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Abstract

We evaluate the reliability of storage system schemes
consisting of an equal numbers of data disks and par-
ity disks where each parity disk contains the exclusive or
(XOR) of two or three of the data disks. These schemes
are instances of Survivable Storage using Parity in Redun-
dant Array Layouts (SSPiRAL). They have the same storage
costs as mirrored organizations and use very simple parity
schemes. Through a novel dynamic analysis of the likeli-
hood of data losses, we show that these schemes are one
hundred thousand to a million times less likely to lose data
than a comparable mirrored organization. We also found
that schemes where each parity disk contains the exclusive
or of three data disks performed much better than schemes
where each parity disk contains the exclusive or of only two
data disks.

1. Introduction

The volume of digital data is growing, as is the need to
build reliable storage infrastructure. In a recent study, the
volume of digital data generated in 2002 was quoted at over
5 Exabytes, 92% of which was written to magnetic disk
drives [16, 17]. Such growth will inevitably be reflected
in the storage demands of data servers, as well as the stor-
age demands of consumers and producers of such content.
This rate of growth is only compounded by the desire –
and frequently the need – to retain this data, and will in-
evitably result in the accelerated growth of the number of
data storage devices and servers. More components implies
an increased need to protect against the failure of individual
components. Data storage devices have a recent history of
impressive growth in capacity, this growth alone (assum-
ing it is maintained) could easily be consumed solely by
the desire to retain data, and cannot mitigate the increase in

storage nodes and devices. Redundant storage schemes are
an obvious solution to increasing reliability, and such ap-
plications commonly employ one of two strategies: a com-
bination of replication and parity applied efficiently across
an array of devices, or a failure-recovery scheme based on
erasure coding.

Computational efficiency is important when implement-
ing redundancy schemes for disks, and so parity is par-
ticularly appealing due to its ease of computation. There
are also combinations of the two approaches, but typically
parity schemes tolerate only a small number of component
failures, while erasure codes tend to be expensive to im-
plement. Excellent parity-based erasure codes and layout
schemes have been devised [7, 22], but prior art has fo-
cused primarily on aiming to survive a specific number of
device failures. We present a scheme, and analytic evalua-
tion, focused on reducing the likelihood of data loss. While
SSPiRAL layouts are efficient parity-based layouts that are
capable of exploiting heterogeneity in the underlying de-
vices, we set aside such functional advantages and present
a novel analytical evaluation that demonstrates its ability to
dramatically reduce the likelihood of data loss in the face of
device failures. Our analysis avoids the pitfalls inherentin
estimating MTTDLs of hundreds and thousands of years,
which can be misleading for systems that are only used for
a few years. In Section 2 we describe SSPiRAL layouts and
in Section 3 we present our analytical results. We discuss
related works and conclusions in Sections 4 and 5.

2. SSPiRAL Description

Data layouts aimed at increasing storage reliability have
employed parity, erasure coding, or some combination of
the two to make use of excess storage capacity in avoiding
data loss. Traditionally, such layouts treat individual de-
vices as independent and equal units,e.g., in an individual
RAID array all disks are considered to be equals, and ef-



forts are made to distribute load and responsibility equally
among these disks. SSPiRAL (Survivable Storage using
Parity in Redundant Array Layouts) [2] is a redundant data
layout scheme that deliberately considers the possibility
that individual disks are not necessarily equal. This can al-
low the exploitation knowledge regarding the relative like-
lihood of failure of individual components in a storage sys-
tem, but our evaluation makes the conservative assumption
that there is no such knowledge available, and under such
conditions, SSPiRAL layouts still offer a dramatic reduc-
tion in data loss likelihood. SSPiRAL’s goal is to provide
the most effective data layout across devices, with the aim
of minimizing the probability of data loss, and while be-
ing defined by parameters that represent simple real-world
constraints.

Every SSPiRAL layout is defined by three parameters:
the degree of the system, the number of devices available,
and thex-order where the valuex represents the number of
devices that contribute to an individual parity calculation.
The degree of a SSPiRAL layout is the number of distinct
data devices, representing how many disks the data will be
distributed across (e.g., for load balancing or to exploit par-
allelism). A SSPiRAL arrangement that uses a fixed value
for x is described as a fixed-order array, and in such a lay-
out each parity device holds data that is computed as the
result of an XOR operation across exactlyx data devices.
We consider only fixed-order SSPiRAL layouts.

To build a SSPiRAL layout, we start with the degree
of the layout. This is effectively the number of devices
contributing to the data storage capacity of the overall sys-
tem. From this point, we can impose a constraint on the
maximum effort and bandwidth required for parity calcula-
tions (by setting thex-order of the system) or by setting a
limit on the amount of redundant storage we wish to con-
tribute to reducing the likelihood of data loss (by setting
the number of parity nodes). These parameters are related,
as a decision to contribute only a single parity node would
necessitate the participation of all data nodes in the parity
computed at that node. This is effectively a simple RAID
scheme with a single parity disk. Adding more parity nodes
would give us the freedom to choose between a maximum
x-order that is equivalent to the degree of the system or
a smaller value. Conversely, had we started with a fixed
x-order, this would have imposed a restriction on the mini-
mum number of parity nodes to build a complete SSPiRAL
layout. For example, a SSPiRAL arrangement of degree 3
andx-order 2 would use no more than two nodes to build
a parity node, and would need a set of six nodes to build a
complete layout. Figure 1 shows a SSPiRAL layout of de-
gree three andx = 2, alongside a mirrored layout that uses
the same number of disks.

An interesting strength of a SSPiRAL layout can be
demonstrated through Figure 2, which shows the loss of
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Figure 2. SSPiRAL data layout and the loss of three
nodes.

three of our six devices. In spite of this loss, it is possible
to recover all lost data nodes. While a mirrored arraycan
survive the loss of three nodes, it loses data if the two disks
containing the same data fail. There isno combination of
two node losses that will cause the SSPiRAL layout in Fig-
ure 2 to lose data. This increased resilience has been ob-
tained at the expense of involving two data devices for the
creation of redundant parity data on each individual parity
device. Intuitively, increasing thex-order of a layout would
seem to reduce the likelihood of data loss by increasing the
paths available for reconstructing lost nodes. This intuition
is supported by the impact ofx-order we observe in Sec-
tion 3.

3. Reliability Analysis

We provide an analysis of the reliability of SSPiRAL
layouts, and compare them to the reliability of mirrored
disk layouts. We evaluate the effects of varying the num-
ber of devices and thex-order of the SSPiRAL layouts. All
SSPiRAL layouts considered use 50% redundancy to al-
low a fair comparison to the mirrored layouts. To compare
the layouts we calculate the probability of data loss after
a fixed number of years. This comparison assumes an ex-
pected rate of failure for the disk devices, but we do not



assume anya priori knowledge of these rates for the SSPi-
RAL layouts. While a SSPiRAL layout can conceivably
take advantage of differences in the expected reliability of
individual devices (e.g., through knowledge of a device’s
age or SMART data), we assume all devices to have an
equal likelihood of failure.

Estimating the reliability of a given storage system
means evaluating the probabilityR(t) that the system will
operate correctly over the time interval[0, t] given that it
operated correctly at timet = 0. While this approach is
straightforward, it requires solving a potentially complex
system of linear differential equations. As a result, many
studies characterize the reliability of storage systems by
their Mean Time To Data Loss (MTTDL), which only re-
quires the solution of a system of linear equations. Un-
fortunately, MTTDLs of hundreds and thousands of years
can be misleading for systems that are only used for a few
years. Such systems will operate over their lifetime under
conditions very close to their initial state where all storage
devices were operational. As a result, they will experience
significantly lower failure rates than those predicted using
their MTTDLs. It is therefore essential to consider the dy-
namic behavior of each storage system over its actual life-
time.

3.1. SSPiRAL Array Layouts

Building a completely accurate state-transition diagram
for a SSPiRAL array exceeds the limitations of this paper
as we would have to distinguish between failures of data
disks and failures of parity disks. These distinctions are
necessary for complete accuracy since complexity of re-
calculating data previously stored in a lost drive differs.In-
stead, we abstract from these details and aggregate states as
much as possible. We capture a system withi failed disks
in a stateSi . We have a repair transition from StateSi to
StateSi−1, i ≥ 1, which is taken with ratei · µ , whereµ is
the inverse of the average repair time. Thus, our model as-
sumes independent repairs of any failed devices. The repair
time itself is composed of the time to detection, issue of the
service call and wait for the replacement of the failed de-
vice followed by the reconstruction of the data previously
stored in the failed disk. The latter component is typically
several hours since for example a 1 TB disk is fully read
at 10MB/sec in approximately 28 hours. It increases pro-
portionally with the size of the disk and decreases inversely
proportionally with the read/write rate. We have also fail-
ure transitions that leave StateSi with a combined rate of
(N− i)λ . Partially or totally, a failure transition leads to the
next StateSi+1, complemented by a transition to the Failure
State, which is absorbing.

Our model is limited by the Markovian assumption of
independent repairs and failures and by the modeling of
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Figure 3. Markov model for the3+ 3 SSPiRAL layout
(with x= 2).

repair in particular. Nevertheless, models of this type have
been confirmed by simulation to be reasonably accurate.

3.1.1. The 3+ 3 SSPiRAL Array (x = 2) The 3+ 3
SSPiRAL array has anx value of two (two disks contribute
to each parity disk) and encompasses six disks. Its layout
is given in Figure 2. Clearly, loss of four disks (or more)
must lead to data loss (We are of course assuming that all
data disks indeed contain data). A case by case distinction
shows that there is never data loss if any two disks have
failed and that in 4 out of the

(6
3

)

= 20 ways in which three
out of six disks can fail data loss occurs. In more detail,
data loss occurs if

1. all data disks have failed

2. a data disks and the two parity devices containing its
data have failed.

As a result, we have a state transition fromS3 to S4 taken
with rate 16

20 ·4 ·λ = 16
5 λ and a transition forS3 to the ab-

sorbing (data loss) state with rate420 ·4·λ = 4
5λ . The com-

plete Markov model is in Figure 3.

Table 1. Data loss probability with various
disk MTBF 1/λ and average repair time 1/µ
for the 3+3 SSPiRAL array.

MTBF MTTR 4 5 20 100
hours year year year year

50,000 30 3.02E-06 3.78E-06 1.51E-05 7.56E-05
105 30 3.78E-07 4.73E-07 1.89E-06 9.46E-06
106 30 3.78E-10 4.73E-10 1.89E-09 9.47E-09

50,000 100 3.34E-05 4.17E-05 1.67E-04 8.37E-04
105 100 4.18E-06 5.23E-06 2.10E-05 1.05E-04
106 100 4.19E-09 5.24E-09 2.10E-08 1.05E-07

3.1.2. The 4+ 4 SSPiRAL Array (x = 2) For direct
comparison purposes, we consider the SSPiRAL array with
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Figure 5. Graph representation of the4+ 4 SSPiRAL
layout with x= 2 (on the left), and “neighbor”, “club,”
and “two neighbor double club” patterns (on the right).

x = 2 and eight disks (Figure 4). To study its data survival,
we use a technique similar to that developed by Hellerstein
et al. [9] and later expanded by [11] that is based on in-
terpreting 2-failure correcting layouts using parity calcula-
tions as a type of mathematical design called configuration
(see [6]). The dual is then a regular graph. In this represen-
tation, vertices are parity disks and edges are data disks. An
edge is connected to a graph if the corresponding data disk
contributed to the parity. The result of this representation
is in Figure 5.

Table 2. Data loss probability for the SSPiRAL
array with x = 2 and 8 disks.

MTBF MTTR 4 5 20 100
hours year year year year

50,000 30 3.02E-06 3.78E-06 1.51E-05 7.56E-05
105 30 3.78E-07 4.72E-07 1.89E-06 9.46E-06
106 30 3.78E-10 4.73E-10 1.89E-09 9.47E-09

50,000 100 3.33E-05 4.17E-05 1.67E-04 8.36E-04
105 100 4.18E-06 5.23E-06 2.10E-05 1.05E-04
106 100 4.19E-09 5.24E-09 2.10E-08 1.05E-07

We now model the loss of one or more devices as a sub-
graph of this graph. We can reconstruct lost data by using
parity calculations, which we can represent by the follow-
ing graph theoretical operations. Given an edge and an ad-
jacent vertex, we can reconstruct the other vertex. For ex-
ample, given A and (A⊕ B), we can reconstruct B. Given
two adjacent edges, we can reconstruct the vertex at the in-
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Figure 6. Markov model for the4+ 4 SSPiRAL layout
(with x= 2).

tersection between these edges. For example, given A and
B, we can reconstruct (A⊕ B). Operations that are more
complicated do not reconstruct additional data. As a con-
sequence of this insight, a loss pattern leading to data loss
must contain a cycle of adjacent edges (in our case the loss
of A, B, C, and D) or a path consisting of edges and ver-
tices that starts and ends in a vertex. For example, A⊕ B,
A, A⊕ D is a (minimal) loss pattern with data loss. We can
now calculate the probabilities that a failure leads to data
loss. We use the now standard notations for the Markov
model. In addition to the absorbing, data loss state, we have
statesSi representing the system wheni disks have failed.
If there are none, one, or two failures, no data loss occurs.
The three loss patterns with data loss consist of two edges
with the connecting edge. Hence, the chances are4

56 = 1
14.

Since the total rate of failure transitions out ofS2 is 6λ , the
system transitions fromS2 at a rate3

7λ to the data loss state
and at rate39

7 λ to S3.
We now calculate the data loss probability for the fourth

failure. Assume now that we are in one of the 52 cases that
does not represent data loss after failure of three devices.
The failure of an additional device only results in data loss
if it creates either a pattern vertex-edge-vertex or a cycle
edge-edge-edge-edge. 4 out of the 52 cases consist of three
edges. In this case, failure of the data disk representing the
other edge leads to data loss. This happens with probabil-
ity 1

5. Some of the 52 cases representing failure of three
devices contain a single club pattern formed by a vertex, an
adjoining edge, but not the other adjoining edge. We can
pick the vertex in four different ways and then one of the
edges. The other failed device must not be the other edge,
hence we can pick this in four different ways. This gives us
32 possibilities. The double club consists of a vertex and
two adjoining edges, for this, we have four possibilities.
We also have the “two neighbor” pattern, consisting of two



adjacent vertices with the other failure represented not by
the combining edge. There are eight cases that contain both
a club and a two neighbor pattern. There are eight cases of
a two neighbor pattern that does not contain a club nor the
three failure pattern. Of these, four are made up of three
vertices.

We now calculate the probability that an additional fail-
ure leads to data loss. In the 24 cases of a single club
without a two neighbors pattern, only failure of the data
disk represented by the other vertex of the clubs edge leads
to data loss. In the four cases of the three vertices, three
out of the five possibilities for an additional failure leadsto
data loss. In the four cases of the two neighbors without
club and three vertices (e.g., pattern A⊕ D, C, A ⊕ B, the
“face,” possibly rotated), only one out of the five possibili-
ties for further failure leads to data loss. In the eight cases
of a club with two neighbors, two out of the five possibili-
ties for further device failure lead to data loss. In the four
cases of the double club, two out of the five possibilities
lead to further failure.

In total, the fourth failure induces data loss with proba-
bility 24·1+4·3+4·1+8·2+4·2

52·5 = 16
65. Since the total rate of fail-

ure transitions out ofS3 is 5λ , the transition rate fromS3 to
the absorbing state is5λ ·64

52·5 = 16
13λ and fromS3 to S4

49
13λ .

We give the Markov model in Figure 6.

3.1.3. The 4+ 4 SSPiRAL Array (x = 3) We present
the layout of the 4+ 4 SSPiRAL array withx = 3 in Fig-
ure 7. The modeling of the 4+ 4 array is quite similar to
the previous one. A case-by-case enumeration shows that
there is no data loss if up to three disks have failed. An in-
formation theoretical argument shows that loss of five disks
needs to lead to data loss. We consider the remaining case
(failure of four disks) in more detail. We make a case dis-
tinction according to the number of data disks.

1. One lost data disk: Assume that data disk A (see Fig-
ure 7) has failed. Three parity drives have also failed
and one remains available. If this one is (A⊕B⊕C),
(C⊕D⊕A), or (D⊕A⊕B), then we can reconstruct the
data previously in A. In the remaining case, all disks
with contents reflecting A are lost and data loss is in-
evitable. Hence, we have data loss in 4 of the 16 cases
where one data disk is lost.

2. Two lost data disks: First, we assume that two neigh-
boring data disks in Figure 7. Let these be A and
B. Two of the parity drives are also available. If
(B⊕C⊕D) or (C⊕D⊕A) are among them, then we
achieve directly the contents of B and A, respec-
tively. In the remaining case, C, D, (A⊕B⊕C), and
(D⊕A⊕B) are available. Since any reconstruction has
to use XORing as a primitive operation and since C,
D, (A⊕B⊕C), (D⊕A⊕B), (C⊕D) are the elements of
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Figure 7. The4+4 SSPiRAL layout with eight disks and
x = 3.

a set closed under XORing, the contents of A and B
remain unavailable. Of the 4 subcases, four lead to
data loss. Second, we assume that two non-neighbors
in Figure 7 are available. Let these be A and C. If
B⊕C⊕D or D⊕A⊕B are available, we obtain with B
and D directly C or A respectively and hence A and C
from the other parity drive contents. This leaves the
case where B, D, A⊕B⊕C, and D⊕A⊕B are avail-
able. Taking XORs of these four available objects, we
obtain a set that additionally contains B⊕D and A⊕C,
but that is closed under further taking of pair-wise par-
ity. Hence, of the 2× 6 sub-cases, two lead to data
loss.

3. Three lost data disks: Assume that disk A is avail-
able. We can obtain the remaining data disks con-
tents in three of the four cases. For example, if we
have A, (A⊕B⊕C), (B⊕C⊕D), and C⊕D⊕A avail-
able. Then also B = (B⊕C⊕D) ⊕ (A⊕B⊕C) ⊕

A, C = (A⊕B⊕C) ⊕ (B⊕C⊕D) ⊕ (C⊕D⊕A), D =
(B⊕C⊕D) ⊕ (A⊕B⊕C) ⊕ A. But if A, (A⊕B⊕C),
(C⊕D⊕A), and (D⊕A⊕B) are available, then by tak-
ing all possible pair-wise parity, we obtain the set S =
A, A⊕B⊕C, C⊕D⊕A, D⊕A⊕B, B⊕C, C⊕D, D⊕B
which is closed under this operation. Hence, in this
case the array suffers data loss.In toto, of the 16 sub-
cases, 4 lead to data loss.

4. Four lost data disks: Since A = (A⊕B⊕C)
⊕ (C⊕D⊕A) ⊕ (D⊕A⊕B), B = (D⊕A⊕B) ⊕

(A⊕B⊕C)⊕ (B⊕C⊕D), C = (A⊕B⊕C)⊕ (B⊕C⊕D)
⊕ (C⊕D⊕A), D = (B⊕C⊕D) ⊕ (C⊕D⊕A) ⊕

(D⊕A⊕B), there is no data loss.

To summarize, out of a total of
(8

4

)

= 70 ways for four
out of eight disks to fail, 14 lead to data loss. We can now
use our in-sight to calculate the Markov model given in Fig-
ure 8. There is a combined rate of 5λ of failure transitions
out of StateS3. The rate of the transition fromS3 to the ab-
sorbing state is14

70 ·5λ = λ and of the transition from State
S3 to StateS4 is 56

70 ·5λ = 4λ .
We give the survival rates after 4 and 5 years in Table 3.

Compared with the SSPiRAL array also with eight disks
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but with x = 2, the numbers are better by about three pow-
ers of ten.

Table 3. Data loss probability with various
disk MTBF 1/λ and average repair time 1/µ
for the 4+4 SSPiRAL array.

MTBF MTTR 4 5 20 100
hours year year year year

50,000 30 8.45E-09 1.06E-08 4.23E-08 2.12E-07
105 30 5.29E-10 6.61E-10 2.65E-09 1.32E-08
106 30 5.28E-14 6.63E-14 2.65E-13 1.33E-12

50,000 100 3.10E-07 3.88E-07 1.56E-06 7.78E-06
105 100 1.94E-08 2.43E-08 9.77E-08 4.89E-07
106 100 1.95E-12 2.44E-12 9.80E-12 4.91E-11

3.2. Mirrored Layouts

Mirroring is functionally the simplest way to induce re-
dundancy. Two copies are written, but either copy can sat-
isfy reads. We can restore its contents by simply accessing
the other copy.

3.2.1. The 3+3Mirrored Layout We present the 3+3
mirrored layout in Figure 9. The array can tolerate any
loss of a single drive and definitely any loss of four drives
leads to data loss. However, losing two drives containing
the same data leads to data loss. This happens with prob-
ability 1

5 after loss of a single drive (there are 5 drives left
and loss of the one containing the same data as the already
failed drive leads to data loss.) If the array has tolerated
two failures without data loss, it is (modulo renaming of
disks) in the situation depicted in Figure 9. The chance that
an additional loss looses access to the data in A or B is1

2.

Data Disk

A

Data Disk

B

Data Disk

C

Mirror Disk

A

Mirror Disk

B

Mirror Disk

C

Figure 9. 3+3 Mirrored Layout surviving the loss of two
drives.
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As a result, we obtain the Markov model depicted in Fig-
ure 10. We calculate the four and five year data loss rate of
such a system and present the results in Table 4.

Table 4. Data loss probability of the mirrored
array with six disks.

MTBF MTTR 4 5 20 100
hours year year year year

50,000 30 2.51E-03 3.14E-03 1.25E-02 6.11E-02
105 30 6.30E-04 7.87E-04 3.15E-03 1.56E-02
106 30 6.31E-06 7.88E-06 3.15E-05 1.58E-04

50,000 100 8.31E-03 1.04E-02 4.09E-02 1.89E-01
105 100 2.09E-03 2.61E-03 1.04E-02 5.11E-02
106 100 2.10E-05 2.62E-05 1.05E-04 5.26E-04

3.2.2. The 4+ 4 Mirrored Layout The derivation of
the Markov model and the Kolmogorov system proceeds in
strict analogy to the case of 6 disks. We give the Markov
model in Figure 11 and the data loss probability during the
economic lifespan of the array in Table 6.

3.3. Comparative Results

Figure 12 illustrates the relative likelihood of data loss
for mean time between failure (MTBF) values ranging from
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Table 5. Data loss probability of the mirrored
array with eight disks.

MTBF MTTR 4 5 20 100
hours year year year year

50,000 30 3.35E-03 4.19E-03 1.67E-02 8.06E-02
105 30 8.40E-04 1.05E-03 4.19E-03 2.08E-02
106 30 8.41E-06 1.05E-05 4.21E-05 2.10E-04

50,000 100 1.11E-02 1.38E-02 5.42E-02 2.43E-01
105 100 2.78E-03 3.48E-03 1.39E-02 6.75E-02
106 100 2.80E-05 3.50E-05 1.40E-04 7.01E-04

fifty thousand hours to a million hours, and an expected re-
pair time of one hundred hours. Lower values therefore
indicate a more reliable system. For each expected MTBF
value we plot the expected likelihood of data loss for each
layout during a four, five, twenty, and hundred-year period.
All the layouts discussed in Section 3 were chosen to have
identical storage capacity overhead, but varied in the num-
ber of nodes among which data was distributed and in the
case of SSPiRAL we have also varied the number of nodes
participating in a parity computation – thex-order. Fig-
ure 13 shows the same comparison of analytical results, but
under an assumption of a shorter repair time (thirty hours).
As expected, reducing the number of nodes holding data
from four to three results in a decrease in the likelihood of
data loss, but such a decrease was dwarfed by the impact of
variations in MTBF, repair time, and thex-order.

The use of a fixedx-order for the SSPiRAL layouts im-
plies that the data written tox data nodes must be com-
bined and a parity computed to be written to one or more
of the parity nodes. The additional computational effort
may be minor, but poorly managed these parity calcula-
tions can pose a serious performance bottleneck. The pri-
mary cause of such a slowdown would be the potential of
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Figure 12. Data loss probability for SSPiRAL and Mir-
rored layouts with equivalent space efficiency and a 100
hour repair time.



parity updates overwhelming a parity disk. For example,
four small random updates to four independent blocks on
the data devices, while parallelizable across those same de-
vices, would result in a sequential set of four update re-
quests to the device holding the parity. While this prob-
lem can be mitigated by techniques such as declustering
the data and parity, our preferred approach is to stripe a
larger data block across all data devices. This avoids both
the problem of the parity device being a bottleneck, and the
further problem of updates to individual devices forcing an
access to the parity device. When implemented, a large
block update becomes an operation that always results in a
single access to all devices involved. So while SSPiRAL
implementations would have a performance impact com-
pared to straightforward mirroring, it can be largely miti-
gated. The benefit of employing a SSPiRAL scheme be-
comes apparent when we look note from Figure 12 that the
worst of the evaluated SSPiRAL schemes offers more than
one hundred times less likelihood of failure than the best
of the equivalent mirrored schemes. It is also interesting
to see how increasing thex-order, from a simple pairwise
parity, to a three-way parity, reduces the likelihood of fail-
ure by a further hundred times. These differences become
more pronounced and impressive as the period of interest
is increased. While the likelihood of data loss over a hun-
dred years may seem like an excessive observation period
for a particular storage system, it is not an unreasonable
expectation when considering archival applications. Over
a period of a hundred years, and assuming a fifty thousand
hour MTBF, the likelihood of data loss for the SSPiRAL
layouts is almost ten thousand times less than the equiva-
lent mirrored schemes.

As the MTBF increases, whether due to the use of more
reliable hardware, or building upon nodes that are them-
selves fault-tolerant, the overall likelihoods of data loss are
reduced, but we see an even more pronounced difference
between the SSPiRAL and mirrored schemes. At its most
extreme, the SSPiRAL layouts are over a million times less
likely to suffer data loss. But as repair times are decreased,
we see this difference being much less pronounced. While
different real-world scenarios would result in different re-
pair times, the SSPiRAL layouts can be considered less af-
fected by increases in these repair times than their mirrored
counterparts.

From Figure 12 and Figure 13 we can see that the lowest
likelihoods of data loss are achieved by the layouts with the
largest number of participants in a parity computation. The
x-order of a SSPiRAL layout has a greater impact on re-
ducing the likelihood of data loss than decreasing the num-
ber of nodes. As the MTBF is increased,e.g., by using
more reliable sub-components or building larger storage
farms from redundant disk arrays, the impact of employ-
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Figure 13. Data loss probability for SSPiRAL and Mir-
rored layouts with equivalent space efficiency and a 30
hour repair time.



ing SSPiRAL over simple mirroring schemes is even more
pronounced.

4. Related Work

Like most of the original RAID layouts [5, 19], SSPi-
RAL is based solely on parity computations, and like more
recent efforts [1,3,4,10] SSPiRAL aims to survive the fail-
ure of multiple disks, and to achieve this goal efficiently.
SSPiRAL diverges from prior efforts in its definition of ef-
ficiency. Unlike row-diagonal parity [4], SSPiRAL does
not pursue the goal of optimizing capacity usage, and yet
maintains the goals of optimal computational overhead and
ease of management and extensibility. SSPiRAL replaces
the goal of surviving aspecificnumber of disk failures with
the goal of surviving the most disk failures possible within
the given resource constraints. The basic SSPiRAL lay-
out discussed above can be described as an application of
Systematic codes [20] across distinct storage devices. Sim-
ilarly, such basic SSPiRAL layouts, in their limiting of the
number of data sources, are similar to the fixedin-degree
andout-degreeparameters in Weaver codes [7] and the ear-
lier B̂ layouts [22]. Weaver and̂B are the most similar
schemes to SSPiRAL, and all are parity-based schemes us-
ing principles first applied in erasure codes for communica-
tions applications such as the Luby LT codes, and the later
Tornado and Raptor variants [14, 15, 21]. These codes all
belong to the class of erasure codes known as low-density
parity-check (LDPC) codes. They distinguish themselves
from earlier Reed-Solomon and IDA codes by being more
efficient to compute at the expense of space utilization.
SSPiRAL differs from these prior applications of erasure
codes in two major respects: it promises to be more ef-
ficient to maintain, and it is implemented with a direct
consideration of available system resources, and departing
from the requirement to tolerate only a fixed number of de-
vice failures. More closely related is the work of Hafner
and Rao [8] that spoke to the MTTDL of non-MDS erasure
codes (which would include codes such as SSPiRAL), and
the scheme for surviving multiple drive failures patented
by Wilner which is similar to the pairwise parity (x-order
2) SSPiRAL layouts [23].

5. Conclusion

We have presented the first complete evaluation of the
reliability of SSPiRAL storage arrays consisting ofn data
disks andn parity disks where each parity disk contains
the exclusive or (XOR) of two or three of the n data disks.
While we assumed a simple failure rate for devices, and a
more precise result might be obtained with a more com-
plex and failure distribution, our analysis avoided the in-
accuracies introduced by overly simplistic MTTDL results.

Unlike previous studies, our results reflect the actual evo-
lution of each storage array over its actual lifetime. Our
results indicate that the three SSPiRAL schemes we con-
sidered were much more reliable than mirrored disk arrays
with the same overhead. For instance, our 3+3 SSPiRAL
organization was found to be 10,000 times less likely to fail
than a mirrored array consisting of three pairs of disks. We
obtained even better results with a 4+4 SPPiRAL organi-
zation where each parity disk contains the XOR of three of
the four data disks as it was found to be one million times
less likely to fail than a mirrored array consisting of four
pairs of disks.

Directions for future work include investigating more
complex SSPiRAL schemes, including schemes with vari-
ablex-order, and letting SSPiRAL arrays react to disk fail-
ures by dynamically reorganizing themselves while await-
ing the replacement of the failed disk(s). When applied to
arrays of mirrored disks, the technique was found to pro-
vide significant increases in system reliability while toler-
ating longer disk repair times [18].

One possible extension of this work is to consider alter-
native device failure models, and in particular to abandon
the assumption of independent device failures. While this
assumption simplified the analytical model, it did not favor
SSPiRAL over mirroring, as we have been very conserva-
tive in our comparison. It is possible to further improve
the estimated reliability of a SSPiRAL layout if we were to
exploit knowledge of the expected failure rates of individ-
ual devices. Such expected values need not be precise and
can be based on SMART information, the age of a device,
the rate and number of power cycles it has experienced, or
the state of other devices from the same manufacturer or
production batch. The ability to classify devices into two
or more classes based on their relative likelihood of failure
would allow SSPiRAL layouts to assign the more failure-
prone devices to less critical nodes, thereby improving the
overall reliability of the layout compared to schemes that
assume homogeneity and independence among devices. In
this paper we have assumed no such advantage for SSPi-
RAL layouts. Further future work can include the exploita-
tion of heterogeneity in SSPiRAL layouts for purposes be-
yond simply improving reliability. With the availability of
multiple paths to reconstruct desired data, it is possible to
use SSPiRAL layouts as a means to reduce overall disk ac-
tivity, thereby offering opportunities to improve bandwidth,
load balancing, or power savings. These goals potentially
conflict, and the best mechanism to achieve them is still
under investigation.
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