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Abstract—Nearly all extant file access predictors attempt to 

identify the immediate successor to the file being currently 

accessed.  As a result, they leave almost no time to prefetch the 

predicted file before it is accessed.  We present here a Percep-

tron-based file predictor that identifies the files that will be 

accessed up to five accesses ahead.  Experimental evidence shows 

that our early predictor can make between 30 and 78 percent of 

correct predictions, depending on the nature of the file system 

workload and the position of the access it attempts to predict. 

I. INTRODUCTION 

The wide gap between main memory and disk access times 

is one of the most vexing issues in computer architecture. The 

problem is not new and is likely to worsen as memory access 

times continue to decrease at a much faster rate than disk 

access times. 

Two main techniques have been used to alleviate the 

problem, namely caching and prefetching.  Caching keeps in 

memory the data that are the most likely to be used again 

while prefetching attempts to bring data in memory before 

they are needed.  Both techniques have been widely used at 

the block level and start now to be applied at the file level.  

File-level prefetching is inherently more difficult to imple-

ment than file-level caching because prefetching files that are 

not needed can have a direct negative impact on system 

performance while keeping in a cache files that will not be 

reused only reduces the cache effectiveness.  A key require-

ment for a successful implementation of file prefetching is 

thus a good file access predictor.  This predictor should have 

reasonable space and time requirements, make as many 

correct predictions as possible and as few false predictions as 

feasible. 

Nearly all file predictors investigated so far have tried to 

predict the immediate successor to the last file being 

referenced.  In that sense, they do very short-term predictions 

and leave almost no time to prefetch the predicted file before 

it is accessed.  The sole exception is Kroeger and Long’s 

Extended Partitioned Context Model [6], which can predict 

sequences of future accesses.  This approach left more time to 

prefetch the predicted files and was shown to actually speed 

up the throughput of the system.   

We present here a more direct technique.  Rather than 

predicting sequences of future accesses, our Perceptron-based 

file predictor attempts to predict which files will be accessed a 

few accesses in the future without considering the intermedi-

ary accesses.  As a result, our predictor has lower space 

requirements.  This does not prevent it from being successful 

in predicting which files will be accessed up to five file 

accesses ahead. 

The remainder of the paper is organized as follows: Section 

2 reviews previous work on file access prediction.  Section 3 

introduces our Perceptron-based file predictor and Section 4 

discusses its performance.  Finally, Section 5 has our conclu-

sions. 

II. PREVIOUS WORK 

Palmer et al. [9] used an associative memory to recognize 

access patterns within a context over time.  Their predictive 

cache, named Fido, learns file access patterns within isolated 

access contexts.  Griffioen and Appleton presented, in 1994, a 

file prefetching scheme relying on graph-based relationships 

[5].  Shriver et al. [14] proposed an analytical performance 

model to study the effects of prefetching for file system reads.  

Tait and Duchamp [15] investigated a client-side cache 

management technique used for detecting file access patterns 

and for exploiting them to prefetch files from servers.  Lei and 

Duchamp [7] later extended this approach and introduced the 

Last Successor predictor.  More recent work by Kroeger and 

Long introduced more effective schemes based on context 

modeling [6]. Unlike previous predictors, their Extended 

Partitioned Context Model could successfully predict several 

references ahead. 

Amer et al. recently proposed two much simpler predictors 

[1, 2] that were found to perform very well on a wide variety 

of workloads.  The Stable Successor predictor is a refinement 

of the Last Successor predictor that attempts to filter out noise 

in the observed file reference stream.  Stable Successor keeps 

track of the last observed successor of every file, but it does 

not update its past prediction of the successor of file X before 

having observed m successive instances of file Y immediately 

following instances of file X.  Hence, given the sequence: 

S: ABABABACABACABADADADA 

Stable Successor with m = 3 will first predict that B is the 

successor of A and will not update its prediction until it 

encounters three consecutive instances of file D immediately 

following instances of file A. 
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The Recent Popularity or k-out-of-m predictor keeps track 

of the m most recently observed successors of each file.  

When attempting to make a prediction for a given file, Recent 

Popularity searches for the most popular successor among 

these m files.  If the most popular successor occurs at least k 

times, then it is submitted as a prediction.  When more than 

one file satisfies the criterion, recency is used as the tie-

breaker.  Whittle et al. [16] added a third parameter l ≤ k to let 

Recent Popularity predict the last successful j-out-of-k if it 

appears at least l times in the list of m last successors. 

The Composite File Predictor [16] applies four 

independent heuristics to the same context information and 

select the one that is the most likely to deliver an accurate 

prediction.  These four heuristics are (1) Stable Successor, (2) 

Predecessor Position, (3) Pre-predecessor Position and (4) 

Recent Popularity.  

Shah et al. [13] showed that file predictors that identify 

stable access patterns, and never alter their predictions, could 

predict between 50 and 70 percent of next file accesses over a 

period of one year. 

Finally, Brandt et al. [4] presented a composite predictor 

that combines multiple predictors or “experts” to reduce the 

number of false predictions.  Their set of experts includes a 

null prediction expert that suppresses prefetching whenever 

the likelihood of an accurate prefetch is low.  

III. OUR PREDICTOR 

We want to predict file accesses sufficiently ahead of time 

to be able to fetch the predicted files before they are actually 

accessed.  Estimating the time delay Tfetch required to fetch a 

specific file is a difficult proposition as we need to know the 

size of the file, the characteristics of the disk drive on which it 

is stored and its utilization.  We took a much simpler approach 

in this study.  Rather than attempting to predict the file access 

that will occur Tfetch time units after the current access, we try 

to predict which file will be accessed n file accesses after the 

current one.  As seen on Fig. 1, we define a dead zone of n file 

accesses that we assume to occur too quickly after the current 

file access.  In addition, we define a prediction window of 

duration m and deem our prediction to be a success if the 

predicted file is accessed within this prediction window.  This 

prediction window represents the fact that correctly predicting 

the n+2th or the n+3th next file access will have the same 

beneficial effect as correctly predicting the n+1
th
 next file 

access. 

A. The Perceptron 
As seen on Fig. 2, a simple Perceptron [11] has n inputs, a 

weight associated with each input and an output function to 

determine the output. A pattern is entered through the input, 

and the output is calculated according to the linear function: 

∑=
i

ii XWOutput  

where the Xi are the inputs to the Perceptron and the Wi are 
the weights for the corresponding inputs. If the output value is 

greater than a threshold value, the output of the Perceptron is 

one else, it is zero.  In some cases, fuzzy values are also used 

to denote the inputs and output of the Perceptron. 

The simple Perceptron is capable of solving linearly sepa-

rable classification problems. If the problem is linearly 

separable, there exists a learning rule that converges in finite 

time.  

A Perceptron has two modes of operation: training and 

classification.  Training can be done using either unsupervised 

or supervised learning schemes. In supervised learning, pairs 

of data consisting of the input pattern and the target output are 

presented to the Perceptron and the weights are modified 

according to the training rule. The training rule is as follows: 

New Weight = Old Weight + 

(Expected Output – Actual Output)×Learning Rate 

where Learning Rate is a constant to be adjusted experimen-

tally.  It is important to note that the initial weight values and 

the learning rate do not affect the classification capability of 

the Perceptron. Their influence is restricted to the time it will 

take for the training to be complete. 

B. General organization of our predictor 
The general organization of our predictor is very simple. 

We associate one Perceptron to each file whose accesses we 

want to predict.  The inputs of each Perceptron are the files 

present in the last k observed file accesses.  We start by 

running these Perceptrons in training mode and “teach” them 

which patterns in these last k observed file accesses are the 

best predictors of the n+1
th
 next file access.  Ideally, a well-

trained Perceptron should return a value close to one when it 

predicts that its associated file will be accessed and a value 

close to zero otherwise.   

A  B  C  D  E  F l  l  l  x  y  z  .  .  .  .  .  .  .  .

Last file accessed “Dead”

zone

Prediction

window
Far future

 

Fig. 1.  Our prediction model 
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Fig. 2.  A simple Perceptron 
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While keeping this overall structure, we had to introduce 

some modifications either to reduce the space and time costs 

of the predictor or to adapt the Perceptron functions to the 

nature of the problem. 

We realized first that it would be impractical to have one 

Perceptron for each file in the file system and decided instead 

to limit ourselves to the so-called “hot” files that are refer-

enced much more frequently than the other files and are 

responsible for 96 percent of the file accesses.  This offers the 

double advantage of reducing the space and time costs of our 

predictor while focusing our effort on the files for which we 

would have training samples that would be large enough. 

Second, the set of input neurons for each Perceptron was to 

include all files that were accessed during the training period.  

To reduce the space and time requirements of our predictor, 

we decided to use a rather small observation window that 

would only comprise the last four file accesses (k = 4) and 

limit the number of input neurons to seven by only keeping 

the neuron inputs with the seven highest weights.   

Finally, we needed a criterion defining when to make a 

prediction and when to decline to make one.  We decided to 

let our system predict the file associated with the Perceptron 

that had the highest output as long as at least two input 

neurons of that Perceptron were firing.  If this condition is not 

met, no prediction is made. 

The initialization phase of our predictor is fairly simple.  

As Fig. 3 shows, we initialize one Perceptron for each “hot” 

file. 

The training phase consists of a single run through all the 

training set.  As seen on Fig. 4, the update rule is quite simple. 

At each step of the algorithm, we compare each of the four 

files that were accessed last with the input neurons of the 

Perceptron. If they are equal, then the weight of the corre-

sponding input is updated as follows: 

New Weight = Old Weight + Learning Rate. 

If the file has no corresponding input neuron, then we add a 

new input neuron to the Perceptron with a random weight. 

This could lead to very large numbers of input neurons per 

Perceptron, thus increasing its memory requirements. To 

avoid this problem, we decided to prune the input space of the 

Perceptron at that stage by only retaining the seven input 

neurons that have the seven highest weights. This number of 

input neurons was assigned arbitrarily. 

The outcome of the training phase is one Perceptron for 

each “hot” file.  The input set of this Perceptron will contain 

the seven most frequently accessed files n + 1, n + 2, n + 3, 

and n + 4 accesses before.  

C. Longevity of file access patterns 
Shah et al. [13] found that some workloads had very stable 

access patterns.  Once we have found a good predictor of the 

stable successor of a file for such a workload, there is hardly 

any need to update this prediction.  Conversely, they also 

observed that some workloads were much less stable and 

required the continual update of our predictions. 

One of the advantages of the conventional Perceptron 

learning rule is the option to train the Perceptron online to 

respond to changing input patterns.  Whenever the input 

patterns observed during the classification phase start to differ 

from the patterns identified during the training phase, the 

Perceptron goes through a phase of a reduced degree of 

Initialization 

For each file in the “hot” list do 

Initialize a Perceptron with the file name 

End For 

Fig. 3.  The Initialization Phase 

Continuous Retraining 

Select a training window duration D 

Do initial training during first window of file accesses 

For all successive windows 

Predict file accesses using Perceptrons trained 

during the previous window 

Retrain Perceptrons for the next window 

End for 

Fig. 5.  How the Perceptrons are continuously retrained 
Training 

For each file from 4+n
th
 file to last file in the 

training set do 

If the file is not in “hot” list then 

Go to the next file 

Endif 

Identify the four files accessed n file accesses 

before the current file. 

Identify the Perceptron corresponding to the 

current file. 

For each of the four files do 

If the file is in the input set of the Perceptron 

then 

New weight = Old weight + 0.3. 

Else 

Add file to input list.  

Weight = random() 

Endif 

If Perceptron has more than seven inputs 

then 

Keep the inputs with seven highest weights. 

Delete all other inputs. 

Endif 

End for 

End for 

Fig. 4.  The training phase 

Initialization 

For each file in the “hot” list do 

Initialize a Perceptron with the file name 

End For 

Figure 3.  The initialization phase 
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correctness in classification. The Perceptron unlearns the stale 

input patterns during this phase and the weights of the 

Perceptron are adjusted to reflect the new patterns according 

to the Perceptron learning rule. During this online learning 

phase of mostly negative updates, the utility of the Perceptron 

is seriously hampered by its reduced correctness. 

In the case of file prediction, we are faced by the challenge 

of changing file patterns. File patterns inevitably change over 

time and we need to come up with a viable solution so that the 

performance of the file predictor does not get hampered by 

these changes. 

Two direct solutions may be considered to overcome the 

problem of changing file patterns. The first solution consists 

in training the Perceptrons for the first half of the trace and 

depending on the patterns learnt during that period to predict 

files in the future. This approach has the double advantage of 

requiring no online training and eliminating the phase of 

negative updates when the performance of the Perceptrons are 

below par. However, this approach assumes that a set of 

simple Perceptrons can learn patterns encompassing a wide 

range of changing values. It ignores the dynamics of file 

pattern changes over time.  In addition, the aspect of time in 

the weights learned is missing. This approach also places 

unreasonable expectation on a set of simple Perceptrons to 

learn and classify complex patterns. As expected, the Percep-

trons do not perform well for large file traces. This led us to 

conclude that this kind of training was not specific enough.  

A better approach consists of training the Perceptrons with 

an initial training set and updating the weights online to reflect 

the changing patterns. Unfortunately, this approach forces the 

Perceptron to go through a phase where its efficiency will 

drop. This approach typically works for a simple Perceptron 

working on a linearly separable classification domain with the 

conventional learning rule. File access patterns are not simple 

and do not necessarily confine themselves to a linearly sepa-

rable domain. Hence, not only is such an approach 

computationally expensive and affects the accuracy of the 

predictor it would also not work in most cases due to the 

nature of the file access patterns. 

Keeping the above factors in mind, we came up with a 

scheme that predicts file accesses while retraining at the same 

time the Perceptrons for the next prediction. 

Our scheme overcomes the disadvantages associated with 

the two methods explained above and presents a viable way to 

deal with the problem of changing file patterns. After the 

conclusion of the initial offline training, we do not carry out 

any additional I/O for file training. We ensure that the file 

patterns used for training are not stale by continuously 

retraining our Perceptrons at regular intervals determined by 

the prediction window size.  This approach also ensures that 

the prediction for the current window is not affected by the 

training for the next window as a separate set of inputs and 

weights are created for predicting in the next window. 

In addition, our scheme does not occasion any additional 

I/O because the accessed files have to be brought in to main 

memory one way or another (either through file prefetching or 

caching or via an access to disk in case both fails) and it is this 

information of which files are accessed that is used to train the 

set of inputs and weights for prediction in the next window. 

There is little computational overhead because for every file 

access after 4+n, only one Perceptron has to be updated in the 

case of the accessed file being a “hot” file. The overhead in 

terms of storing the weights and inputs for the next window of 

prediction is reasonable and enables the file predictor to make 

predictions with improved accuracy. Hence, we believe that 

combining online prediction with offline training for the next 

window provides a viable answer to the problem of changing 

file patterns in file traces. The window can be set large or 

small depending on the longevity of the file access patterns in 

the trace. 

Once the initial training is carried out, we are ready to start 

predicting. Note that the prediction depends on the duration of 

the dead zone for which the Perceptrons were trained. In other 

words, we can predict only as far ahead as the Perceptrons 

were trained.  

After 4+n file accesses, the four files accessed before n file 

accesses are supplied as inputs to all the Perceptrons. The 

input(s) for Perceptrons having identical file identifiers in the 

input set are set to one. The outputs for all Perceptrons are 

calculated as the sum of the inputs and the corresponding 

weights.  Then the file associated with the Perceptron having 

the highest output amongst all the Perceptrons in the current 

calculation is predicted to be the next file.  There is no updat-

ing of weights in either case of correct or wrong prediction 

because training is simultaneously carried out for the next 

window of prediction rendering unnecessary the adjustment of 

weights for the current set of inputs. 

Prediction Phase 

For all file accesses from 4+n
th
 to last in the current window 

do 

For all Perceptrons do 

Set to one each input that matches a file identifier in 

the current input pattern 

If at least two of the inputs are one then 

Calculate output using current weights 

Else 

Set output to zero 

Endif 

If the output of at least one Perceptron is non zero 

then 

Find the Perceptron with the highest output value. 

Predict the file associated with that Perceptron as 

the next file n accessed ahead. 

Else 

Make no prediction. 

Endif 

End for 

End for 

Fig. 6. The prediction phase 
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We quickly found out that this simple scheme had a major 

problem.  It always made a prediction unless none of the files 

in the current input pattern was present in the input set of any 

of the Perceptrons. As a result, our predictor made too many 

wrong predictions based on non recurring weak patterns, thus 

decreasing its overall accuracy. To solve the problem, each 

Perceptron must now have at least two of its input neurons set 

to one before making a prediction. This ensures that the 

Perceptron does not make predictions for stray patterns.   Fig. 

6 summarizes our final algorithm for the prediction phase. 

IV. EXPERIMENTAL RESULTS 

We evaluated the performance of our Perceptron predictor 

by simulating its operation on two sets of file traces.  The first 

set consisted of four file traces collected using Carnegie 

Mellon University’s DFSTrace system [8]. These traces 

include mozart, a personal workstation, ives, a system with the 

largest number of users, dvorak, a system with the largest 

proportion of write activity, and barber, a server with the 

highest number of system calls per second. They include 

between four and five million file accesses collected over a 

time interval of approximately one year. Our second set of 

traces was collected in 1997 by Roselli [12] at the University 

of California, Berkeley over a period of approximately three 

months.  To eliminate interleaving issues, these traces were 

processed to extract the workloads of an instructional machine 

(instruct), a research machine (research) and a web server 

(web). 

These traces presented the advantage of displaying a wide 

variety of file access patterns and of having been used in 

several previous studies [1, 2, 3, 13, 16]. We knew in particu-

lar that the barber and mozart traces from CMU exhibited 

more stable behaviors than the five other traces, while the 

research and web traces from UC Berkeley had the most 

volatile behaviors. 

Fig. 7 summarizes our results concerning the accuracy of 

our predictor, that is, the number of correct predictions made 

by the predictor over the total number of predictions it made. 

As we can see, the determining factor affecting the accuracy 

of our predictor is the file access patterns exhibited by each 

trace.  Our predictor achieves accuracies between 72 and 85 

percent for three of the CMU traces while only obtaining 

accuracies between 40 and 50 percent for the web trace.   

We can also observe that the accuracy of the predictions 

remains good even when we predict one, two, three or four 

references ahead. The sole counter-example is again obtained 

with the web trace for which we observe a measurable decline 

between the accuracies of the predictions for the fourth and 

the fifth next file access. 

Another important aspect of the performance of a predictor 

is its coverage, that is, the number of predictions it makes over 

the total number of file accesses.  As Fig. 8 indicates, our 

Perceptron predictor makes predictions for between 74 and 94 

percent of the file accesses.  As expected, the predictor 

declines more often to make a prediction when the trace has a 

less stable behavior or when the predictor is asked to predict 

file accesses that are further ahead.  We should also note that 

the characteristics of each trace affect the coverage of our 

predictor at least as much as the prediction distance in the 

future. 

Fig. 9 displays the success rates per reference of our 

Perceptron predictor.  This index represents the number of 

correct predictions our predictor makes over the total number 

of file accesses and is thus equal to the product of the cover-

age of the predictor by its accuracy.  As we can see, it is 

significantly more sensitive to the characteristics of each trace 

and the position of the access it attempts to predict than either 

of the two other indexes. 

Our study would not be complete without discussing how 

our Perceptron predictor compares with other file access 

predictors such as Last Successor, Stable Successor and Best 

k-out-of-m.  Since these predictors only attempt to predict the 

next file access, we will limit our study to that case. 

Fig 10 contrasts the overall success rates achieved by our 

protocol when attempting to predict the next reference with 

these achieved by Last Successor, Stable Successor and Best 

k-out-of-m.  As we can see, the Perceptron predictor is in a tie 

with Last Successor and is always outperformed by both 

Stable Successor and by Best k-out-of-m [10]. 

These results are still good if we consider that they were 

obtained by a predictor that was not tuned in any fashion, only 

considered the last four accesses to the file system and had a 

very simplistic rule for deciding when to decline to make a 

prediction. More sophisticated predictors would very likely 

perform better just as Stable Successor and Best k-out-of-m 

predictors perform better than the Last Successor. 

V. CONCLUSIONS 

Most conventional file access predictors try to predict the 

immediate successor of the file being currently accessed.  As a 

result, they leave almost no time to prefetch the predicted file 

before it is accessed.  We have presented here a Perceptron-

based file predictor that attempts to predict the files that will 

be accessed up to five file accesses ahead.  Experimental 

evidence shows that our predictor can make between 30 and 

78 of correct predictions, depending on the file system work-

load and the position of the access it attempts to predict. 

We can draw two important conclusions from our data.  

First, even simple predictors can predict file accesses up to at 

least six references ahead.  Second, making early predictions 

will not be feasible for all kinds of file access workloads.  The 

technique is likely to work very well with workloads 

exhibiting stable access patterns and fail with workloads 

characterized by less predictable access patterns, such as a 

web access trace. 

More work is still needed to reduce the number of incorrect 

predictions, to investigate other early predictors, and to 

evaluate the impact of file caching on the performance of our 

predictor. 
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Fig. 7.  Accuracy of the predictions made by our Perceptron Predictor 
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Fig. 8.  Coverage of our Perceptron Predictor 
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Fig. 9.  Overall success rate of our Perceptron Predictor 
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Fig. 10.  Compared overall success rate of the Perceptron predictor, Last Successor, Stable Successor and Best k out of m 

when predicting the next file access. 
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