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Abstract 

We propose increasing the survivability of data 
stored in two-dimensional RAID arrays by causing 
these arrays to reorganize themselves whenever they 
detect a disk failure.  This reorganization will rebal-
ance as much as possible the redundancy level of all 
stored data, thus reducing the potential impact of 
additional disk failures.  It remains in effect until the 
failed disk gets repaired.  We show how our 
technique can be applied to two-dimensional RAID 
arrays consisting of n2 data disks and 2n parity disks 
and show how it can increase the mean time to data 
loss of the array by at least 200 percent as long as 
the reorganization process takes less than half the 
time it takes to replace a failed disk. 

1 Introduction 
Archival storage systems are systems designed 

for long-term stable storage of information.  Their 
importance is growing as more organizations main-
tain larger amounts of their archival data online.  
This trend is due to many factors; among these are 
lower costs of online storage, regulatory require-
ments (such as the Sarbanes-Oxley Act) and the 
increasing rate at which digital data are produced.1 

Archival storage systems differ from conven-
tional storage systems in two important ways.  First, 
the data they contain often remain immutable once 
they are stored.  As a result, write rates are a much 
less important issue than in other storage systems. 
Second, these data must remain available over time 
periods that can span decades.  Achieving this 
longevity requires a special emphasis on data surviv-
ability. 

The best way to increase the survivability of 
data is through the use of redundancy.  Two well-
known examples of this approach are mirroring and 
m-out-of-n codes.  Mirroring maintains multiple 
replicas of the stored data while m-out-of-n codes 
store data on n distinct disks along with enough 
redundant information to allow access to the data in 
the event that n – m of these disks fail.  The best-
known organizations using these codes are RAID 
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level 5, which uses an (n – 1)-out-of-n code, and 
RAID level 6, which uses an (n – 2)-out-of-n code. 

While both mirroring and m-out-of-n codes can 
be used to obtain any desired level of data surviv-
ability, they achieve that objective by either 
maintaining extra copies of the stored data or 
implementing more complex erasure-correction 
schemes. Both techniques will have a significant 
impact on data storage and update costs.   

We propose to control these costs by having 
storage organizations adapt to failures and reorganize 
themselves in a way that minimizes the risk of a data 
loss.  As a result, these organizations will achieve 
higher levels of data survivability without increasing 
the redundancy levels of the stored data.   

Consider data stored on a disk array using some 
arbitrary redundant organization and assume that one 
of the disks has failed.  While this failure will not 
result in a data loss, it is likely to have an unequal 
impact on the protection level of the data: some data 
will be left less protected—or even totally unpro-
tected—while other data will not be affected by the 
failure.  This is clearly an undesirable situation as it 
increases the risk of a data loss.  We propose to let 
the disk array adjust to the failure by readjusting the 
protection levels of its data in a way that ensures that 
no data are left significantly less protected than the 
others.  This new organization will then remain in 
effect until the failed disk gets replaced and the array 
is returned to its original condition.  The whole proc-
ess will be done automatically and remain 
transparent to the user. 

Our proposal has the main advantage of 
increasing the survivability of data stored on almost 
any redundant organization without requiring any 
additional hardware.  As we will see, it will also 
reduce the impact of disk repair times on the surviv-
ability of the archived data. 

2 Previous Work 
The idea of creating additional copies of critical 

data in order to increase their chances of survival is 
probably as old as the use of symbolic data repre-
sentations by mankind.  Erasure coding for disk 
storage first appeared in RAID organizations as 
(n – 1)-out-of-n codes [2, 4–6].  RAID level 6 
organizations use (n – 2)-out-of-n codes to protect 
data against double disk failures [1, 9]. 



Much less work has been dedicated to self-orga-
nizing fault-tolerant disk arrays. The HP AutoRAID 
[8] automatically and transparently manages 
migration of data blocks between a mirrored storage 
class and a RAID level 5 storage class as access 
patterns change.  Its main objective is to save disk 
space without compromising system performance by 
storing data that are frequently accessed in a repli-
cated organization while relegating inactive data to a 
RAID level 5 organization.  As a result, it reacts to 
changes in data access patterns rather than to disk 
failures. 

Sparing is more relevant to our proposal as it 
provides a form of adaptation to disk failures. 
Adding a spare disk to a disk array provides the 
replacement disk for the first failure.  Distributed 
sparing [7] gains performance benefits in the initial 
state and degrades to normal performance after the 
first disk failure.   

Pâris et al. [3] have recently presented a 
mirrored disk array organization that adapts itself to 
successive disk failures. When all disks are opera-
tional, all data are mirrored on two disks.  Whenever 
a disk fails, the array starts using (n – 1)-out-of-n 
codes in such a way that no data are left unprotected.  
We extend here a similar approach to two-
dimensional RAID arrays. 

3 Self-Adaptive Disk Arrays 
While our technique is general and applies to 

most redundant disk arrays, its application will 
depend on the actual array organization.  Hence we 
will present it using a specific disk array organi-
zation. 

Consider the two dimensional RAID array of 
Fig. 1.  It consists of nine data disks and six parity 
disks.  Parity disks P1, P2 and P3 contain the exclu-
sive or (XOR) of the contents of the data disks in 
their respective rows while parity disks Q1, Q2 and 
Q3 contain the XOR of the contents of the data disks 
in their respective columns. This organization offers 
the main advantage of ensuring that the data will 
survive the failure of an arbitrary pair of disks and 
most failures of three disks.  As seen on Fig. 2, the 
sole triple failures that result in a data loss are the 
failure of one arbitrary data disk, the parity disk in 
the same row and the parity disk in the same column. 

We propose to eliminate this vulnerability by 
having the disk array reorganize itself in a trans-
parent fashion as soon as it has detected the failure of 
a single disk.  We will first consider how the disk 
array will handle the loss of a parity disk and then 
how it will handle the loss of a data disk. 

A  Handling the loss of a parity disk 
Consider first the loss of a parity disk, say parity 

disk Q2.  As Fig. 3 shows, this failure leaves the 
array vulnerable to a simultaneous failure of disks 
D12 and P1 or disks D22 and P2 or disks D32 and P3. 
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Fig. 1 – A two dimensional RAID array with nine 
data disks and six parity disks. 
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Fig. 2 – The same array experiencing the simulta-
neous failures of one arbitrary data disk, the 
parity disk in the same row and the parity disk in 
the same column. 
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Fig. 3 – How the array is affected by the failure of 
an arbitrary parity disk. 

We can eliminate this vulnerability by selecting 
a new array organization such that: 
1. Each data disk will belong to two distinct parity 

stripes. 



11

D21

D11
11

D22

D12

11

Q1

D31 11D32

11

D23

D13
11

P2

P1

11

Q3

D33 11P3

X
 

Fig. 4 – A new array organization protecting the 
data against two simultaneous disk failures after 
the failure of a parity disk. 

2. Two distinct parity stripes will have at most one 
common data disk. 
The first condition guarantees that the array will 

always have two independent ways to reconstitute 
the contents of any failed data disk.  Without the 
second condition, two or more data disks could share 
their parity stripes.  As a result, the array would be 
unable to recover from the simultaneous failure of 
these two disks.   

Fig. 4 displays an array organization satisfying 
these two conditions.  It groups the nine data disks 
into five parity stripes such that: 
1. Disks D11, D12 and D13 keep their parities stored 

on disk P1. 
2. Disks D21, D22 and D23 keep their parities stored 

on disk P2. 
3. Disks D31, D12, D22, and D33 have their parities 

stored on disk P3. 
4. Disks D11, D21, D31, and D32 have their parities 

stored on disk Q1. 
5. Disks D13, D23, D33, and D32 have their parities 

stored on disk Q2. 
Table 1 itemizes the actions to be taken by the four-
teen operational disks to achieve the new 
organization.  As we can see, six of the nine data 
disks and two of the five remaining parity disks do 
not have to take any action.  The two busiest disks 
are data disk D32, which has to send its contents to its 
old parity disk P3 and its two new parity disk Q1 and 
Q2, and parity disk P3, which has to XOR to its 
contents the contents of data disks D12, D22 and D32. 
This imbalance is a significant limitation of our 
scheme, as it will slow down the array reorganization 
process, thus delaying its benefits. 

B  Handling the loss of a data disk 
Let us now discuss how the array should react to 

the failure of one of its data disks, say disk D32.   
The first corrective step that the array will take 

will be to reconstitute the contents of the failed disk 
on one of its parity disks, say, disk Q2.  Once this  
 

Table 1 – Actions to be taken by the fourteen 
operational disks after the failure of parity disk 
Q2. 

Disk Action to be taken 
D11 Do nothing 
D12 Send contents to P3 
D13 Do nothing 
D21 Do nothing 
D22 Send contents to P3 
D23 Do nothing 
D31 Do nothing 
D32 Send contents to P3, Q1 and Q3 
D33 Do nothing 
P1 Do nothing 
P2 Do nothing 
P3 XOR to its contents the contents of D12, 

D22 and D32 
Q1 XOR to its contents the contents of D32 
Q3 XOR to its contents the contents of D32 
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Fig. 5 – A new array organization protecting the 
data against two simultaneous disk failures after 
the failure of a data disk. 

process is completed, the reorganization process will 
proceed in the same fashion as in the previous case. 

Figure 5 displays the final outcome of the reor-
ganization process.  Each data disk—including disk 
Q2—now belongs to two distinct parity stripes and 
two distinct parity disks have at most one common 
disk. 

Table 2 itemizes the actions to be taken by the 
fourteen operational disks to achieve the new 
organization. Observe that the reorganization process 
will now require two steps since the array must first 
compute the new contents of disk Q2 before updating 
disks Q1 and Q3. 

C  Discussion 
Our technique can be trivially extended to all 

two-dimensional RAID arrays consisting of n2 data 
disks and 2n parity disks with n ≥ 3.  The array will 
always handle the loss of a parity disk by assigning a 
new parity stripe to each of the n disks belonging to  
 



Table 2 – Actions to be taken by the fourteen 
operational disks after the failure of data disk D32. 

Disk Action to be taken 
D11 Do nothing 
D12 Send contents to P3 and Q2 
D13 Do nothing 
D21 Do nothing 
D22 Send contents to P3 and Q2 
D23 Do nothing 
D31 Do nothing 
D33 Do nothing 
P1 Do nothing 
P2 Do nothing 
P3 XOR to its contents the contents of D12, 

D22 and D32 
Q1 XOR to its contents new contents of Q2 
Q2 XOR to its contents the contents of D12 and 

D22  
Send new contents to Q1 and Q3 

Q3 XOR to its contents new contents of Q2 
 
same parity stripe as the disk that failed.  Hence the 
reorganization process will only involve n out of the 
n2 data disks and n out of the remaining 2n – 1 parity 
disks. Handling the failure of a data disk will involve 
one less data disk and one extra parity disk.  

4 Reliability Analysis 
Estimating the reliability of a storage system 

means estimating the probability R(t) that the system 
will operate correctly over the time interval  
[0, t] given that it operated correctly at time t = 0.  
Computing that function requires solving a system of 
linear differential equations, a task that becomes 
quickly unmanageable as the complexity of the 
system grows.  A simpler option is to focus on the 
mean time to data loss (MTTDL) of the storage 
system, which is the approach we will take here.   

Our system model consists of a disk array with 
independent failure modes for each disk.  When a 
disk fails, a repair process is immediately initiated 
for that disk.  Should several disks fail, the repair 
process will be performed in parallel on those disks. 

We assume that disk failures are independent 
events exponentially distributed with rate λ, and that 
repairs are exponentially distributed with rate μ.  We 
will first consider a disk array consisting of 9 data 
disks and 6 parity disks and then a larger array with 
16 data disks and 8 parity drives. 

Building an accurate state-transition diagram for 
either two-dimensional disk array is a daunting task 
as we have to distinguish between failures of data 
disks and failures of parity disks as well as between 
failures of disks located on the same or on different 
parity stripes.   Instead, we present here a simplified 
model based on the following approximations. 
1. Whenever the disk repair rate μ is much higher 

than the disk failure rate λ, each individual disk  
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Fig. 6 – Simplified state transition probability 
diagram for a two-dimensional array consisting of 
9 data disks and 6 parity disks. 

will be operational most of the time. Hence the 
probability that the array has four failed disks 
will be almost negligible when we compare it to 
the probability that the array has three failed 
disks.  We can thus obtain a good upper bound 
of the array failure rate by assuming that the 
array fails whenever it has three failed disks in 
any of the nine critical configurations discussed 
in section 3 or at least four failed disks regard-
less of their configuration.  In other words, we 
will ignore the fact that the array can survive 
some, but not all, simultaneous failures of four 
or more disks. 

2. Since disk failures are independent events expo-
nentially distributed with rate λ, the rate at 
which an array that has already two failed disks 
will experience a third disk failure is 
(16 – 2)λ = 14λ.  Observing there are 455 
possible configurations with 3 failed disks out of 
15 but only 9 of them result in a data loss, we 
will assume that the rate at which an array that 
has already two failed disks will not fail will be 
(455 – 9)×13λ/455 = 5798λ/455. 
Fig. 6 displays the simplified state transition 

probability diagram for a two-dimensional array 
consisting of 9 data disks and 6 parity disks.  State 
<0> represents the normal state of the array when its 
fifteen disks are all operational.  A failure of any of 
these disks would bring the array to state <1>.  A 
failure of a second disk would bring the array into 
state <2>. A failure of a third disk could either result 
in a data loss or bring the array to state <3>.  As we 
stated earlier, we assume that any third failure occur-
ring while the array already has three failed disks 
will result in a data loss. 

Repair transitions bring back the array from 
state <3> to state <2> then from state <2> to state 
<1> and, finally, from state <1> to state <0>.  Their 
rates are equal to the number of failed disks times the 
disk repair rate μ.   
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Fig. 7 – Mean times to data loss achieved by a two dimensional disk array consisting of nine data 
disks and six parity disks. 

When the array reaches state <1>, it will start a 
reorganization process that will bring it into state 
<1'>.  State <1> is a more resilient state than state 
<1'> as the reorganized array tolerates two arbitrary 
additional failures.  We will assume that this dura-
tion of the reorganization process is exponentially 
distributed with rate κ.  A failure of a second disk 
while the array is in state <1'> would bring the 
array into state <2'> and a failure of a third disk 
would bring the array to state <3'>.  When the array 
is in state <3'>, any failure that would occasion the 
simultaneous failure of one of the nine data disks 
and its two parity disks would result in a data loss.  
Observing there are 364 possible configurations 
with 3 failed disks out of 14 but only 9 of them 
result in a data loss, we see that the transition rate 
between state <3'> and state <4'> is given by (364 –
 9)×12λ/364 = 4260λ/364. 

The Kolmogorov system of differential equa-
tions describing the behavior of the array is 
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where pi(t) is the probability that the system is in 
state <i> with the initial conditions p0(0) = 1 and 
pi(0) = 0 for i ≠ 0. 

The Laplace transforms of these equations are 
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Observing that the mean time to data loss 
(MTTDL) of the array is given by 

)0(*∑=
i

ipMTTDL , 

we solve the system of Laplace transforms for s = 0 
and use this result to compute the MTTDL.  The 
expression we obtain is quotient of two polynomi-
als that are too large to be displayed. 

Fig. 7 displays on a logarithmic scale the 
MTTDLs achieved by a two-dimensional array 
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with 9 data disks and 6 parity disks for selected 
values of  the reorganization rate κ and repair times 
that vary between half a day and seven days.  We 
assumed that the disk failure rate λ was one failure 
every one hundred thousand hours, that is, slightly 
less than one failure every eleven years.  Disk 
repair times are expressed in days and MTTDLs 
expressed in years.  As we can see, our technique 
increases the MTTDL of the array by at least 200 
percent as long as the reorganization process takes 
less than half the time it takes to replace a failed 
disk, that is, κ > 2μ.  In addition, it also reduces the 
impact of disk repair times on the MTTDL of the 
array.  This is an important advantage of our tech-
nique as short repair times require both maintaining 
a local pool of spare disks and having maintenance 
personnel on call 24 hours a day. 

Let us now consider the case of a larger two-
dimensional array consisting of 16 data disks and 8 
parity disks.  As Fig. 8 shows, the simplified state 
transition probability diagram for the new array is 
almost identical to the one for the array consisting 
of 9 data disks and 6 parity disks, the sole differ-
ence being the weights of the failure transitions 
between the states.  Some of these changes are self-
evident: since the new array has 24 disks, the tran-
sition rate between state <0> and state <1> is now 
24λ.  Let us focus instead on the transitions leaving 
states <2> and states <3'>. 

Recall that state <2> is a state where the array 
has already lost 2 of its 24 disks and has not yet 
been reorganized.  Hence it remains vulnerable to 
the loss of a third disk.  Observing there are 2,204 
possible configurations with 3 failed disks out of 
24 but only 16 of them result in a data loss, we will 
assume that the rate at which the array will fail will 
be given by 16×22λ/2204 or 352λ/2204.  
Conversely, the transition rate between state <2> 
and state <3> will be (2204 – 16)×22λ/2204 or 
44176λ/2204. 

State <3'> is a state where the reconfigured 
array has lost two additional disks and has become 
vulnerable to the failure of a fourth disk.  Observ-
ing there are 364 possible configurations with 3 
failed disks out of 23 but only 16 of them result in a 
data loss, we see that the rate at which an array will 
fail will be equal to 16×21λ/1771 or 336λ/1771.  
As a result, the transition rate between state <3'> 
and state <4'> will be equal to (1771 –
 16)×21λ/1771 or 26855λ/1771. 

Using the same techniques as in the previous 
system, we obtain the MTTDL of our disk array by 
computing the Laplace transforms of the system of 
differential equations describing the behavior of the 
array and solving the system of Laplace transforms 
for s = 0. 

Fig. 9 displays on a logarithmic scale the 
MTTDLs achieved by a two-dimensional array 
with 16 data disks and 8 parity disks for selected 
values of the reorganization rate κ and repair times 
varying between half a day and a week.  As before, 
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Fig. 8 – Simplified state transition probability 
diagram for a two-dimensional array consisting 
of 16 data disks and 8 parity disks. 

we assumed that the disk failure rate λ was equal to 
one failure every one hundred thousand hours one 
failure every one hundred thousand hours.  Here 
too, we can see that our technique increases the 
MTTDL of the array by at least 200 percent as long 
as κ > 2μ and reduces the impact of disk repair 
times on the MTTDL of the array. 

4 An Alternate Organization 
Another way of organizing n2 data disks and 

2n parity disks is to partition them into n RAID 
level 6 stripes each consisting of n data disks and 
two parity disks (we may prefer to call now these 
two disks check disks).  This organization is 
displayed on Fig. 10.  It would protect data against 
the failure of up to two disks in any of its n stripes.  
We propose to evaluate its MTTDL and compare it 
to those obtained by our two-dimensional array. 

Fig. 11 displays the state transition probability 
diagram for a single RAID level 6 stripe consisting 
of three data disks and two check disks.  State <0> 
represents the normal state of the stripe when its 
five disks are all operational.  A failure of any of 
these disks would then bring the stripe to state <1>.  
A failure of a second disk would bring the stripe 
into state <2>.  A failure of a third disk would 
result in a data loss.  Repair transitions bring back 
the strip from state <2> to state <1> and then from 
state <1> to state <0>.  

The system of differential equations describing 
the behavior of each RAID level 6 stripe is 
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Fig. 9 – Mean times to data loss achieved by a two dimensional disk array consisting of 16 data disks and 
8 parity disks. 
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Fig. 10 – An alternative organization with nine 
data disks and six check disks. 
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Fig. 11 – State transition probability diagram for 
a stripe consisting of three data disks and two 
check disks. 

Applying the same techniques as in the previ-
ous section, we obtain the MTTDL of each stripe. 
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Fig. 12 displays on a logarithmic scale the 
MTTDLs achieved by the new array configuration 
and compares them with the MTTDLs achieved by 
a two-dimensional array with the same number of 

data disks and parity disks.  As in Fig. 7, the disk 
failure rate λ is assumed to be equal to one failure 
every one hundred thousand hours and the disk 
repair times vary between half a day and seven 
days. 

As we can see, the new organization achieves 
MTTDLs that are significantly lower than these 
achieved by the two-dimensional array even when 
we assume that no reorganization can take place.  
While this gap narrows somewhat when the mean 
repair time τ increases, the MTTDL achieved by 
the new organization never exceed 41 percent of 
the MTTDL achieved by a static two-dimensional 
array with the same number of data disks and parity 
disks. 

We can explain this discrepancy by consider-
ing the number of triple failures that will cause 
either disk organization to fail.  As we saw earlier, 
9 triple failures out of 465 result in a data loss for a 
two-dimensional array consisting of nine data 
drives and six parity drives.  In the case of a RAID 
level 6 organization, any failure of three disks in 
any of the three stripes would result in a data loss.  
Since each stripe consists of 5 disks, there are 
exactly 10 distinct triple failures to consider in each 
of the 3 stripes.  Hence the total number of triple 
failures that will result in a data loss is 30 out of 
465, that is, slightly more that three times the 
corresponding number of triple failures for the two-
dimensional disk organization. 

We should also observe that this performance 
gap will increase with the size of the array.  
Consider, for instance, a two-dimensional array 
consisting of 25 data drives and 10 parity drives.   
The only triple failures that would result in a data 
loss for our two dimensional array involve the 
simultaneous failures of an arbitrary data disk and    
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Fig. 12 – Mean times to data loss achieved by various disk arrays consisting of nine data disks and six 
parity disks. 

both of its parity disks.  Since our array has 25 data 
disks, this corresponds to 25 out of the 6545 possi-
ble triple failure.  Consider now an alternate 
organization consisting of 5 stripes each consisting 
of 5 data disks and 2 check disks and observe that a  
organization consisting of 5 stripes each consisting 
of 5 data disks and 2 check disks and observe that a 
failure of three disks in any of the five stripes 
would result in data loss.  Since each stripe consists 
of 7 disks, there are exactly 35 distinct triple fail-
ures to consider in each stripe.  Hence the total 
number of triple failures that will result in a data 
loss is 175 out of 6545, that is, seven times the 
corresponding number of triple failures for the two-
dimensional disk organization.  

5 Conclusion 
We have presented a technique for improving 

the survivability of data stored on archival storage 
systems by letting these systems reorganize them-
selves whenever they detect of a disk failure and 
until the failed disk gets replaced. 

This reorganization will rebalance as much as 
possible the redundancy level of all stored data, 
thus reducing the potential impact of additional 
disk failures.  It will remain in effect until the failed 
disk gets repaired.  We show how our technique 
can be applied to two-dimensional RAID arrays 
consisting of n2 data disks and 2n parity disks and 
discuss its impact on the mean time to data loss of 
arrays with 15 and 24 disks.  We found out that the 
reorganization process was especially beneficial 
when the repair time for individual disks exceeded 
one to two days and concluded that a self-adaptive 
array would tolerate much longer disk repair times 

than a static array making no attempt to reorganize 
itself in the presence of a disk failure. 

In addition, we found out that this two-
dimensional disk organization achieved much 
better MTTDLs than a set of RAID level 6 stripes, 
each having n data disks and two check disks. 
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