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Abstract 

 
Tree-based reliable multicast protocols provide 
scalability by distributing error-recovery tasks among 
several repair nodes. These repair nodes keep in their 
buffers all packets that are likely to be requested by 
any of its receiver nodes. We address the issue of 
deciding how long these packets should be retained 
and present a buffer management scheme taking into 
account the fact that most packet losses happen during 
short error bursts. Under our scheme, receiver nodes 
do not normally acknowledge correctly received 
packets and repair nodes routinely discard packets 
after a reasonable time interval. Whenever a receiver 
node detects a transmission error, its send a negative 
acknowledgement to its repair node and start 
acknowledging up to k correctly received packets. 
Whenever a repair node receives a retransmission 
request, it stops discarding packets that have not been 
properly acknowledged until it has received k 
consecutive acknowledgements from each node that 
had requested a packet retransmission.1   
 
 
I. Introduction 

     A growing number of network applications require 
a sender to distribute the same data to a large group of 
receivers. Multicast is an efficient way to support this 
kind of applications. One of the most difficult issues 
in end-to-end multicasting is that of providing an 
error-free transmission mechanism. 
     Ensuring reliability requires efficient schemes for 
retransmission control, flow control, congestion 
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control and so on. This has led to numerous proposals 
aiming at providing scalable reliable schemes. 
     Among these proposals, tree-based protocols [1-4, 
6-9, 11, 18, 19] are known to provide high scalability 
as well as reliability. These protocols construct a 
logical tree at the transport layer. This logical tree 
comprises three types of nodes: the sender node, 
repair nodes, and receiver nodes. The sender node is 
the root of the logical multicast tree. It controls the 
overall tree construction and is responsible for 
resending lost packets within the group. Each repair 
node acts as a local server for a local group of receiver 
nodes in the tree. It integrates the status information of 
its receiver nodes and performs local error recovery 
for these nodes using the data cached in its buffer. As 
a result, tree-based protocols achieve scalability by 
distributing the server retransmission workload among 
the repair nodes. 
     We believe that the buffers of these repair nodes 
should be managed in an efficient manner because 
unnecessary packets stored in their buffer waste 
storage resources. Schemes addressing this issue can 
be broadly divided into ACK-based [8, 9, 18, 19] and 
NAK-based schemes [3, 4, 6].  
     ACK-based schemes require receiver nodes to send 
an ACK to their repair node each time they have 
correctly received a packet. This lets repair nodes 
discard from their buffers all packets that have been 
acknowledged by all receiver nodes. ACK-based 
schemes do not scale well due to the ACK implosion 
occurring at the repair nodes. Hence, the number of 
receiver nodes that can be handled by a single repair 
node will be limited by the repair node ability to 
handle these ACKs. 
     NAK-based schemes provide a more scalable 
solution, because receiver nodes only contact their 
repair node when they have not correctly received a 
packet. Unfortunately, these schemes do not provide 
any efficient mechanism to safely discard packets 



from the repair node buffers. Hence, the repair node 
may be unable to resend a packet because the request 
arrived after the repair node had already discarded the 
packet from its buffer. 
     We have recently proposed efficient schemes [1, 2] 
that eliminate many of these limitations by using both 
positive and negative acknowledgments to manage 
these buffers in an efficient manner.  
     Both schemes assumed that packet losses were 
independent events that were not correlated with 
previous transmission failures. As a result, they cannot 
take into account the temporal locality of packet losses 
to decide when a repair node can safely discard a 
given packet. 
     We propose a more efficient buffer management 
scheme taking advantage of this temporal locality. It 
assumes that most transmission errors happen during 
short error bursts separated by long periods of 
relatively error-free transmission. Under our scheme, 
receiver nodes do not normally acknowledge correctly 
received packets. Whenever a receiver node detects a 
transmission error, it sends a NAK to their repair node 
to request the retransmission of that packet. After that, 
the receiver node will acknowledge all correctly 
received packets until it has correctly received and 
acknowledged k consecutive packets. Repair nodes 
normally keep in their buffer recently received packets 
for a time sufficient to handle a majority of retrans-
mission requests. Whenever they receive a 
retransmission request, they stop discarding packets 
whose correct reception has not been acknowledged 
until they have received k consecutive ACKs from 
each node that had requested a packet retransmission. 
     Our proposal has two major advantages over 
previous schemes. First, the amount of feedback from 
receiver nodes is significantly reduced because each 
receiver node only sends ACKs when it experiences 
an error burst.  This feature provides scalability, since 
each repair node will be able to handle more receiver 
nodes. Second, our proposal guarantees fast recovery 
of transmission errors, since the packets requested 
from receiver nodes are almost always available in the 
buffers of the repair nodes. As a result, the proposed 
scheme can be broadly applied for various types of 
applications. 
     The remainder of this paper is organized as 
follows. Section II briefly surveys existing reliable 
multicast protocols. Section III describes our new 
buffer management scheme. In section IV, we analyze 
the performance of the proposed scheme. Finally, 
section V contains our conclusions. 

 

II. Related Work 

     Retransmission control schemes for reliable 
multicast protocols essentially differ in the strategies 
they use for deciding which nodes should buffer 
packets for retransmission and how long these packets 
should be retained. 
      Scalable Reliable Multicast (SRM) [6] is a well-
known receiver-initiated multicast protocol that 
guarantees out-of-order reliable delivery using NAKs 
from receivers. Whenever a receiver detects a lost 
packet, it multicasts NAKs to all participants in the 
multicast session. This allows the nearest receiver to 
retransmit the packet by multicasting. As a result, the 
protocol distributes the error recovery load from one 
sender to all receivers of the multicast session. The 
sole drawback of the SRM protocol is that all 
receivers have to keep all packets in their buffer for 
retransmission.  
     The first tree-based reliable multicast protocol was 
the Reliable Multicast Transport Protocol (RMTP) 
[18]. RMTP provides reliable multicast by 
constructing a physical tree of the network layer. It 
selects a designated receiver (DR) in each local region 
and makes this receiver responsible for error recovery 
for all the other receivers in that region. To reduce 
ACK implosion, each receiver periodically unicasts an 
ACK to its designated receiver instead of sending an 
ACK for every received packet. This ACK contains 
the maximum packet number that each receiver has 
successfully received. As a result, this periodic 
feedback policy significantly delays error recovery. 
Hence, RMTP is not suitable for applications that 
transmit time-sensitive multimedia data. In addition, 
RMTP stores the whole multicast session data in the 
secondary memory of the DR for retransmission, 
which makes it poorly suited for transfers of large 
amounts of data. Some of these problems were 
addressed in RMTP-II [19] by the addition of NAKs. 
     Guo [8] proposed a stability detection algorithm 
partitioning receivers into groups and having all 
receivers in a group participate in error recovery. This 
is achieved by letting receivers periodically exchange 
history information about the set of messages they 
have received. Eventually one receiver in the group 
becomes aware that all the receivers in the group have 
successfully received the packet and announces this to 
all the members in the group. Then all members can 
safely discard the packet from the buffer. This feature 
causes high message traffic overhead because the 
algorithm requires frequent exchange of messages.  
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Figure 1. Example of the feedback schedule of a receiver node for k=1 

     The Randomized Reliable Multicast Protocol 
(RRMP) [20] is an extended version of the Bimodal 
Multicast Protocol (BMP) [3]. BMP uses a simple 
buffer management policy in which each member 
buffers packets for a fixed amount of time. RRMP 
uses instead a two-phase buffering policy: feedback-
based short-term buffering and randomized long-term 
buffering. In the first phase, every member that 
receives a packet buffers it for a short period of time 
in order to facilitate retransmission of lost packets in 
its local region. After that, only a small random subset 
of members in each region continues to buffer the 
packet. The drawback of this protocol is that it takes a 
long time for the receiver to search and find the 
correct repair nodes as the number of participants 
increase.  
     The Search Party protocol [4] uses a timer to 
discard the packet from the buffer: each member in 
the group simply discards packets after a fixed amount 
of time. The protocol remains vague on the problem of 
selecting the proper time interval for discarding 
packets. 
     Most NAK-based multicast protocols remain 
equally vague on that issue because the absence of a 
NAK from a given receiver for a given packet is not a 
definitive indication that the receiver has received the 
packet. 
     We recently proposed a randomized scheme [1] 
requiring each receiver node to send NAKs to repair 
nodes to request packet retransmissions. At periodic 
intervals, they also send randomized ACKs to indicate 
which packets can be safely discarded from the buffer 
of their repair node. The scheme reduces delay in error 
recovery, because the packets requested from the 
repair nodes are always available in their buffers. In 
addition, it greatly reduces the number of repair nodes 
required to handle a given number of receiver nodes. 
More work is still needed to ascertain the optimal 
ACK transmission intervals for both receiver nodes 
and repair nodes. 

     In our second scheme [2], each repair node 
discards some packets based on the ACKs from its 
most unreliable receiver nodes. Like our first scheme, 
our second scheme does not take advantage of the 
temporal locality of packet losses. 

III. Handling Error Bursts 

     All previous schemes assume that packet losses are 
independent events. This is not the case for most real 
networks. Packet losses tend instead to happen during 
short error bursts separated by long periods of 
relatively error-free transmission. There is also a 
significant spatial correlation in loss among the 
receiver nodes in a multicast session. In this section, 
we propose a more efficient buffer management 
scheme that takes into account the temporal locality of 
packet losses. 
     Our scheme assumes a receiver-initiated error 
recovery process and requires receiver nodes to send a 
NAK to their repair node every time they detect a 
packet loss. Thus, a receiver node that does not 
experience any packet loss will not send back any 
feedback to its repair node. We refer to this mode of 
operation as the normal transmission mode. Whenever 
a receiver node detects a transmission error, it sends a 
NAK to its repair node and switches to a new mode of 
operation called the error mode. 
     While a receiver node is in error mode, it sends an 
ACK for each received packet including retransmitted 
packets. It will stay in that mode until it has correctly 
received and acknowledged k consecutive packets. 
After that, it will return to the normal transmission 
mode and cease to acknowledge the packets it 
receives. Figure 1 illustrates this behavior. In this 
example, k is equal to 1, which means that the receiver 
node will return to the normal transmission mode once 
it has received and acknowledged exactly one correct 
packet.  
     Repair nodes also have two distinct modes of 
operation.  Under their normal transmission mode, 



they keep in their buffer recently received packets for 
a time sufficient to handle a majority of retransmission 
requests. Whenever they receive a NAK, they switch 
to an error mode preventing them from discarding 
packets that have not been acknowledged by all nodes 
that have reported a packet loss. They will stay in that 
mode until they have received k consecutive ACKs 
from each of this node. After that, they return to their 
normal transmission mode. 
     Figures 2 and 3 describe our scheme in more detail.  
They assume that the multicast tree has NRP repair 
nodes and that each repair node serves N receiver 
nodes. Each repair node will maintain: 

1. One error list containing all the receiver nodes 
that are currently operating in error mode: the 
repair node will operate in error mode whenever 
this list is not empty and in normal mode 
otherwise; 

2. One ACK list per acknowledged packet 
containing all the receiver nodes that have 
acknowledged a specific packet: these lists only 
exist when the repair node operates in error mode; 

3. One counter per receiver node to keep track of the 
number of consecutive assignments it should 
receive from that node before removing it from its 
error list. 

     Observe that our scheme assumes that a repair 
node operating in normal mode will immediately 
discard any packet that has exceeded its retention 
time. In practice, we expect these packets to be 
expelled whenever the repair node schedules a buffer 
sweep. 
     Note also that our scheme does not guarantee that 
every repair node will always have in its buffer all the 
packets requested by any of its receiver nodes; it only 
reduces the likelihood of that event. Retransmission 
failures can still happen when a NAK arrives after the 
packet it requested was discarded but these failures 
will only happen when the repair node is in the normal 
operating mode. This will occur either just at the 
beginning of an error burst or after the nodes have 
incorrectly assumed that the current error burst has 
ended.  
     The remaining retransmission failures will have to 
be forwarded to either an upstream repair node or to 
the sender node itself, depending of the topology of 
the error-recovery tree. There is little we can do to 
eliminate retransmission failures happening at the 
beginning of an error burst. We can, however, 
eliminate most other retransmission failures by 
increasing the number k of consecutive ACKs the 
 

Algorithm: 
   Join multicast group 
   Set mode to normal 
   Begin loop 
      Switch (event) 
       event :  Packet l from sender node arrives 
                    Store packet in buffer 
                    Start retention timer for packet l 
                    Break 
       event :  ACK from receiver node i for packet l arrives 
                    Verify that receiver node i is in error list 
                    Verify that repair node is in error mode 
                    Add receiver node i to ACK list of packet l 
                    If (ACK list of packet l = error list and  
                         packet is expired) 
                         Discard packet l 
                     End if 
                     Increment counteri 
                     If (counteri = k) 
                        Remove receiver node i from in error list 
                     End if 
                     If (error list is empty) 
                        Set mode to normal 
                     End if 
                     Break 
       event :  NAK from receiver node i arrives 
                    Retransmit missing packet 
                    Add receiver node i to error list 
                    Set mode to error 
                    Reset counteri 
                    Break  
       event :  Retention timer interrupt for packet l 
                    If (operating mode is normal) 
                        Discard packet 
                    Else 
                        Mark packet as expired 
                    End if 
                    Break 
       End switch 
   End loop 
   Leave multicast group 

Figure 2. Algorithm for repair node j (1 ≤ j ≤ NRP) 

Algorithm: 
   Join multicast group 
   Set mode to normal 
      Begin loop 
      Switch (event) 
         event :  Data from sender node arrives 
                      Store packet in buffer 
                      If (mode = error) 
                          Send ACK to repair node 
                          Increment counter 
                          If (counter = k) 
                              Set mode to normal 
                          End if 
                     End if 
                     Break 
         event :  Missing packet detected 
                     Send NAK to repair node 
                     Reset counter 
                     Set mode to error 
                     Break 
      End switch 
   End loop 
   Leave multicast group 

Figure 3. Algorithm for receiver node i (1 ≤ i ≤ N) 

repair node must receive from a node before removing 
that node from its error list.  



     Receiver nodes that leave the multicast session 
without giving any notice can disrupt the multicast 
session for all receiver nodes. The repair node will use 
a timeout mechanism to detect them and cut them off. 

IV. Performance Analysis 

     In this section, we evaluate the performance of our 
scheme assuming that all packets in an error burst will 
always be lost. We assume each receiver has two 
states, namely, state <1> meaning it has correctly 
received the last packet and state <0> meaning it has 
not correctly received that packet. Every time a packet 
is sent to the receiver, it will experience a transition 
that could either leave it in its current state or move it 
to another state. We will focus our discussion to the 
two transitions leading to state 0, that is <00> and 
<10>, as they both correspond to a packet loss.  
     We assume that the probabilities of these 
transitions follow Easton’s model [5] which are given 
by 

               p00 = r + (1 – r)L 

               p10 = (1 – r)L 
where r and L are positive integers ≤ 1.   
     The steady-state probability p0 of losing a given 
packet is given by 

                       p0 = p0p00 + p1 p10  

                            = p0r + p0(1 – r)L + (1 – p0)(1 – r)L�  ,  
which simplifies into  

p0 = p0r + (1 – r)L 
and 

p0 = L. 
     Hence, the L parameter represents the steady state 
probability of not correctly receiving a packet. The r 
parameter affects the duration of error bursts. With 
r = 0, all packet losses are independent events. When r 
increases, packet losses become more and more 
correlated. Let us show how that parameter can be 
estimated from the average duration of error bursts.     
The probability that an error burst will affect exactly b 
packets is then given by 

P (b lost packets per error burst) = 1p01 + 2p00p01 + 

3p00
2p01 + …  = ∑

∞

=
+

0
0100)1(

b

b ppb , 

which is the mean of a geometric distribution. Hence 
the mean number of lost packets per error burst is 
given by 

Lrrpp )1(1
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Most networks are fairly reliable and have L <<  r. In 
 

that case, p00 ≈ r. The equation above can be rewritten 
as  

r−
=

1

1µ   

Hence r = 0.8 corresponds to an average number of 5 
lost packets per error burst. 

IV.1 Feedback Implosion 
     The first main advantage of our scheme is that it 
significantly reduces the number of feedbacks sent by 
receiver nodes to their repair nodes. 
     Consider now a multicast session involving N 
receiver nodes R1, R2, …, RN sharing the same repair 
node T. We assume that these n nodes are subject to 
independent packet losses with Li and r i denoting the 
respective L and r coefficients of node Ri.   
     Since all packets in an error burst are always lost, 
we do not have to consider the possibility that a 
receiver node may incorrectly assume that the current 
error burst has ended and can safely select k = 1. Each 
receiver node Ri will thus send to its repair node T: 

1. A NAK every time they do not receive a packet; 
and 

2. An ACK for the first packet they receive correctly 
after having sent one or more NAKs. 

     Over a session involving the transmission of m 
packets, the number of feedbacks from a receiver node 
is given by 

m(p0p00 + p0p01 + p1p10) 

The number of feedbacks sent by receiver node Ri to 
its repair node can be then rewritten as 

m(Li  + (1 – Li )(1 – r i)Li )                  (1) 

     Hence the total number BURSTF  of feedbacks 

received by the repair node from its N receiver nodes 
will be given by 

))1)(1((
1

iii

N

i
iBURST LrLLmF −−+= ∑

=
     (2) 

     When all link failure probabilities are equal, that is, 
L1 = L2= …= LN = L, equation (3) simplifies into 

( )LrLLmNFBURST )1)(1( −−+=           (3) 

     Under the same assumptions, the number of 
feedbacks ACKF for an ACK-based scheme, where all 

receiver nodes acknowledge all the packets they 
receive, will be given by 

.mNFACK =  

     The difference ∆ between the numbers of 
feedbacks of the two schemes will be given by 

))1)(1(1( LrLLmN −−−−=∆             (4) 
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     Figure 4 shows how this difference increases with 
N for three different values of r when the loss 
probabilities Li are uniformly distributed between 0 
and 1. We selected the number of transmitted packets 
m = 10,000, which roughly represents a transfer of 10 
megabyte with a packet size equal to 1 kilobyte. When 
there are 100 receiver nodes, the difference is more 
than 800,000 feedbacks in all r values. This numerical 
result indicates that our scheme provides efficient 
buffer management functionality for the repair node 
by reducing the number of feedbacks sent by receiver 
nodes. This feature provides scalability, since each 
repair node will be able to handle more receiver 
nodes. 

IV.2 Additional Retransmissions 
     Whenever the repair node T receives a NAK from 
receiver node Ri, it will switch to error mode and 
cease discarding packets until they have been 
acknowledged by all receiver nodes that operate in 
error mode. We assume the failure of receiver nodes 
and their repair node is not correlated.  
     An upper bound for the probability P(MBURST) that 
T will not have in its buffer a packet that is requested 
by a receiver node Ri is then given by the probability 
that receiver node Ri enters an error burst or the repair 
node did not correctly receive the requested packet.   

 P(MBURST) =  p1 p10 + p0 p00Lrp 
                  = (1 – Li)(1 – r i)Li + Li(r i + (1 –  ri) Li) Lrp . 
where Lrp is the packet loss probability of the repair 
node. 
     This upper-bound is extremely pessimistic because 
it assumes that the repair node will never be able to 

find in buffer the first packet of any error burst. This is 
not true because repair node T will always keep in its 
buffer all the packets it receives for a reasonable time 
interval. Hence, the requested packets are available at 
the repair node if the NAKs arrive before the timer is 
expired. Let us call this probability A. The probability 
might be very close to 1 if the repair node has large 
enough timer value. If we assume that A is equal to 
0.9, the repair node will only be unable to deal with 
10% of the retransmission requests sent by other 
nodes, because the requested packet will be removed 
before any NAK arrives. 
     In addition, the packet could still be in T’s buffer 
because T was waiting for the ACK of another 
receiver node that was already inside an error burst. 
Hence, a more realistic estimate of the probability 
P(MBURST) for N receiver node is given by 

P(MBURST) =  p1 p10 × [ P(NAK was lost)  
                    + P(NAK was not lost but repair node did  
                            not correctly receive the packet) 
                    + P(NAK was not lost and repair node  
                            correctly receive the packet 
                            but NAK did not arrive on time 
                            and no other receiver node was  
                            in error mode)]  
                    +  p0 p00Lrp              

                  =  p1 p10[Li + (1– Li) Lrp 

                    + (1– Li)(1– Lrp)(1– A) ∏
≠
=

−
N

ij
j

jL
1

)1( ] 

                    +  p0 p00Lrp , for 
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                               + (1– Li)(1– Lrp)(1– A) ∏
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                     +  Li(r i + (1 –  ri) Li)Lrp                         (5) 

     In NAK-based schemes using a timer mechanism, 
repair nodes discard packets from their buffers after a 
time interval. Under same assumptions, the packet 
missing probability P(MNAK) for NAK-based scheme 
can be given by 

P(MNAK) =  Li  × [ P(NAK was lost) 
                          + P(NAK was not lost but repair node 
                              did not correctly receive the packet)          
                          + P(NAK was not lost and repair node  
                              correctly receive the packet 
                              but NAK did not arrive on time)] 

           =  Li [Li  + (1– Li) Lrp+ (1– Li)(1– Lrp)(1– A)] (6) 



     Given the difficulty of finding a closed-form 
expression for the parameter A, we decided to 
simulate the behavior of a system with 100 receiver 
nodes per repair node. To generate the loss probability 
of each receiver node, we applied the formula 

S = 1.22/( iis LRTT , ) (from [13]), where S is the 

packet sending rate in packets/sec, RTTs,i is the round 
trip time from the sender node to receiver node Ri and 
Li is the loss probability between the sender node and 
receiver node Ri. This assumes that the sender node 
transmits packets in a TCP-friendly manner and each 
node in the multicast session uses the UDP protocol. 
     We simulated the round-trip times RTTs,i as 
Poisson random variables, each having mean 
Avg_RTT. Similarly, the one-way transit times OTTi,T 
between a receiver node Ri and its repair node T were 
also simulated by Poisson random variables with 
mean Avg_OTT. We generated the packet loss 
probability for each receiver node when the packet-
sending rate S is 128 packets per second, average 
round trip time Avg_RTT is 40 ms and average one-
way transit time Avg_OTT is 15 ms. Figure 5 shows 
our measurement of the packet loss probability for 100 
receiver nodes. 
    In more actual networks, the underlying transport 
protocol needs to detect packet duplications especially 
in case of retransmission. Hence, a dynamic 
estimation algorithm for NAK timer value should be 
provided for effective detection of feedbacks. Since 
we are only interested in the availability of the packet 
at the repair node, we assumed in our simulation that 
each receiver node sets its NAK_TIMER value to 
40ms, which is an average value of the current RTT 
values. 
     Using these configuration parameters, we can 
evaluate the probability that a requested packet will 
not be present in the repair node. Figure 6 shows how 
the number of receiving nodes per repair node affects 
the probability of not finding a requested packet in the 
repair node buffer. We can see that the NAK-based 
scheme performs significantly worse than our scheme. 
We also can see that our scheme always achieves very 
low packet missing probabilities for all number of 
receiver nodes per repair node. The probability is 
below 10-4 when there are 100 receiver nodes. This 
result means the repair node will send only single 
NAK to its upstream repair node when the sender 
node transmits 10 megabytes data. In addition, our 
simulations also indicate that the lowest packet 
missing probabilities are achieved whenever there are 
at least 40 receiver nodes per repair node.  
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     Additional retransmissions increase the error 
recovery delay, since the repair node cannot retransmit 
the requested packet immediately. The packets will 
then have to be retransmitted by either the original 
sender node or upstream repair node. As a result, the 
error recovery delay could be doubled or even tripled. 
Also, these additional retransmissions cause 
unnecessary traffic between the repair nodes. 
     The performance of NAK-based scheme will 
improve whenever the repair nodes have very large 
buffers as well as a long enough timer values. 
However, this would result in an inefficient use of the 
available buffer space, because too many packets will 
remain in buffer for a long time. In addition, the 
absence of an efficient buffer management scheme is 
likely to cause sooner or later buffer overflow. 

max = 0.1343 
min = 0.0279 
avg = 0.0633 



V. Conclusions 

     We have presented a new reliable tree-based 
multicast scheme that takes into account the temporal 
locality of packet losses to limit both the number of 
feedbacks sent by receiver nodes to their repair nodes 
and the probability that a given repair node will not be 
able to handle a given packet retransmission request.  
     Our scheme operates in two possible modes. In 
normal mode, receiver nodes do not acknowledge 
correctly received packets and repair nodes routinely 
discard packets after a reasonable time interval. 
Whenever a receiver node detects a lost packet, it 
sends a NAK to its repair node and switches to error 
mode. It will then acknowledge all incoming packets 
and keep operating in that mode until it has correctly 
received and acknowledged k consecutive packets. 
Similarly, any repair node that receives a NAK from 
any of its receiver nodes will start operating in error 
mode and stop discarding packets that have not been 
properly acknowledged by all receiver nodes that 
operate in error mode. 
     Our scheme requires fewer feedbacks than ACK-
based schemes because receiver nodes only send 
ACKs to their repair node when they are in the middle 
of an error burst. At the same time, it allows the repair 
nodes to handle more retransmission requests than 
NAK-based schemes. As a result, our scheme 
provides an attractive compromise between ACK-
based and NAK-based schemes. 
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