d
ic
ti
o
n
 R
a
te

Next access

One ahead

Two ahead

Three ahead

Four ahead

=

Fig. 8. Coverage of our Perceptron Predictor

 128

0

10

20

30

40

50

60

70

80

90

Barber Dvorak Ives Mozart Instruct Research Web

File Trace

S
u
c
c
e
s
s
 R
a
te

Next access

One ahead

Two ahead

Three ahead

Four ahead

=

Fig. 9. Overall success rate of our Perceptron Predictor

0

10

20

30

40

50

60

70

80

90

Barber Dvorak Ives Mozart Instruct Research Web

File Trace

S
u
c
c
e
s
s
 R
a
te

Perceptron

Last Successor

Stable Successor

Best k out of m

Fig. 10. Compared overall success rate of the Perceptron predictor, Last Successor, Stable Successor and Best k out of m

when predicting the next file access.

References

[1] A. Amer and D. D. E. Long, Noah: Low-cost file access

prediction through pairs, in Proc. 20th Int’l Performance,

Computing, and Communications Conf. (IPCCC ’01), pp. 27–

33, Apr. 2001.

[2] A. Amer, D. D. E. Long, J.-F. Pâris, and R. C. Burns , File

access prediction with adjustable accuracy, in Proc. 21st Int’l

Performance of Computers and Communication Conf., pp.

131–140, Apr. 2002.

[3] A. Amer, D. Long, and R. Burns. Group-based management of

distributed file caches, in Proc. 17th Int’l Conf. on Distributed

Computing Systems (ICDCS ’01), pp. 525–534, July 2002.

 129

[4] K. Brandt, D. D. E. Long and A. Amer, Predicting When Not

To Predict, in Proc. 12th Int’l Symp. on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems

(MASCOTS '04), pp. 419–426, Oct. 2004.

[5] J. Griffioen and R. Appleton, Reducing file system latency

using a predictive approach, in Proc. 1994 Summer USENIX

Conf., pp. 197–207, June 1994.

[6] T. M. Kroeger and D. D. E. Long, Design and implementation

of a predictive file prefetching algorithm, in Proc. 2001

USENIX Annual Technical Conf., pp. 105–118, June 2001.

[7] H. Lei and D. Duchamp, An analytical approach to file

prefetching, in Proc. 1997 USENIX Annual Technical Conf.,

pp. 305–318, Jan. 1997.

[8] L. Mummert and M. Satyanarayanan, Long term distributed

file reference tracing: implementation and experience, Techni-

cal Report, School of Computer Science, Carnegie Mellon

University, 1994.

[9] M. L. Palmer and S. B. Zdonik, FIDO: a cache that learns to

fetch, in Proc. 17th Int’l Conf. on Very Large Data Bases

(VLDB), Barcelona, pp. 255–264, Sept. 1991.

[10] N. Ravichandran. Making Early Predictions of File Accesses.

MS Thesis, Department of Computer Science, University of

Houston, Aug. 2005.

[11] F. Rosenblatt. The Perceptron: A Probabilistic Model for Infor-

mation Storage and Organization in the Brain, Psychological

Review, 65(6):386–408, Nov. 1958

[12] D. Roselli, Characteristics of file system workloads, Technical.

Report CSD-98-1029, University of California, Berkeley,

1998.

[13] P. Shah, J.-F. Pâris, A. Amer and D. D. E. Long. Identifying

stable file access patterns, in Proc, 21st IEEE Symp. on Mass

Storage Systems (MSS 2004), pp. 159–163, April 2004

[14] E. Shriver, C. Small, and K. A. Smith, Why does file system

prefetching work? in Proc. 1999 USENIX Technical Conf., pp.
71–83, June 1999.

[15] C. Tait and D. Duchamp, Detection and exploitation of file

working sets, in Proc. 11th Int’l Conf. on Distributed Comput-

ing Systems (ICDCS ‘91), pp. 2–9, May 1991.

[16] G. A. S. Whittle, J.-F. Pâris, A. Amer, D. D. E. Long and R.

Burns. Using multiple predictors to improve the accuracy of

file access predictions, in Proc. 20th IEEE Symp. on Mass

Storage Systems (MSS 2003), pp. 230–240, April 2003.

