
 1

Using Available Client Bandwidth to Reduce
the Distribution Costs of Video-on-Demand Services

(Extended Abstract)

Jehan-François Pâris
Department of Computer Science

University of Houston
Houston, TX 77204-3010
paris@cs.uh.edu

1. Introduction

One of the most important characteristics of video-on-
demand (VOD) services is their very high bandwidth
requirements. Assuming that the videos are in MPEG-2
format, each user request will require the delivery of
approximately six megabits of data per second. Hence, a
video server allocating a separate stream of data to each
request would need an aggregate bandwidth of six gigabits
per second to accommodate one thousand overlapping
requests. Servers capable of handling such bandwidths
require a costly infrastructure, typically consisting of a
large number of computing nodes linked by sophisticated
interconnection network.
This situation has led to numerous proposals aimed at
reducing the bandwidth requirements of VOD services.
These proposals can be broadly classified into two groups.
Proposals in the first group are said to be proactive because
they distribute each video according to a fixed schedule that
is not affected by the presence–or the absence–of requests
for that video. They are also known as broadcasting proto-
cols. Other solutions are purely reactive: they only transmit
data in response to a specific customer request. Unlike
proactive protocols, reactive protocols do not consume
bandwidth in the absence of customer requests.
Nearly all these proposals assume a clear separation of
functions between the server, which distributes the video,
and the customers, who watch it on their personal
computers or on their television sets. They are well suited
to commercial environments where the respective roles of
the service provider and its customers are well defined.
However they do not address the case of collaborative
video-on-demand services where customers could be
expected to contribute to the distribution of the video.
Similar arrangements already exist in peer-to-peer file
distribution systems. For instance, the BitTorrent system
[4] penalizes customers who are not willing to redistribute
the data they have already received.
Involving clients in the distribution process raises two
issues. First, most clients will only be willing to participate
in the video distribution process while they themselves are

watching that video. Second, home-based clients typically
have much lower upstream than downstream bandwidths:
while these clients might be able to download video data at
twice their video consumption rate, they might only be able
to forward video data at one fourth to one half that rate.
The video distribution protocol we present here addresses
these two issues: first it is a purely reactive stream tapping
protocol; second, it does not require clients to be able to
broadcast video data at the video consumption rate. As in
conventional stream tapping, our protocol requires the
server to start a new video broadcast whenever a client
cannot get enough video data by “tapping” a previous
broadcast of the same video. Unlike conventional stream
tapping, our protocol uses the previous client’s available
upstream bandwidth to reduce the amount of video data that
the server will still have to send to the clients that “tap” a
previous broadcast of the video. Our simulations indicate
that our protocol works best when clients can forward video
data at least half the video consumption rate. When this is
not the case, the best alternative is to involve at least two
previous clients in the retransmission.
The remainder of the paper is organized as follows. Section
2 reviews previous work on reactive video distribution
protocols. Section 3 introduces our stream tapping protocol
and section 4 discusses its performance, while Section 5
discusses possible extensions. Finally Section 6 has our
conclusions.

2. Previous Work

Two of the earliest reactive distribution protocols are
batching and piggybacking. Batching [5] reduces the
bandwidth requirements of individual user requests by
multicasting one single data stream to all customers who
request the same video at the same time. Piggybacking [9]
adjusts the display rates of overlapping requests for the
same video until their corresponding data streams can be
merged into a single stream. Consider for instance, two
requests for the same video separated by a time interval of
three minutes. Increasing the display rate of the second
stream by 10 percent will allow it to catch up with the first
stream after 30 minutes.

 2

Customer a

Customer b

Customer c

Stream from server

β

Stream from customer a

Stream from server

β

Figure 1: How chaining works

Chaining [13] improves upon batching by constructing
chains of clients such that (a) the first client in the chain
receives its data from the server and (b) subsequent clients
in the chain receive their data from their immediate prede-
cessor. As a result, video data are actually “pipelined”
through the clients belonging to the same chain. Since
chaining only requires clients to have very small data buff-
ers, a new chain has to be restarted every time the time
interval between two successive clients exceeds the capac-
ity β of the buffer of the first client. Figure 1 shows three
sample customer requests. Since customer a is the first
customer, it will get all its data from the server. Since
customer b arrives less than β minutes after customer a, it
can receive all its data from customer a. Finally customer c
arrives more than β minutes after customer a and must be
serviced directly by the server.
Stream tapping [2, 3], also known as patching [11],
assumes that each customer set-top box has a buffer capable
of storing at least 10 minutes of video data. This buffer will
allow the set-top box to “tap” into streams of data on the
server originally created for other clients, and then store
these data until they are needed. In the best case, clients
can get most of their data from an existing stream.
In particular, stream tapping defines three types of streams.
Complete streams read out of a video in its entirety. These
are the streams clients typically tap from. Full tap streams
can be used if a complete stream for the same video started

β≤∆ minutes in the past, where β is the size of the client

buffer, measured in minutes of video data. In this case, the
client can begin receiving the complete stream right away,
storing the data in its buffer. Simultaneously, it can receive
the full tap stream and use it to display the first ∆ minutes
of the video. After that, the client can consume directly
from its buffer, which will then always contain a moving ∆-
minute window of the video. Stream tapping also defines
partial tap streams, which can be used when ∆ > β. In this
case clients must go through cycles of filling up and then
emptying their buffer since the buffer is not large enough to
account for the complete difference in video position.
To use tap streams, clients need only receive at most two
streams at any one time. If they can actually handle a higher

Complete streamCustomer a

Useful part of complete streamCustomer b

Tap

∆b ∆b

Useful part of complete streamCustomer c

Tap Tap

Useful part of previous tap

∆c ∆c

Figure 2: How stream tapping works

bandwidth than this, they can use an option of the protocol
called extra tapping. Extra tapping allows clients to tap
data from any stream on the VOD server, and not just from
complete streams. Figure 2 shows some sample customer
requests. Since customer a is the first customer, it is
serviced by a complete stream, whose duration is equal to
the duration D of the video. Since customer b arrives b∆

minutes after customer a, it can share D – b∆ minutes of

the complete stream and only requires a full tap of dura-
tion b∆ minutes. Finally customer c can use extra tapping

to tap data from both the complete stream and the previous
full tap, and so its service time is smaller than c∆ .

Eager and Vernon's dynamic skyscraper broadcasting
(DSB) [6] is another reactive protocol based on Hua and
Sheu’s skyscraper broadcasting protocol [10]. Like sky-
scraper broadcasting, it never requires the STB to receive
more than two streams at the same time. Their more recent
hierarchical multicast stream merging (HMSM) protocol
requires less server bandwidth than DSB to handle the same
request arrival rate. Its bandwidth requirements are indeed
very close to the upper bound of the minimum bandwidth
for a reactive protocol that does not require the STB to
receive more than two streams at the same time, that is,

+

2
2 1ln

η
η iN

where 2/)51(2 +=η and Ni is the request arrival rate.

Selective catching [8] combines both reactive and proactive
approaches. It dedicates a certain number of channels for
periodic broadcasts of videos while using the other channels
to allow incoming requests to catch up with the current
broadcast cycle. As a result, its bandwidth requirements are
O(log(λι Li)) where λι is the request arrival rate and Lι the
duration of the video.

 3

From serverClient a

From client aClient b

From client bClient c

To a To b To cSERVER

From server

From server

∆t

∆t’

Figure 3: How the cooperative video distribution protocol
works.

Finally the cooperative video distribution protocol [12]
requires clients to forward the video they are watching to
the next client. As shown on Figure 3, the video server will
only have to distribute parts of a video that no client can
forward. The protocol works best when clients have suffi-
cient buffer capacity to store t he previously viewed portion
they are watching until they are have finished watching it.
As chaining, it assumes that clients can retransmit data at
the video consumption rate.

3. Our Protocol

We wanted to develop a video distribution protocol that
allowed clients to participate in the video distribution proc-
ess even if they could not retransmit data at the video
consumption rate. We thus assumed that:

1. Clients would be able to receive video data at twice
their video consumption rate;

2. Clients would only be able to forward video data at a
rate equal to fraction α of the same video consump-
tion rate;

3. Clients would not have to forward video data after
they have finished watching that video;

4. Clients should have enough buffer space to store the
previously viewed portion of the video they are
watching until they have finished watching it.

As we can see, our protocol makes few demands on the
transmission capabilities of the client hardware. In contrast,
it requires client buffers capable of storing an entire video,
that is, several gigabytes of compressed video data. Two
factors motivated this choice. First, the diminishing cost of
every kind of storage let it be RAM, flash memory or disk
drives, makes this requirement less onerous today than it
would have been a few years ago. Second, we expected
many clients to keep the previously viewed portion of the
video they are watching in their buffer in order to provide
the equivalent of a VCR rewind feature.

From serverLast full stream

Tapping

Last client

From client

Current client

∆t
From server

∆t

Tc

Figure 4: How a full tap streams are shared by the server
and the previous customer when Τc > D – ∆t and the last
client terminates before having sent its share of the tap
stream of the current client.

Our protocol is a fairly straightforward implementation of
stream tapping without extra tapping as it would have
required clients able to receive videos at three times the
video consumption rate. It only differs from the original
stream tapping protocol in the way it handles tap streams.
While tap streams originally were the sole responsibility of
the server, this task is now shared by the server and the
previous client. Consider two consecutive requests for a
video of duration D. Let Τc denote the time elapsed since
the start of the last complete stream and ∆t represent the
time interval between the two requests:

1. If Τc ≥ D, the second client will be unable to tap any
data from the last complete stream. As in the origi-
nal stream tapping protocol, the server will then start
a new complete stream.

2. If Τc < D, there is an overlap between the current
request and the last complete stream. As in the origi-
nal stream tapping protocol, the server will then
evaluate whether it would be more advantageous to
keep tapping from the last complete stream or to start
a new one. If the server decides to keep tapping
from the last complete stream, it will have to provide
the second client with a full tap stream of duration
Τc. Two alternatives must now be considered:

a. If Τc ≤ D – ∆t, the previous customer will
provide a fraction α of the full tap stream and
the server the remaining 1 – α fraction.

b. If Τc > D – ∆t, the previous customer will
finish watching the video before being able to
transmit all its share of the full tap stream. As
seen on Figure 4, the previous client will only
be able to transmit a fraction

Tc

tD ∆ - α

of the full tap stream with the server transmit-
ting the remainder of the stream.

 4

From serverClient a

Tapping

Client b

From client b

Client c

From client a∆t

∆t’

Tapping

From server

From server

Figure 5: How the full tap streams are distributed by the
server and the previous customer.

Consider for instance how the protocol would handle the
three requests displayed in Figure 5. The first request to the
video will be entirely serviced by a complete stream. The
second request will get the last D – ∆t minutes of the video
by tapping client a’s stream and the first ∆t minutes from a
full tap stream of duration ∆t. A fraction α of this stream
will be sent by customer a and the remaining 1 – α fraction
will come from the server. Assuming that the server
decides not to start a new complete stream for customer c,
that customer would get the last D – (∆t + ∆t’) minutes of
the video by tapping client a’s stream and the first ∆t + ∆t’
minutes from a full tap stream of the same duration. Since
customer b will finish watching the video before the end of
that stream, t will only able to send its share of the first
D – ∆t’ minutes of the tap stream and the server will have
to pick up the rest.
One last issue to consider is when to halt tapping from the
current complete stream and start a new one. Consider the
group of requests sharing the same complete stream. The
lowest possible server workload will be achieved by mini-
mizing the average request service time of the group.
When a group starts and only has one request, the service
time of that request will be equal to the duration of a
complete stream, that is, the duration D of the video.
Adding more requests to the group will reduce the average
request service time of the group as long as the full tap
streams remain short. At some moment, this will not be
true anymore and adding one extra request to the group
could actually increase its average request service time. It
will then be time to start a new group.
To implement this criterion, our protocol keeps track of the
minimum average request service time of all requests
sharing the same complete stream. Before adding a new
request to a group, it computes what would be the new
average request service time of the group if the new request
was added to the group. Should this new average request
service time be lesser than or equal to the minimum average
request service time of the group, our protocol adds the new
request to the group; otherwise, it starts a new group.

0

1

2

3

4

5

6

7

8

9

10

1 10 100 1000

Requests/hour

B
an

d
w

id
th

 (
ch

an
n

el
s)

New ST α =0
New ST α =0.25
Stream Tapping
New ST α =0.5
New ST α =0.75
New ST α =1

Figure 6: Server bandwidth requirements of the new stream
tapping protocol. The dotted curve refers to a conventional
stream tapping protocol with extra tapping.

This criterion is similar but not identical to that used by
Carter and Long [2, 3].

3.1 Fault-Tolerance Issues

To operate correctly, our protocol requires all clients to
forward some of the video data they have received to the
next customer requesting the video. As a result, any client
failure will deprive all subsequent customers from their
video data. This is clearly not acceptable and requires a
mechanism allowing the protocol to handle client failures
either resulting from an equipment malfunction or from a
voluntary disconnect.
There is a simple solution to the problem. Let us return to
the scenario of Figure 5 where client c receives almost half
of its tap stream from client b, who receives almost half of
its tap stream from client a. Any failure of client b will
immediately affect the correct flow data to client c. Fortu-
nately for us, a failure of client b will also free client a from
its obligation to send data to client b a fraction of its tap
stream, thus freeing enough upstream bandwidth to allow
client a to take over the role of client b and send the
missing video data to client c. Since client a has no
predecessors, its failure would be handled by the server
alone.
Making the protocol fault-tolerant will thus require provid-
ing each client with the addresses of the last two or three
clients that have requested the video. Whenever a client
detects a failure of its immediate predecessor, it will thus be
able to notify its next to last predecessor and its server and
request them to redirect their data flows. Once that next to
last predecessor and the server have completed this task,
everything will happen as if the client that failed never
requested the video.

 5

0

2

4

6

8

10

12

14

16

1 10 100 1000

Requests/hour

B
an

d
w

id
th

 (
ch

an
n

el
s)

New ST α =1

New ST α =0.75

New ST α =0.5

New ST α =0.25

New ST α =0

Stream Tapping

Figure 7: Network bandwidth requirements of the new
stream tapping protocol.

4. Performance Evaluation

Figure 6 displays the server bandwidth requirements of our
new stream tapping protocol for selected values of α and
request arrival rates varying between one and one thousand
requests per hour. All bandwidths are expressed in multi-
ples of the video consumption rates. We assumed that the
server was broadcasting a two-hour video and that request
arrivals could be modeled by a Poisson process.
In addition, the dotted red line represents the server band-
width requirements of the original stream tapping protocol
with extra tapping. Let us note that the comparison
between the two protocols is not absolutely fair since extra
tapping requires clients capable of receiving video data at
three times the video consumption rate, while our protocol
only requires clients capable of receiving video data at two
times that rate.
As we can see, our new stream tapping protocol outper-
forms conventional stream tapping whenever clients can
forward data at more than half the video consumption rate,
that is, when α > 0.5. As can expected, the lowest server
bandwidth requirements are obtained when α = 1 because
most, if not all, tap streams are then handled directly by the
clients without any server intervention.
This excellent performance comes however at a stiff price.
First, it requires clients capable of forwarding data at the
video consumption rate, which excludes most home-based
clients. Second, the very low server bandwidth require-
ments of the protocol are only achieved because all tap
streams are now handled by the clients. Since each indi-
vidual tap stream is dedicated to a single client, the network
bandwidth requirements of the protocol become roughly
proportional to the client request arrival rate. As seen on
Figure 7, the network bandwidth requirements of our
stream tapping protocol increase more rapidly than those of
the original stream tapping protocol when the client request

arrival rate exceeds ten requests per hour. This phenome-
non can be explained in part by the fact that our protocol
does not allow extra tapping. Another important factor is
the way the server decides when to start a new complete
stream. Recall that the server starts a new complete stream
whenever adding one additional request to the group would
increase the average service time of the requests in the
group. Whenever α is very close to one, adding one extra
request to any existing group will have a negligible impact
on the server workload. As a result the server will not start
a new group until it becomes physically impossible to tap
data from the current complete stream. The very low server
bandwidths result from the fact that the server will never
start a new complete stream before the end of the previous
one. Thus the average duration of a tap stream will be
equal to half the duration of the video. Hence the average
network bandwidth required to distribute the video will be
roughly equal to one half the bandwidth required by a
scheme allocating a new complete stream to each video
request.

5. Possible Extensions

In this section, we present several options for improving the
performance of our stream tapping protocol either by
making a more efficient use of the available client band-
width or by reducing the network bandwidth requirements
of the protocol.

5.1 Involving several clients in the distribution
of tap streams

In its current state, our protocol only involves the previous
client in the transmission of tap streams. As a result, previ-
ous clients whose upstream bandwidth is much lower than
the video consumption rate would leave most of the tap
stream transmission workload to the server.
A better solution would be to involve several recent clients
in the transmission of tap streams. For instance, four clients
capable of transmitting data at a rate equal to one fourth of
the video consumption rate could transmit the whole tap
stream without any server intervention.

5.2 Allowing extra tapping

Allowing extra tapping would let several clients share a
common tap stream. This would greatly reduce the network
bandwidth requirements of the protocol but would require
clients capable of:

1. receiving data at more than twice the video
consumption rate, and

2. multicasting data to other clients, possibly through
user-level multicasting [1, 14].

 6

5.3 Controlling network bandwidth usage

The criterion that is now used by the server to decide when
it should start a new complete stream should take into
consideration the impact of its decision on the network
bandwidth requirements of the protocol. We are currently
investigating several possible options.

6. Conclusions

Almost all existing distribution protocols for video-on-
demand assume a clear separation of functions between the
server, which distributes the videos, and its clients, who
watch them. Those that do not make this assumption
require client machines capable of forwarding video data at
the video consumption rate, which is not true for most
home-based clients.
We have presented a stream tapping protocol that involves
clients in the video distribution process. Our protocol is
tailored to environments where client machines are able to
download video data at twice the video consumption rate
but can only forward video data at a fraction of that rate.
As in conventional stream tapping, our protocol requires the
server to start a new video broadcast whenever a client
cannot get enough video data from a previous broadcast of
the same video. Our protocol uses the available upstream
bandwidth of the previous client to reduce the amount of
video data that the server needs to send to other clients.
Our simulations indicate that our protocol works best when
clients can forward video data at least at one half the video
consumption rate.
More work is still needed to develop techniques that would
make a more efficient use of the available client bandwidth
and reduce the network bandwidth requirements of the
protocol. The most promising avenue seems to be involv-
ing several recent clients in the transmission of tap streams.

References

[1] Banerjee S., C. Kommareddy, K. Kar, B.
Bhattacharjee, S. Khuller Construction of an effi-
cient overlay multicast infrastructure for real-time
applications. Proc. IEEE INFOCOM Conf., San
Francisco, pp. 1–11. April 2003.

[2] Carter, S. W. and D. D. E. Long. Improving video-
on-demand server efficiency through stream tapping.
Proc. 5th Int’l. Conf. on Computer Communications
and Networks, pp. 200–207, Sep. 1997.

[3] Carter, S. W. and D. D. E. Long. Improving band-
width efficiency on video-on-demand servers.
Computer Networks and ISDN Systems, 30(1–2):99–
111.

[4] Cohen, B. Incentive Build Robustness in Bit Tor-
rent. Proc. Workshop on Economics of Peer-to-Peer
Systems, Berkeley, CA, 2003.

[5] Dan, A., P. Shahabuddin, D. Sitaram and D.
Towsley. Channel allocation under batching and
VCR control in video-on-demand systems. Journal
of Parallel and Distributed Computing, 30(2):168–
179, Nov. 1994.

[6] Eager, D. L. and M. K. Vernon. Dynamic skyscraper
broadcast for video-on-demand. Proc. 4th Int’l
Workshop on Advances in Multimedia Information
Systems, pp. 18–32, Sep. 1998.

[7] Eager, D. L., M. K. Vernon and J. Zahorjan. Mini-
mizing bandwidth requirements for on-demand data
delivery. Proc. 5th Int’l Workshop on Advances in
Multimedia Information Systems, Oct. 1999.

[8] Gao, L., Z.-L Zhang and D. Towsley. Catching and
selective catching: efficient latency reduction tech-
niques for delivering continuous multimedia streams.
Proc. of the 1999 ACM Multimedia Conf., pp. 203–
206, Nov. 1999.

[9] Golubchik, L., J. Lui, and R. Muntz. Adaptive
piggybacking: a novel technique for data sharing in
video-on-demand storage servers. ACM Multimedia
Systems Journal, 4(3):140–155, 1996.

[10] Hua, K. A. and S. Sheu. Skyscraper broadcasting: a
new broadcasting scheme for metropolitan video-on-
demand systems. Proc. ACM SIGCOMM '97 Conf.,
pp. 89–100, Sept. 1997.

[11] Hua, K. A., Y. Cai, and S. Sheu. Patching: a multi-
cast technique for true video-on-demand services.
Proc. 6th ACM Multimedia Conf., pp. 191–200, Sep.
1998.

[12] Pâris, J.-F. A Cooperative Distribution Protocol for
Video-on-Demand. Proc. 6th Mexican Int’l Conf. on
Computer Science, pp. 240–246., Sep. 2005

[13] Sheu, S., K. A. Hua, and W. Tavanapong. Chaining:
A Generalized Batching Technique for Video-on-
Demand Systems. Proc. IEEE Int'l Conf. on Multi-
media Computing and Systems, pp. 110-117, June
1997.

[14] Xu, Z., Xu, C. Tang, S. Banerjee, and S.-J. Lee.
RITA: Receiver Initiated Just-in-Time Tree Adapta-
tion for Rich Media Distribution. Proc. 13th Int’l
Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video, pp. 50–59, June
2003.

