
Self-Adaptive Two-Dimensional RAID Arrays

Jehan-François Pâris
Dept. of Computer Science

University of Houston
Houston, TX 77204-3010

paris@cs.uh.edu

Thomas J. E. Schwarz
Dept. of Computer Engineering

Santa Clara University
Santa Clara, CA 95053

tjschwarz@scu.edu

Darrell D. E. Long1
Dept. of Computer Science

University of California
Santa Cruz, CA 95064
darrell@cs.ucsc.edu

Abstract

We propose increasing the survivability of data
stored in two-dimensional RAID arrays by causing
these arrays to reorganize themselves whenever they
detect a disk failure. This reorganization will rebal-
ance as much as possible the redundancy level of all
stored data, thus reducing the potential impact of
additional disk failures. It remains in effect until the
failed disk gets repaired. We show how our
technique can be applied to two-dimensional RAID
arrays consisting of n2 data disks and 2n parity disks
and show how it can increase the mean time to data
loss of the array by at least 200 percent as long as
the reorganization process takes less than half the
time it takes to replace a failed disk.

1 Introduction
Archival storage systems are systems designed

for long-term stable storage of information. Their
importance is growing as more organizations main-
tain larger amounts of their archival data online.
This trend is due to many factors; among these are
lower costs of online storage, regulatory require-
ments (such as the Sarbanes-Oxley Act) and the
increasing rate at which digital data are produced.1

Archival storage systems differ from conven-
tional storage systems in two important ways. First,
the data they contain often remain immutable once
they are stored. As a result, write rates are a much
less important issue than in other storage systems.
Second, these data must remain available over time
periods that can span decades. Achieving this
longevity requires a special emphasis on data surviv-
ability.

The best way to increase the survivability of
data is through the use of redundancy. Two well-
known examples of this approach are mirroring and
m-out-of-n codes. Mirroring maintains multiple
replicas of the stored data while m-out-of-n codes
store data on n distinct disks along with enough
redundant information to allow access to the data in
the event that n – m of these disks fail. The best-
known organizations using these codes are RAID

1 Supported in part by the National Science Foundation
under award CCR-0204358.

level 5, which uses an (n – 1)-out-of-n code, and
RAID level 6, which uses an (n – 2)-out-of-n code.

While both mirroring and m-out-of-n codes can
be used to obtain any desired level of data surviv-
ability, they achieve that objective by either
maintaining extra copies of the stored data or
implementing more complex erasure-correction
schemes. Both techniques will have a significant
impact on data storage and update costs.

We propose to control these costs by having
storage organizations adapt to failures and reorganize
themselves in a way that minimizes the risk of a data
loss. As a result, these organizations will achieve
higher levels of data survivability without increasing
the redundancy levels of the stored data.

Consider data stored on a disk array using some
arbitrary redundant organization and assume that one
of the disks has failed. While this failure will not
result in a data loss, it is likely to have an unequal
impact on the protection level of the data: some data
will be left less protected—or even totally unpro-
tected—while other data will not be affected by the
failure. This is clearly an undesirable situation as it
increases the risk of a data loss. We propose to let
the disk array adjust to the failure by readjusting the
protection levels of its data in a way that ensures that
no data are left significantly less protected than the
others. This new organization will then remain in
effect until the failed disk gets replaced and the array
is returned to its original condition. The whole proc-
ess will be done automatically and remain
transparent to the user.

Our proposal has the main advantage of
increasing the survivability of data stored on almost
any redundant organization without requiring any
additional hardware. As we will see, it will also
reduce the impact of disk repair times on the surviv-
ability of the archived data.

2 Previous Work
The idea of creating additional copies of critical

data in order to increase their chances of survival is
probably as old as the use of symbolic data repre-
sentations by mankind. Erasure coding for disk
storage first appeared in RAID organizations as
(n – 1)-out-of-n codes [2, 4–6]. RAID level 6
organizations use (n – 2)-out-of-n codes to protect
data against double disk failures [1, 9].

Much less work has been dedicated to self-orga-
nizing fault-tolerant disk arrays. The HP AutoRAID
[8] automatically and transparently manages
migration of data blocks between a mirrored storage
class and a RAID level 5 storage class as access
patterns change. Its main objective is to save disk
space without compromising system performance by
storing data that are frequently accessed in a repli-
cated organization while relegating inactive data to a
RAID level 5 organization. As a result, it reacts to
changes in data access patterns rather than to disk
failures.

Sparing is more relevant to our proposal as it
provides a form of adaptation to disk failures.
Adding a spare disk to a disk array provides the
replacement disk for the first failure. Distributed
sparing [7] gains performance benefits in the initial
state and degrades to normal performance after the
first disk failure.

Pâris et al. [3] have recently presented a
mirrored disk array organization that adapts itself to
successive disk failures. When all disks are opera-
tional, all data are mirrored on two disks. Whenever
a disk fails, the array starts using (n – 1)-out-of-n
codes in such a way that no data are left unprotected.
We extend here a similar approach to two-
dimensional RAID arrays.

3 Self-Adaptive Disk Arrays
While our technique is general and applies to

most redundant disk arrays, its application will
depend on the actual array organization. Hence we
will present it using a specific disk array organi-
zation.

Consider the two dimensional RAID array of
Fig. 1. It consists of nine data disks and six parity
disks. Parity disks P1, P2 and P3 contain the exclu-
sive or (XOR) of the contents of the data disks in
their respective rows while parity disks Q1, Q2 and
Q3 contain the XOR of the contents of the data disks
in their respective columns. This organization offers
the main advantage of ensuring that the data will
survive the failure of an arbitrary pair of disks and
most failures of three disks. As seen on Fig. 2, the
sole triple failures that result in a data loss are the
failure of one arbitrary data disk, the parity disk in
the same row and the parity disk in the same column.

We propose to eliminate this vulnerability by
having the disk array reorganize itself in a trans-
parent fashion as soon as it has detected the failure of
a single disk. We will first consider how the disk
array will handle the loss of a parity disk and then
how it will handle the loss of a data disk.

A Handling the loss of a parity disk
Consider first the loss of a parity disk, say parity

disk Q2. As Fig. 3 shows, this failure leaves the
array vulnerable to a simultaneous failure of disks
D12 and P1 or disks D22 and P2 or disks D32 and P3.

11

D21

D11
11

D22

D12

11

Q1

D31 11

Q2

D32

11

D23

D13
11

P2

P1

11

Q3

D33 11P3

Fig. 1 – A two dimensional RAID array with nine
data disks and six parity disks.

11

D21

D11
11

D22

11

Q1

D31 11D32

11

D23

D13
11

P2

11

Q3

D33 11P3

X

X X

Fig. 2 – The same array experiencing the simulta-
neous failures of one arbitrary data disk, the
parity disk in the same row and the parity disk in
the same column.

11

D21

D11
11

D22

D12

11

Q1

D31 11D32

11

D23

D13
11

P2

P1

11

Q3

D33 11P3

X

Fig. 3 – How the array is affected by the failure of
an arbitrary parity disk.

We can eliminate this vulnerability by selecting
a new array organization such that:
1. Each data disk will belong to two distinct parity

stripes.

11

D21

D11
11

D22

D12

11

Q1

D31 11D32

11

D23

D13
11

P2

P1

11

Q3

D33 11P3

X

Fig. 4 – A new array organization protecting the
data against two simultaneous disk failures after
the failure of a parity disk.

2. Two distinct parity stripes will have at most one
common data disk.
The first condition guarantees that the array will

always have two independent ways to reconstitute
the contents of any failed data disk. Without the
second condition, two or more data disks could share
their parity stripes. As a result, the array would be
unable to recover from the simultaneous failure of
these two disks.

Fig. 4 displays an array organization satisfying
these two conditions. It groups the nine data disks
into five parity stripes such that:
1. Disks D11, D12 and D13 keep their parities stored

on disk P1.
2. Disks D21, D22 and D23 keep their parities stored

on disk P2.
3. Disks D31, D12, D22, and D33 have their parities

stored on disk P3.
4. Disks D11, D21, D31, and D32 have their parities

stored on disk Q1.
5. Disks D13, D23, D33, and D32 have their parities

stored on disk Q2.
Table 1 itemizes the actions to be taken by the four-
teen operational disks to achieve the new
organization. As we can see, six of the nine data
disks and two of the five remaining parity disks do
not have to take any action. The two busiest disks
are data disk D32, which has to send its contents to its
old parity disk P3 and its two new parity disk Q1 and
Q2, and parity disk P3, which has to XOR to its
contents the contents of data disks D12, D22 and D32.
This imbalance is a significant limitation of our
scheme, as it will slow down the array reorganization
process, thus delaying its benefits.

B Handling the loss of a data disk
Let us now discuss how the array should react to

the failure of one of its data disks, say disk D32.
The first corrective step that the array will take

will be to reconstitute the contents of the failed disk
on one of its parity disks, say, disk Q2. Once this

Table 1 – Actions to be taken by the fourteen
operational disks after the failure of parity disk
Q2.

Disk Action to be taken
D11 Do nothing
D12 Send contents to P3
D13 Do nothing
D21 Do nothing
D22 Send contents to P3
D23 Do nothing
D31 Do nothing
D32 Send contents to P3, Q1 and Q3
D33 Do nothing
P1 Do nothing
P2 Do nothing
P3 XOR to its contents the contents of D12,

D22 and D32
Q1 XOR to its contents the contents of D32
Q3 XOR to its contents the contents of D32

11

D21

D11
11

D22

D12

11

Q1

D31 11

Q2

11

D23

D13
11

P2

P1

11

Q3

D33 11P3X

(Q2 replaces D32)
Fig. 5 – A new array organization protecting the
data against two simultaneous disk failures after
the failure of a data disk.

process is completed, the reorganization process will
proceed in the same fashion as in the previous case.

Figure 5 displays the final outcome of the reor-
ganization process. Each data disk—including disk
Q2—now belongs to two distinct parity stripes and
two distinct parity disks have at most one common
disk.

Table 2 itemizes the actions to be taken by the
fourteen operational disks to achieve the new
organization. Observe that the reorganization process
will now require two steps since the array must first
compute the new contents of disk Q2 before updating
disks Q1 and Q3.

C Discussion
Our technique can be trivially extended to all

two-dimensional RAID arrays consisting of n2 data
disks and 2n parity disks with n ≥ 3. The array will
always handle the loss of a parity disk by assigning a
new parity stripe to each of the n disks belonging to

Table 2 – Actions to be taken by the fourteen
operational disks after the failure of data disk D32.

Disk Action to be taken
D11 Do nothing
D12 Send contents to P3 and Q2
D13 Do nothing
D21 Do nothing
D22 Send contents to P3 and Q2
D23 Do nothing
D31 Do nothing
D33 Do nothing
P1 Do nothing
P2 Do nothing
P3 XOR to its contents the contents of D12,

D22 and D32
Q1 XOR to its contents new contents of Q2
Q2 XOR to its contents the contents of D12 and

D22
Send new contents to Q1 and Q3

Q3 XOR to its contents new contents of Q2

same parity stripe as the disk that failed. Hence the
reorganization process will only involve n out of the
n2 data disks and n out of the remaining 2n – 1 parity
disks. Handling the failure of a data disk will involve
one less data disk and one extra parity disk.

4 Reliability Analysis
Estimating the reliability of a storage system

means estimating the probability R(t) that the system
will operate correctly over the time interval
[0, t] given that it operated correctly at time t = 0.
Computing that function requires solving a system of
linear differential equations, a task that becomes
quickly unmanageable as the complexity of the
system grows. A simpler option is to focus on the
mean time to data loss (MTTDL) of the storage
system, which is the approach we will take here.

Our system model consists of a disk array with
independent failure modes for each disk. When a
disk fails, a repair process is immediately initiated
for that disk. Should several disks fail, the repair
process will be performed in parallel on those disks.

We assume that disk failures are independent
events exponentially distributed with rate λ, and that
repairs are exponentially distributed with rate μ. We
will first consider a disk array consisting of 9 data
disks and 6 parity disks and then a larger array with
16 data disks and 8 parity drives.

Building an accurate state-transition diagram for
either two-dimensional disk array is a daunting task
as we have to distinguish between failures of data
disks and failures of parity disks as well as between
failures of disks located on the same or on different
parity stripes. Instead, we present here a simplified
model based on the following approximations.
1. Whenever the disk repair rate μ is much higher

than the disk failure rate λ, each individual disk

0 1 2 3

Data
loss

15λ

108λ/364

14λ

4260λ/
364

12λ

3μ2μμ

1’ 2’ 3’

Data
loss

4’
14λ 13λ

2μ 3μ 4μ

11λ

μ κ

117λ/455

5798λ/455

Fig. 6 – Simplified state transition probability
diagram for a two-dimensional array consisting of
9 data disks and 6 parity disks.

will be operational most of the time. Hence the
probability that the array has four failed disks
will be almost negligible when we compare it to
the probability that the array has three failed
disks. We can thus obtain a good upper bound
of the array failure rate by assuming that the
array fails whenever it has three failed disks in
any of the nine critical configurations discussed
in section 3 or at least four failed disks regard-
less of their configuration. In other words, we
will ignore the fact that the array can survive
some, but not all, simultaneous failures of four
or more disks.

2. Since disk failures are independent events expo-
nentially distributed with rate λ, the rate at
which an array that has already two failed disks
will experience a third disk failure is
(16 – 2)λ = 14λ. Observing there are 455
possible configurations with 3 failed disks out of
15 but only 9 of them result in a data loss, we
will assume that the rate at which an array that
has already two failed disks will not fail will be
(455 – 9)×13λ/455 = 5798λ/455.
Fig. 6 displays the simplified state transition

probability diagram for a two-dimensional array
consisting of 9 data disks and 6 parity disks. State
<0> represents the normal state of the array when its
fifteen disks are all operational. A failure of any of
these disks would bring the array to state <1>. A
failure of a second disk would bring the array into
state <2>. A failure of a third disk could either result
in a data loss or bring the array to state <3>. As we
stated earlier, we assume that any third failure occur-
ring while the array already has three failed disks
will result in a data loss.

Repair transitions bring back the array from
state <3> to state <2> then from state <2> to state
<1> and, finally, from state <1> to state <0>. Their
rates are equal to the number of failed disks times the
disk repair rate μ.

10000

100000

1000000

10000000

100000000

1000000000

0 1 2 3 4 5 6 7 8
Disk repair time (days)

M
ea

n
tim

e
to

 d
at

a
lo

ss
 (y

ea
rs

)

Reorganization takes two hours

Reorganization takes four hours
No Reorganization

Fig. 7 – Mean times to data loss achieved by a two dimensional disk array consisting of nine data
disks and six parity disks.

When the array reaches state <1>, it will start a
reorganization process that will bring it into state
<1'>. State <1> is a more resilient state than state
<1'> as the reorganized array tolerates two arbitrary
additional failures. We will assume that this dura-
tion of the reorganization process is exponentially
distributed with rate κ. A failure of a second disk
while the array is in state <1'> would bring the
array into state <2'> and a failure of a third disk
would bring the array to state <3'>. When the array
is in state <3'>, any failure that would occasion the
simultaneous failure of one of the nine data disks
and its two parity disks would result in a data loss.
Observing there are 364 possible configurations
with 3 failed disks out of 14 but only 9 of them
result in a data loss, we see that the transition rate
between state <3'> and state <4'> is given by (364 –
 9)×12λ/364 = 4260λ/364.

The Kolmogorov system of differential equa-
tions describing the behavior of the array is

)(
455

5798)()312()(

)(3)(14)()213()(

)(3)(14)()213()(

))(2)(15)()14()(

))(2)(15)()14()(

)()()(15)(

23
3

'3'1'2
'2

312
2

201
'1

201
1

'110
0

tptp
dt

tdp

tptptp
dt

tdp

tptptp
dt

tdp

tptptp
dt

tdp

tptptp
dt

tdp

tptptp
dt

tdp

λμλ

μλμλ

μλμλ

μλμκλ

μλμκλ

μμλ

++−=

+++−=

+++−=

++++−=

++++−=

++−=

)(
364
4260)()411()(

'3'4
'4 tptp

dt
tdp λμλ ++−=

where pi(t) is the probability that the system is in
state <i> with the initial conditions p0(0) = 1 and
pi(0) = 0 for i ≠ 0.

The Laplace transforms of these equations are

)(2)(15)()14()(

)()()(151)(
*
2

*
0

*
1

*
1

*
'1

*
1

*
0

*
0

spspspssp

spspspssp

μλμκλ

μμλ

++++−=

++−=−

)(
364
4260)()411()(

)(4)(13)()312()(

)(
455

5798)()312()(

)(3)(14)()213()(

)(3)(14)()213()(

)(2)()()14()(

*
'3

*
'4

*
'4

*
'4

*
'2

*
'3

*
'3

*
2

*
3

*
3

*
'3

*
'1

*
'2

*
'2

*
3

*
1

*
2

*
2

*
'2

*
1

*
'1

*
'1

spspsp

spspspssp

spspssp

spspspssp

spspspssp

spspspssp

λμλ

μλμλ

λμλ

μλμλ

μλμλ

μκμλ

++−=

+++−=

++−=

+++−=

+++−=

+++−=

Observing that the mean time to data loss
(MTTDL) of the array is given by

)0(*∑=
i

ipMTTDL ,

we solve the system of Laplace transforms for s = 0
and use this result to compute the MTTDL. The
expression we obtain is quotient of two polynomi-
als that are too large to be displayed.

Fig. 7 displays on a logarithmic scale the
MTTDLs achieved by a two-dimensional array

)(4)(13)()312()(
'4'2'3

'3 tptptp
dt

tdp μλμλ +++−=

with 9 data disks and 6 parity disks for selected
values of  the reorganization rate κ and repair times
that vary between half a day and seven days. We
assumed that the disk failure rate λ was one failure
every one hundred thousand hours, that is, slightly
less than one failure every eleven years. Disk
repair times are expressed in days and MTTDLs
expressed in years. As we can see, our technique
increases the MTTDL of the array by at least 200
percent as long as the reorganization process takes
less than half the time it takes to replace a failed
disk, that is, κ > 2μ. In addition, it also reduces the
impact of disk repair times on the MTTDL of the
array. This is an important advantage of our tech-
nique as short repair times require both maintaining
a local pool of spare disks and having maintenance
personnel on call 24 hours a day.

Let us now consider the case of a larger two-
dimensional array consisting of 16 data disks and 8
parity disks. As Fig. 8 shows, the simplified state
transition probability diagram for the new array is
almost identical to the one for the array consisting
of 9 data disks and 6 parity disks, the sole differ-
ence being the weights of the failure transitions
between the states. Some of these changes are self-
evident: since the new array has 24 disks, the tran-
sition rate between state <0> and state <1> is now
24λ. Let us focus instead on the transitions leaving
states <2> and states <3'>.

Recall that state <2> is a state where the array
has already lost 2 of its 24 disks and has not yet
been reorganized. Hence it remains vulnerable to
the loss of a third disk. Observing there are 2,204
possible configurations with 3 failed disks out of
24 but only 16 of them result in a data loss, we will
assume that the rate at which the array will fail will
be given by 16×22λ/2204 or 352λ/2204.
Conversely, the transition rate between state <2>
and state <3> will be (2204 – 16)×22λ/2204 or
44176λ/2204.

State <3'> is a state where the reconfigured
array has lost two additional disks and has become
vulnerable to the failure of a fourth disk. Observ-
ing there are 364 possible configurations with 3
failed disks out of 23 but only 16 of them result in a
data loss, we see that the rate at which an array will
fail will be equal to 16×21λ/1771 or 336λ/1771.
As a result, the transition rate between state <3'>
and state <4'> will be equal to (1771 –
 16)×21λ/1771 or 26855λ/1771.

Using the same techniques as in the previous
system, we obtain the MTTDL of our disk array by
computing the Laplace transforms of the system of
differential equations describing the behavior of the
array and solving the system of Laplace transforms
for s = 0.

Fig. 9 displays on a logarithmic scale the
MTTDLs achieved by a two-dimensional array
with 16 data disks and 8 parity disks for selected
values of the reorganization rate κ and repair times
varying between half a day and a week. As before,

0 1 2 3

Data
loss

24λ

336λ/1771

23λ

36855λ/
1771

21λ

3μ2μμ

1’ 2’ 3’

Data
loss

4’
23λ 22λ

2μ 3μ 4μ

20λ

μ κ

352λ/2024

44176λ/2024

Fig. 8 – Simplified state transition probability
diagram for a two-dimensional array consisting
of 16 data disks and 8 parity disks.

we assumed that the disk failure rate λ was equal to
one failure every one hundred thousand hours one
failure every one hundred thousand hours. Here
too, we can see that our technique increases the
MTTDL of the array by at least 200 percent as long
as κ > 2μ and reduces the impact of disk repair
times on the MTTDL of the array.

4 An Alternate Organization
Another way of organizing n2 data disks and

2n parity disks is to partition them into n RAID
level 6 stripes each consisting of n data disks and
two parity disks (we may prefer to call now these
two disks check disks). This organization is
displayed on Fig. 10. It would protect data against
the failure of up to two disks in any of its n stripes.
We propose to evaluate its MTTDL and compare it
to those obtained by our two-dimensional array.

Fig. 11 displays the state transition probability
diagram for a single RAID level 6 stripe consisting
of three data disks and two check disks. State <0>
represents the normal state of the stripe when its
five disks are all operational. A failure of any of
these disks would then bring the stripe to state <1>.
A failure of a second disk would bring the stripe
into state <2>. A failure of a third disk would
result in a data loss. Repair transitions bring back
the strip from state <2> to state <1> and then from
state <1> to state <0>.

The system of differential equations describing
the behavior of each RAID level 6 stripe is

)(4)()23()(

)(2)(5)()4()(

)()(5)(

12
2

201
1

10
0

tptp
dt

tdp

tptptp
dt

tdp

tptp
dt

tdp

λμλ

μλμλ

μλ

++−=

+++−=

+−=

10000

100000

1000000

10000000

100000000

1000000000

0 1 2 3 4 5 6 7 8

Disk repair time (days)

M
ea

n
tim

e
to

 d
at

a
lo

ss
 (y

ea
rs

)

Reorganization takes two hours
Reorganization takes four hours
No Reorganization

Fig. 9 – Mean times to data loss achieved by a two dimensional disk array consisting of 16 data disks and
8 parity disks.

D11 D12 D13 Q1P1

D21 D22 D23 Q2P2

D31 D32 D33 Q3P3

Fig. 10 – An alternative organization with nine
data disks and six check disks.

0 1 2
5λ 4λ

μ 2μ

Data
Loss

Fig. 11 – State transition probability diagram for
a stripe consisting of three data disks and two
check disks.

Applying the same techniques as in the previ-
ous section, we obtain the MTTDL of each stripe.

3

22
*

60
21347)0(

λ
μλμλ ++==∑

i
is pMTTDL

Since our array configuration consists of three
stripes, the MTTDL of the whole array is

3

22

180
21347

3 λ
μλμλ ++== s

a
MTTDLMTTDL .

Fig. 12 displays on a logarithmic scale the
MTTDLs achieved by the new array configuration
and compares them with the MTTDLs achieved by
a two-dimensional array with the same number of

data disks and parity disks. As in Fig. 7, the disk
failure rate λ is assumed to be equal to one failure
every one hundred thousand hours and the disk
repair times vary between half a day and seven
days.

As we can see, the new organization achieves
MTTDLs that are significantly lower than these
achieved by the two-dimensional array even when
we assume that no reorganization can take place.
While this gap narrows somewhat when the mean
repair time τ increases, the MTTDL achieved by
the new organization never exceed 41 percent of
the MTTDL achieved by a static two-dimensional
array with the same number of data disks and parity
disks.

We can explain this discrepancy by consider-
ing the number of triple failures that will cause
either disk organization to fail. As we saw earlier,
9 triple failures out of 465 result in a data loss for a
two-dimensional array consisting of nine data
drives and six parity drives. In the case of a RAID
level 6 organization, any failure of three disks in
any of the three stripes would result in a data loss.
Since each stripe consists of 5 disks, there are
exactly 10 distinct triple failures to consider in each
of the 3 stripes. Hence the total number of triple
failures that will result in a data loss is 30 out of
465, that is, slightly more that three times the
corresponding number of triple failures for the two-
dimensional disk organization.

We should also observe that this performance
gap will increase with the size of the array.
Consider, for instance, a two-dimensional array
consisting of 25 data drives and 10 parity drives.
The only triple failures that would result in a data
loss for our two dimensional array involve the
simultaneous failures of an arbitrary data disk and

1000

10000

100000

1000000

10000000

100000000

1000000000

0 1 2 3 4 5 6 7 8

Disk repair time (days)

M
ea

n
tim

e
to

 d
at

a
lo

ss
 (y

ea
rs

)

Reorganization takes two hours
Reorganization takes four hours
No Reorganization
Three RAID level 6 stripes

Fig. 12 – Mean times to data loss achieved by various disk arrays consisting of nine data disks and six
parity disks.

both of its parity disks. Since our array has 25 data
disks, this corresponds to 25 out of the 6545 possi-
ble triple failure. Consider now an alternate
organization consisting of 5 stripes each consisting
of 5 data disks and 2 check disks and observe that a
organization consisting of 5 stripes each consisting
of 5 data disks and 2 check disks and observe that a
failure of three disks in any of the five stripes
would result in data loss. Since each stripe consists
of 7 disks, there are exactly 35 distinct triple fail-
ures to consider in each stripe. Hence the total
number of triple failures that will result in a data
loss is 175 out of 6545, that is, seven times the
corresponding number of triple failures for the two-
dimensional disk organization.

5 Conclusion
We have presented a technique for improving

the survivability of data stored on archival storage
systems by letting these systems reorganize them-
selves whenever they detect of a disk failure and
until the failed disk gets replaced.

This reorganization will rebalance as much as
possible the redundancy level of all stored data,
thus reducing the potential impact of additional
disk failures. It will remain in effect until the failed
disk gets repaired. We show how our technique
can be applied to two-dimensional RAID arrays
consisting of n2 data disks and 2n parity disks and
discuss its impact on the mean time to data loss of
arrays with 15 and 24 disks. We found out that the
reorganization process was especially beneficial
when the repair time for individual disks exceeded
one to two days and concluded that a self-adaptive
array would tolerate much longer disk repair times

than a static array making no attempt to reorganize
itself in the presence of a disk failure.

In addition, we found out that this two-
dimensional disk organization achieved much
better MTTDLs than a set of RAID level 6 stripes,
each having n data disks and two check disks.

References
[1] W. A. Burkhard and J. Menon. Disk array storage

system reliability. In Proc. 23rd Int. Symp. on Fault-
Tolerant Computing, pp. 432-441, June 1993.

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. Katz and D.
A. Patterson. RAID, High-performance, reliable
secondary storage, ACM Computing Surveys
26(2):145–185, 1994.

[3] J.-F. Pâris, T. J. E. Schwarz and D. D. E. Long. Self-
adaptive disk arrays. In Proc. 8th Int. Symp. on Stabili-
zation, Safety, and Security of Distributed Systems, pp.
469–483, Nov. 2006.

[4] D. A. Patterson, G. A. Gibson and R. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proc. SIGMOD 1988 Int. Conf, on Data Management,
pp. 109–116, June 1988.

[5] T. J. E. Schwarz and W. A. Burkhard. RAID organi-
zation and performance. In Proc. 12th Int. Conf. on
Distributed Computing Systems, pp. 318–325 June
1992.

[6] M. Schulze, G. A. Gibson, R. Katz, R. and D. A.
Patterson. How reliable is a RAID? In Proc. Spring
COMPCON 89 Conf., pp. 118–123, Mar. 1989.

[7] A. Thomasian and J. Menon RAID 5 performance with
distributed sparing. IEEE Trans. on Parallel and
Distributed Systems, 8(6):640–657, June 1997.

[8] J. Wilkes, R. Golding, C. Stealin and T. Sullivan. The
HP AutoRaid hierarchical storage system. ACM Trans.
on Computer Systems, 14(1): 1–29, Feb. 1996

[9] L. Xu and J. Bruck: X-code: MDS array codes with
optimal encoding. IEEE Trans. on Information Theory,
45(1):272–276, Jan. 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

