

A Tree-Based Reliable Multicast Scheme
Exploiting the Temporal Locality of Transmission Errors

Jinsuk Baek1 Jehan-François Pâris1

Department of Computer Science
University of Houston

Houston, TX 77204-3010
{jsbaek, paris}@cs.uh.edu

Abstract

Tree-based reliable multicast protocols provide
scalability by distributing error-recovery tasks among
several repair nodes. These repair nodes keep in their
buffers all packets that are likely to be requested by
any of its receiver nodes. We address the issue of
deciding how long these packets should be retained
and present a buffer management scheme taking into
account the fact that most packet losses happen during
short error bursts. Under our scheme, receiver nodes
do not normally acknowledge correctly received
packets and repair nodes routinely discard packets
after a reasonable time interval. Whenever a receiver
node detects a transmission error, its send a negative
acknowledgement to its repair node and start
acknowledging up to k correctly received packets.
Whenever a repair node receives a retransmission
request, it stops discarding packets that have not been
properly acknowledged until it has received k
consecutive acknowledgements from each node that
had requested a packet retransmission.1

I. Introduction

 A growing number of network applications require
a sender to distribute the same data to a large group of
receivers. Multicast is an efficient way to support this
kind of applications. One of the most difficult issues
in end-to-end multicasting is that of providing an
error-free transmission mechanism.
 Ensuring reliability requires efficient schemes for
retransmission control, flow control, congestion

1 Supported in part by the National Science Foundation
under grant CCR-9988390.

control and so on. This has led to numerous proposals
aiming at providing scalable reliable schemes.
 Among these proposals, tree-based protocols [1-4,
6-9, 11, 18, 19] are known to provide high scalability
as well as reliability. These protocols construct a
logical tree at the transport layer. This logical tree
comprises three types of nodes: the sender node,
repair nodes, and receiver nodes. The sender node is
the root of the logical multicast tree. It controls the
overall tree construction and is responsible for
resending lost packets within the group. Each repair
node acts as a local server for a local group of receiver
nodes in the tree. It integrates the status information of
its receiver nodes and performs local error recovery
for these nodes using the data cached in its buffer. As
a result, tree-based protocols achieve scalability by
distributing the server retransmission workload among
the repair nodes.
 We believe that the buffers of these repair nodes
should be managed in an efficient manner because
unnecessary packets stored in their buffer waste
storage resources. Schemes addressing this issue can
be broadly divided into ACK-based [8, 9, 18, 19] and
NAK-based schemes [3, 4, 6].
 ACK-based schemes require receiver nodes to send
an ACK to their repair node each time they have
correctly received a packet. This lets repair nodes
discard from their buffers all packets that have been
acknowledged by all receiver nodes. ACK-based
schemes do not scale well due to the ACK implosion
occurring at the repair nodes. Hence, the number of
receiver nodes that can be handled by a single repair
node will be limited by the repair node ability to
handle these ACKs.
 NAK-based schemes provide a more scalable
solution, because receiver nodes only contact their
repair node when they have not correctly received a
packet. Unfortunately, these schemes do not provide
any efficient mechanism to safely discard packets

from the repair node buffers. Hence, the repair node
may be unable to resend a packet because the request
arrived after the repair node had already discarded the
packet from its buffer.
 We have recently proposed efficient schemes [1, 2]
that eliminate many of these limitations by using both
positive and negative acknowledgments to manage
these buffers in an efficient manner.
 Both schemes assumed that packet losses were
independent events that were not correlated with
previous transmission failures. As a result, they cannot
take into account the temporal locality of packet losses
to decide when a repair node can safely discard a
given packet.
 We propose a more efficient buffer management
scheme taking advantage of this temporal locality. It
assumes that most transmission errors happen during
short error bursts separated by long periods of
relatively error-free transmission. Under our scheme,
receiver nodes do not normally acknowledge correctly
received packets. Whenever a receiver node detects a
transmission error, it sends a NAK to their repair node
to request the retransmission of that packet. After that,
the receiver node will acknowledge all correctly
received packets until it has correctly received and
acknowledged k consecutive packets. Repair nodes
normally keep in their buffer recently received packets
for a time sufficient to handle a majority of retrans-
mission requests. Whenever they receive a
retransmission request, they stop discarding packets
whose correct reception has not been acknowledged
until they have received k consecutive ACKs from
each node that had requested a packet retransmission.
 Our proposal has two major advantages over
previous schemes. First, the amount of feedback from
receiver nodes is significantly reduced because each
receiver node only sends ACKs when it experiences
an error burst. This feature provides scalability, since
each repair node will be able to handle more receiver
nodes. Second, our proposal guarantees fast recovery
of transmission errors, since the packets requested
from receiver nodes are almost always available in the
buffers of the repair nodes. As a result, the proposed
scheme can be broadly applied for various types of
applications.
 The remainder of this paper is organized as
follows. Section II briefly surveys existing reliable
multicast protocols. Section III describes our new
buffer management scheme. In section IV, we analyze
the performance of the proposed scheme. Finally,
section V contains our conclusions.

II. Related Work

 Retransmission control schemes for reliable
multicast protocols essentially differ in the strategies
they use for deciding which nodes should buffer
packets for retransmission and how long these packets
should be retained.
 Scalable Reliable Multicast (SRM) [6] is a well-
known receiver-initiated multicast protocol that
guarantees out-of-order reliable delivery using NAKs
from receivers. Whenever a receiver detects a lost
packet, it multicasts NAKs to all participants in the
multicast session. This allows the nearest receiver to
retransmit the packet by multicasting. As a result, the
protocol distributes the error recovery load from one
sender to all receivers of the multicast session. The
sole drawback of the SRM protocol is that all
receivers have to keep all packets in their buffer for
retransmission.
 The first tree-based reliable multicast protocol was
the Reliable Multicast Transport Protocol (RMTP)
[18]. RMTP provides reliable multicast by
constructing a physical tree of the network layer. It
selects a designated receiver (DR) in each local region
and makes this receiver responsible for error recovery
for all the other receivers in that region. To reduce
ACK implosion, each receiver periodically unicasts an
ACK to its designated receiver instead of sending an
ACK for every received packet. This ACK contains
the maximum packet number that each receiver has
successfully received. As a result, this periodic
feedback policy significantly delays error recovery.
Hence, RMTP is not suitable for applications that
transmit time-sensitive multimedia data. In addition,
RMTP stores the whole multicast session data in the
secondary memory of the DR for retransmission,
which makes it poorly suited for transfers of large
amounts of data. Some of these problems were
addressed in RMTP-II [19] by the addition of NAKs.
 Guo [8] proposed a stability detection algorithm
partitioning receivers into groups and having all
receivers in a group participate in error recovery. This
is achieved by letting receivers periodically exchange
history information about the set of messages they
have received. Eventually one receiver in the group
becomes aware that all the receivers in the group have
successfully received the packet and announces this to
all the members in the group. Then all members can
safely discard the packet from the buffer. This feature
causes high message traffic overhead because the
algorithm requires frequent exchange of messages.

O X X X O O O X O O O

NAK ACK

NAK ACK
packet sequence

O : successfully arrived packet
X : unsuccessfully arrived packet

…..

NAK NAK

Figure 1. Example of the feedback schedule of a receiver node for k=1

 The Randomized Reliable Multicast Protocol
(RRMP) [20] is an extended version of the Bimodal
Multicast Protocol (BMP) [3]. BMP uses a simple
buffer management policy in which each member
buffers packets for a fixed amount of time. RRMP
uses instead a two-phase buffering policy: feedback-
based short-term buffering and randomized long-term
buffering. In the first phase, every member that
receives a packet buffers it for a short period of time
in order to facilitate retransmission of lost packets in
its local region. After that, only a small random subset
of members in each region continues to buffer the
packet. The drawback of this protocol is that it takes a
long time for the receiver to search and find the
correct repair nodes as the number of participants
increase.
 The Search Party protocol [4] uses a timer to
discard the packet from the buffer: each member in
the group simply discards packets after a fixed amount
of time. The protocol remains vague on the problem of
selecting the proper time interval for discarding
packets.
 Most NAK-based multicast protocols remain
equally vague on that issue because the absence of a
NAK from a given receiver for a given packet is not a
definitive indication that the receiver has received the
packet.
 We recently proposed a randomized scheme [1]
requiring each receiver node to send NAKs to repair
nodes to request packet retransmissions. At periodic
intervals, they also send randomized ACKs to indicate
which packets can be safely discarded from the buffer
of their repair node. The scheme reduces delay in error
recovery, because the packets requested from the
repair nodes are always available in their buffers. In
addition, it greatly reduces the number of repair nodes
required to handle a given number of receiver nodes.
More work is still needed to ascertain the optimal
ACK transmission intervals for both receiver nodes
and repair nodes.

 In our second scheme [2], each repair node
discards some packets based on the ACKs from its
most unreliable receiver nodes. Like our first scheme,
our second scheme does not take advantage of the
temporal locality of packet losses.

III. Handling Error Bursts

 All previous schemes assume that packet losses are
independent events. This is not the case for most real
networks. Packet losses tend instead to happen during
short error bursts separated by long periods of
relatively error-free transmission. There is also a
significant spatial correlation in loss among the
receiver nodes in a multicast session. In this section,
we propose a more efficient buffer management
scheme that takes into account the temporal locality of
packet losses.
 Our scheme assumes a receiver-initiated error
recovery process and requires receiver nodes to send a
NAK to their repair node every time they detect a
packet loss. Thus, a receiver node that does not
experience any packet loss will not send back any
feedback to its repair node. We refer to this mode of
operation as the normal transmission mode. Whenever
a receiver node detects a transmission error, it sends a
NAK to its repair node and switches to a new mode of
operation called the error mode.
 While a receiver node is in error mode, it sends an
ACK for each received packet including retransmitted
packets. It will stay in that mode until it has correctly
received and acknowledged k consecutive packets.
After that, it will return to the normal transmission
mode and cease to acknowledge the packets it
receives. Figure 1 illustrates this behavior. In this
example, k is equal to 1, which means that the receiver
node will return to the normal transmission mode once
it has received and acknowledged exactly one correct
packet.
 Repair nodes also have two distinct modes of
operation. Under their normal transmission mode,

they keep in their buffer recently received packets for
a time sufficient to handle a majority of retransmission
requests. Whenever they receive a NAK, they switch
to an error mode preventing them from discarding
packets that have not been acknowledged by all nodes
that have reported a packet loss. They will stay in that
mode until they have received k consecutive ACKs
from each of this node. After that, they return to their
normal transmission mode.
 Figures 2 and 3 describe our scheme in more detail.
They assume that the multicast tree has NRP repair
nodes and that each repair node serves N receiver
nodes. Each repair node will maintain:

1. One error list containing all the receiver nodes
that are currently operating in error mode: the
repair node will operate in error mode whenever
this list is not empty and in normal mode
otherwise;

2. One ACK list per acknowledged packet
containing all the receiver nodes that have
acknowledged a specific packet: these lists only
exist when the repair node operates in error mode;

3. One counter per receiver node to keep track of the
number of consecutive assignments it should
receive from that node before removing it from its
error list.

 Observe that our scheme assumes that a repair
node operating in normal mode will immediately
discard any packet that has exceeded its retention
time. In practice, we expect these packets to be
expelled whenever the repair node schedules a buffer
sweep.
 Note also that our scheme does not guarantee that
every repair node will always have in its buffer all the
packets requested by any of its receiver nodes; it only
reduces the likelihood of that event. Retransmission
failures can still happen when a NAK arrives after the
packet it requested was discarded but these failures
will only happen when the repair node is in the normal
operating mode. This will occur either just at the
beginning of an error burst or after the nodes have
incorrectly assumed that the current error burst has
ended.
 The remaining retransmission failures will have to
be forwarded to either an upstream repair node or to
the sender node itself, depending of the topology of
the error-recovery tree. There is little we can do to
eliminate retransmission failures happening at the
beginning of an error burst. We can, however,
eliminate most other retransmission failures by
increasing the number k of consecutive ACKs the

Algorithm:
 Join multicast group
 Set mode to normal
 Begin loop
 Switch (event)
 event : Packet l from sender node arrives
 Store packet in buffer
 Start retention timer for packet l
 Break
 event : ACK from receiver node i for packet l arrives
 Verify that receiver node i is in error list
 Verify that repair node is in error mode
 Add receiver node i to ACK list of packet l
 If (ACK list of packet l = error list and
 packet is expired)
 Discard packet l
 End if
 Increment counteri
 If (counteri = k)
 Remove receiver node i from in error list
 End if
 If (error list is empty)
 Set mode to normal
 End if
 Break
 event : NAK from receiver node i arrives
 Retransmit missing packet
 Add receiver node i to error list
 Set mode to error
 Reset counteri
 Break
 event : Retention timer interrupt for packet l
 If (operating mode is normal)
 Discard packet
 Else
 Mark packet as expired
 End if
 Break
 End switch
 End loop
 Leave multicast group

Figure 2. Algorithm for repair node j (1 ≤ j ≤ NRP)

Algorithm:
 Join multicast group
 Set mode to normal
 Begin loop
 Switch (event)
 event : Data from sender node arrives
 Store packet in buffer
 If (mode = error)
 Send ACK to repair node
 Increment counter
 If (counter = k)
 Set mode to normal
 End if
 End if
 Break
 event : Missing packet detected
 Send NAK to repair node
 Reset counter
 Set mode to error
 Break
 End switch
 End loop
 Leave multicast group

Figure 3. Algorithm for receiver node i (1 ≤ i ≤ N)

repair node must receive from a node before removing
that node from its error list.

 Receiver nodes that leave the multicast session
without giving any notice can disrupt the multicast
session for all receiver nodes. The repair node will use
a timeout mechanism to detect them and cut them off.

IV. Performance Analysis

 In this section, we evaluate the performance of our
scheme assuming that all packets in an error burst will
always be lost. We assume each receiver has two
states, namely, state <1> meaning it has correctly
received the last packet and state <0> meaning it has
not correctly received that packet. Every time a packet
is sent to the receiver, it will experience a transition
that could either leave it in its current state or move it
to another state. We will focus our discussion to the
two transitions leading to state 0, that is <00> and
<10>, as they both correspond to a packet loss.
 We assume that the probabilities of these
transitions follow Easton’s model [5] which are given
by

 p00 = r + (1 – r)L

 p10 = (1 – r)L
where r and L are positive integers ≤ 1.
 The steady-state probability p0 of losing a given
packet is given by

 p0 = p0p00 + p1 p10

 = p0r + p0(1 – r)L + (1 – p0)(1 – r)L� ,
which simplifies into

p0 = p0r + (1 – r)L
and

p0 = L.
 Hence, the L parameter represents the steady state
probability of not correctly receiving a packet. The r
parameter affects the duration of error bursts. With
r = 0, all packet losses are independent events. When r
increases, packet losses become more and more
correlated. Let us show how that parameter can be
estimated from the average duration of error bursts.
The probability that an error burst will affect exactly b
packets is then given by

P (b lost packets per error burst) = 1p01 + 2p00p01 +

3p00
2p01 + … = ∑

∞

=
+

0
0100)1(

b

b ppb ,

which is the mean of a geometric distribution. Hence
the mean number of lost packets per error burst is
given by

Lrrpp)1(1

11

1

1

0100 −−−
==

−
=µ ,

Most networks are fairly reliable and have L << r. In

that case, p00 ≈ r. The equation above can be rewritten
as

r−
=

1

1µ

Hence r = 0.8 corresponds to an average number of 5
lost packets per error burst.

IV.1 Feedback Implosion
 The first main advantage of our scheme is that it
significantly reduces the number of feedbacks sent by
receiver nodes to their repair nodes.
 Consider now a multicast session involving N
receiver nodes R1, R2, …, RN sharing the same repair
node T. We assume that these n nodes are subject to
independent packet losses with Li and r i denoting the
respective L and r coefficients of node Ri.
 Since all packets in an error burst are always lost,
we do not have to consider the possibility that a
receiver node may incorrectly assume that the current
error burst has ended and can safely select k = 1. Each
receiver node Ri will thus send to its repair node T:

1. A NAK every time they do not receive a packet;
and

2. An ACK for the first packet they receive correctly
after having sent one or more NAKs.

 Over a session involving the transmission of m
packets, the number of feedbacks from a receiver node
is given by

m(p0p00 + p0p01 + p1p10)

The number of feedbacks sent by receiver node Ri to
its repair node can be then rewritten as

m(Li + (1 – Li)(1 – r i)Li) (1)

 Hence the total number BURSTF of feedbacks

received by the repair node from its N receiver nodes
will be given by

))1)(1((
1

iii

N

i
iBURST LrLLmF −−+= ∑

=
 (2)

 When all link failure probabilities are equal, that is,
L1 = L2= …= LN = L, equation (3) simplifies into

()LrLLmNFBURST)1)(1(−−+= (3)

 Under the same assumptions, the number of
feedbacks ACKF for an ACK-based scheme, where all

receiver nodes acknowledge all the packets they
receive, will be given by

.mNFACK =

 The difference ∆ between the numbers of
feedbacks of the two schemes will be given by

))1)(1(1(LrLLmN −−−−=∆ (4)

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

Number of receiver nodes

D
iff

er
en

ce
 in

 th
ou

sa
nd

s
of

 fe
ed

ba
ck r = 0.5

r = 0.8
r = 0.9

Figure4. Difference ∆ vs. the number N of receiver
nodes per repair node

 Figure 4 shows how this difference increases with
N for three different values of r when the loss
probabilities Li are uniformly distributed between 0
and 1. We selected the number of transmitted packets
m = 10,000, which roughly represents a transfer of 10
megabyte with a packet size equal to 1 kilobyte. When
there are 100 receiver nodes, the difference is more
than 800,000 feedbacks in all r values. This numerical
result indicates that our scheme provides efficient
buffer management functionality for the repair node
by reducing the number of feedbacks sent by receiver
nodes. This feature provides scalability, since each
repair node will be able to handle more receiver
nodes.

IV.2 Additional Retransmissions
 Whenever the repair node T receives a NAK from
receiver node Ri, it will switch to error mode and
cease discarding packets until they have been
acknowledged by all receiver nodes that operate in
error mode. We assume the failure of receiver nodes
and their repair node is not correlated.
 An upper bound for the probability P(MBURST) that
T will not have in its buffer a packet that is requested
by a receiver node Ri is then given by the probability
that receiver node Ri enters an error burst or the repair
node did not correctly receive the requested packet.

 P(MBURST) = p1 p10 + p0 p00Lrp
 = (1 – Li)(1 – r i)Li + Li(r i + (1 – ri) Li) Lrp .
where Lrp is the packet loss probability of the repair
node.
 This upper-bound is extremely pessimistic because
it assumes that the repair node will never be able to

find in buffer the first packet of any error burst. This is
not true because repair node T will always keep in its
buffer all the packets it receives for a reasonable time
interval. Hence, the requested packets are available at
the repair node if the NAKs arrive before the timer is
expired. Let us call this probability A. The probability
might be very close to 1 if the repair node has large
enough timer value. If we assume that A is equal to
0.9, the repair node will only be unable to deal with
10% of the retransmission requests sent by other
nodes, because the requested packet will be removed
before any NAK arrives.
 In addition, the packet could still be in T’s buffer
because T was waiting for the ACK of another
receiver node that was already inside an error burst.
Hence, a more realistic estimate of the probability
P(MBURST) for N receiver node is given by

P(MBURST) = p1 p10 × [P(NAK was lost)
 + P(NAK was not lost but repair node did
 not correctly receive the packet)
 + P(NAK was not lost and repair node
 correctly receive the packet
 but NAK did not arrive on time
 and no other receiver node was
 in error mode)]
 + p0 p00Lrp

 = p1 p10[Li + (1– Li) Lrp

 + (1– Li)(1– Lrp)(1– A) ∏
≠
=

−
N

ij
j

jL
1

)1(]

 + p0 p00Lrp , for
≤
 i, j

≤
 N

 = (1 – Li)(1 – r i)Li [Li + (1– Li) Lrp

 + (1– Li)(1– Lrp)(1– A) ∏
≠
=

−
N

ij
j

jL
1

)1(]

 + Li(r i + (1 – ri) Li)Lrp (5)

 In NAK-based schemes using a timer mechanism,
repair nodes discard packets from their buffers after a
time interval. Under same assumptions, the packet
missing probability P(MNAK) for NAK-based scheme
can be given by

P(MNAK) = Li × [P(NAK was lost)
 + P(NAK was not lost but repair node
 did not correctly receive the packet)
 + P(NAK was not lost and repair node
 correctly receive the packet
 but NAK did not arrive on time)]

 = Li [Li + (1– Li) Lrp+ (1– Li)(1– Lrp)(1– A)] (6)

 Given the difficulty of finding a closed-form
expression for the parameter A, we decided to
simulate the behavior of a system with 100 receiver
nodes per repair node. To generate the loss probability
of each receiver node, we applied the formula

S = 1.22/(iis LRTT ,) (from [13]), where S is the

packet sending rate in packets/sec, RTTs,i is the round
trip time from the sender node to receiver node Ri and
Li is the loss probability between the sender node and
receiver node Ri. This assumes that the sender node
transmits packets in a TCP-friendly manner and each
node in the multicast session uses the UDP protocol.
 We simulated the round-trip times RTTs,i as
Poisson random variables, each having mean
Avg_RTT. Similarly, the one-way transit times OTTi,T
between a receiver node Ri and its repair node T were
also simulated by Poisson random variables with
mean Avg_OTT. We generated the packet loss
probability for each receiver node when the packet-
sending rate S is 128 packets per second, average
round trip time Avg_RTT is 40 ms and average one-
way transit time Avg_OTT is 15 ms. Figure 5 shows
our measurement of the packet loss probability for 100
receiver nodes.
 In more actual networks, the underlying transport
protocol needs to detect packet duplications especially
in case of retransmission. Hence, a dynamic
estimation algorithm for NAK timer value should be
provided for effective detection of feedbacks. Since
we are only interested in the availability of the packet
at the repair node, we assumed in our simulation that
each receiver node sets its NAK_TIMER value to
40ms, which is an average value of the current RTT
values.
 Using these configuration parameters, we can
evaluate the probability that a requested packet will
not be present in the repair node. Figure 6 shows how
the number of receiving nodes per repair node affects
the probability of not finding a requested packet in the
repair node buffer. We can see that the NAK-based
scheme performs significantly worse than our scheme.
We also can see that our scheme always achieves very
low packet missing probabilities for all number of
receiver nodes per repair node. The probability is
below 10-4 when there are 100 receiver nodes. This
result means the repair node will send only single
NAK to its upstream repair node when the sender
node transmits 10 megabytes data. In addition, our
simulations also indicate that the lowest packet
missing probabilities are achieved whenever there are
at least 40 receiver nodes per repair node.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100

Receiver node id#

Lo
ss

 p
ro

ba
bi

lit
y

Figure 5. Simulated loss probability

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 20 40 60 80 100

Number of receiver nodes

P
ac

ke
t m

is
si

ng
 p

ro
ba

bi
lit

y

NAK-based scheme

Our scheme

Figure 6. Packet missing probability

 Additional retransmissions increase the error
recovery delay, since the repair node cannot retransmit
the requested packet immediately. The packets will
then have to be retransmitted by either the original
sender node or upstream repair node. As a result, the
error recovery delay could be doubled or even tripled.
Also, these additional retransmissions cause
unnecessary traffic between the repair nodes.
 The performance of NAK-based scheme will
improve whenever the repair nodes have very large
buffers as well as a long enough timer values.
However, this would result in an inefficient use of the
available buffer space, because too many packets will
remain in buffer for a long time. In addition, the
absence of an efficient buffer management scheme is
likely to cause sooner or later buffer overflow.

max = 0.1343
min = 0.0279
avg = 0.0633

V. Conclusions

 We have presented a new reliable tree-based
multicast scheme that takes into account the temporal
locality of packet losses to limit both the number of
feedbacks sent by receiver nodes to their repair nodes
and the probability that a given repair node will not be
able to handle a given packet retransmission request.
 Our scheme operates in two possible modes. In
normal mode, receiver nodes do not acknowledge
correctly received packets and repair nodes routinely
discard packets after a reasonable time interval.
Whenever a receiver node detects a lost packet, it
sends a NAK to its repair node and switches to error
mode. It will then acknowledge all incoming packets
and keep operating in that mode until it has correctly
received and acknowledged k consecutive packets.
Similarly, any repair node that receives a NAK from
any of its receiver nodes will start operating in error
mode and stop discarding packets that have not been
properly acknowledged by all receiver nodes that
operate in error mode.
 Our scheme requires fewer feedbacks than ACK-
based schemes because receiver nodes only send
ACKs to their repair node when they are in the middle
of an error burst. At the same time, it allows the repair
nodes to handle more retransmission requests than
NAK-based schemes. As a result, our scheme
provides an attractive compromise between ACK-
based and NAK-based schemes.

References

[1] J. Baek, J. F. Pâris, “A Buffer Management Scheme
for Tree-Based Reliable Multicast Using Infrequent
Acknowledgments,” Proc. 23rd IEEE International
Performance Computing and Communications
Conference, pp. 13-20, April 2004.

[2] J. Baek, J. F. Pâris, “A Heuristic Buffer Management
Scheme for Tree-Based Reliable Multicast,” Proc. 9th
IEEE Symposium on Computers and Communications,
pp. 1123-1128, June-July 2004.

[3] K. P. Birman et al., “Bimodal Multicast,” ACM
Transactions on Computer Systems, 17(2):41–88, May
1999.

[4] M. Costello and S. McCanne, “Search Party: Using
Randomcast for Reliable Multicast with Local
Recovery,” Proc. 18th IEEE Conference on Computer
Communications, pp. 1256–1264, March 1999.

[5] M. C. Easton, “Model for database reference Strings
Based on Behavior of Reference Clusters,” IBM
Journal Research and Development, 22(2):197–202,
March 1978.

[6] S. Floyd et al., “A Reliable Multicast Framework for
Lightweight Sessions and Application-Level

Framing,” IEEE/ACM Transactions on Networking,
5(6):784–803, December 1997.

[7] T. Gemmel et al., “The use of Forward Error
Correction in Reliable Multicast,” IETF draft-ietf-rmt-
info-fec-02.txt, October 2002.

[8] K. Guo, and I. Rhee, “Message Stability Detection for
Reliable Multicast,” Proc. 19th IEEE Conference on
Computer Communications, pp. 814–823, March
2000.

[9] M. Kadansky et al., “Reliable Multicast Transport
Building Block: Tree Auto-Configuration,” IETF
Internet Draft, draft-ietf-rmt-bb-tree-config-01.txt,
November 2000.

[10] S. K. Kasera, J. Kurose, and D. Towsley, “Buffer
Requirements and Replacement Polices for Multicast
Repair Service,” Proc. 2nd Network Group
Communication Workshop (NGC 2000), pp. 5-14,
Nov. 2000.

[11] S. J. Koh et al., “Configuration of ACK Trees for
Multicast Transport Protocols,” ETRI Journal,
23(3):111–120, September 2001.

[12] B. Levine, and J. J. Garcia-Luna-Aceves, “A
Comparison of Reliable Multicast Protocols,” ACM
Multimedia Systems Journal, 6(5): 334–344, August
1998.

[13] J. Mahdavi and S.Floyd, “TCP-friendly unicast rate-
based flow control,” Jan. 1997.
http://www.psc.edu/networking/papers/tcp_friendly.ht
ml

[14] C. Maihofer and K. Rothermel, “A Robust and
Efficient Mechanism for Constructing Multicast
Acknowledgment Trees,” Proc. 8th IEEE International
Conference on Computer Communications and
Networks, pp. 139–145, October 1999.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
“TCP Selective Acknowledgement Options,” RFC
2018, October 1996.

[16] S. Pingali, D. Towsley, and J. F. Kurose, “A
Comparison of Sender-Initiated and Receiver-Initiated
Reliable Multicast Protocols,” IEEE Journal on
Selected Areas in Communications, pp. 221–230,
April 1997.

[17] R. van Renesse, Y. Minsky, and M. Hayden, “A
Gossip-Style Failure Detection Service,” Proc.
MIDDLEWARE ’98, pp. 55–70, Sept. 1998.

[18] J. C. Lin and S. Paul, “RMPT: A Reliable Multicast
Transport Protocol,” Proc. 15th IEEE Conference on
Computer Communications (INFOCOM 96), pp.
1414-1424, March 1996.

[19] B. Whetten and G. Taskale, “The Overview of
Reliable Multicast Transport Protocol II,” IEEE
Networks, 14(1):37–47, Jan.-Feb. 2000.

[20] Z. Xiao, K. P. Birman, R. Renesse, “Optimizing
Buffer Management for Reliable Multicast,” Proc.
2002 International Conference on Dependable
Systems and Networks, pp. 187–202, June 2002.

[21] R. Yavatkar, J. Griffieon, M. Sudan, “A Reliable
Dissemination Protocol for Interactive Collaborative
Applications,” Proc. 3rd ACM International
Conference on Multimedia, pp. 333–344, November
1995.

