
A Highly Available Replication Control Protocol
Using Volatile Witnesses

Jehan-Franc¸ois Pâris

Department of Computer Science
University of Houston

Houston, TX 77204-3475

ABSTRACT

We propose a highly available replication control protocol
tailored to environments where network partitions are
always the result of a gateway failure. Our protocol
divides nodes holding replicas intolocal nodesthat can
communicate directly with each other andnon-local
nodesthat communicate with other nodes through one or
more gateways. While local nodes are assumed to remain
up to date as long as they don’t crash, non-local nodes are
required to maintain a volatile witness on the same net-
work segment as the local nodes and must poll this wit-
ness before answering any user request. To speed up
recovery from a total failure, each site maintains a list of
replicas that were available the last time the data were
updated or a replica recovered from a crash.

Markov models are used to compare the perfor-
mance of our protocol with that of the dynamic-linear vot-
ing protocol (DLV), which is the best replication control
protocol tolerating communication failures. We also
observe that volatile witness placement has a strong
impact on data availability and gateway nodes are the best
location for them.

Keywords: replicated data, data consistency, replication
control protocols, available copy protocols, witnesses.

1. INTRODUCTION

Many distributed systems maintain multiple copies—or
replicas—of some critical data to increase the availability
of the replicated data and to reduce read access times.
Managing multiple replicas of the same data presents
however a special challenge as site failures and network
partitions are likely to occasion inconsistent updates.
Specialreplication control protocolshave been devised to
avoid this occurrence and guarantee that a consistent view
of the replicated data is always presented to their users.

An ideal replication control protocol should satisfy
two criteria: First, it should not require more than two
replicas to provide a satisfactory data availability. Sec-
ond, it should provide inexpensive reads. There are pro-
tocols meeting these two criterias. They are the so-called
available copy(AC) protocols. They provide an excellent
data availability with just two replicas [2, 7] and guaran-
tee that all available replicas always remain up to date.

Hence data can then be read from any available copy.
Unfortunately, AC protocols do not guarantee the consis-
tency of the replicated data in the presence of network
partitions. AC protocols are said to beoptimisticbecause
they implicitly assume that inconsistent updates resulting
from network partitions will either be infrequent or easy
to resolve. There are many protocols that guarantee the
consistency of replicated data across network partitions
but these protocols require 2n + 1 servers in order to guar-
antee access to the replicated data in the presence ofn
simultaneous server failures [1].

We present here a new replication control protocol
tailored to environments where network partitions can
only occur at a few well-defined partition points and are
always the result of a gateway failure. Our protocol
implements the same ‘‘write-all/read-one’’ rule as the
conventional Available Copy (AC) protocols [1-2].
Unlike other AC protocols, our protocol divides nodes
holding replicas intolocal nodesthat can communicate
directly with each other andnon-local nodesthat commu-
nicate with other nodes through one or more gateways.
While local nodes are assumed to remain up to date as
long as they don’t crash, non-local nodes are required to
maintain a volatile witness on the same network segment
as the local nodes and need to interrogate this witness
before answering any user request.

The remainder of this paper is organized as follows.
Section 2 reviews relevant work. Section 3 presents our
new replication control protocol and section 4 discusses
its performance. Section 5 introduces a few variants and,
finally, section 6 presents our conclusions.

2. RELEVANT WORK

Our protocol is based on three fundamental concepts,
namely available copy protocols, volatile witnesses and
the notion of an ‘‘aggregate site.’’ We review them
briefly.

2.1. Available Copy Protocols

Available copy(AC) protocols [1-2] provide an efficient
means for maintaining file consistency when network par-
titions are known to be impossible. The write rule for all

1

AC protocols is simple: write toall available copies.
Since all available copies receive each write request, they
are kept in a consistent state: data can then be read from
any available copy. When a replica recovers after a fail-
ure, it can repair from any node holding an available
replica. Recovering from a total failure requires finding
the node that crashed last and marking its replica avail-
able [14].

The original AC protocol [1-2] assumed instanta-
neous detection of failures and instantaneous propagation
of this information. Since then, two protocols that do not
rely on these assumptions have been devised [7]. The
simpler of these,naive available copy, maintains no sys-
tem state information. The other protocol,optimistic
available copy, maintains system state information only at
write and recovery time. Optimistic available copy only
approaches the performance of the original protocol since
the failure information may be out-of-date, affecting
recovery from total failure. But, as the analysis has
shown [7], its performance is nearly indistinguishable
from that of the original protocol for typical access rates.

Note that the correctness of all AC protocols
depends on the fact that every available replica receives
all update requests. We need therefore to guarantee that a
node that misses a message because of a buffer overflow
will always detect that occurrence and mark its replica
unavailable until it can check its version number.

2.2. Volatile Witnesses

Witnessesare very small entities that hold no data but
maintain enough information to identify the replicas that
contain what it believes to be the most recent version of
the data. Conceptually this information could be atimes-
tampcontaining the time of the latest update. Since it is
very hard to synchronize clocks in a distributed system,
this timestamp is normally replaced by aversion number,
which is an integer incremented each time the data are
updated.

Volatile witnesses are witnesses that do not main-
tain any kind of stable storage and are entirely stored in
volatile memory. Unlike conventional witnesses, these
witnesses are likely to be left in an incorrect state after a
node failure. They must therefore be prevented from par-
ticipating to elections until they can read the current status
of the replicated file. Because of their very small sizes,
volatile witnesses can be quickly regenerated every time
they become unavailable [8, 12].

2.3. Aggregate Sites

Aggregate siteswere introduced to simplify the evaluation
of the availability of replicated data whose replicas reside
on networks subject to communication failures [10]. The
technique is especially adapted to networks consisting of
Ethernets that cannot be partitioned and are linked by
gateways that can fail [13]. Figure 1 shows one example
of such networks: it contains three network segmentsDG,

G

D

A B C H

E

Figure 1: A Network with seven nodes and three
segments

GABCH and EH. G is the gateway betweenDG and
GABCH while H is the gateway betweenGABCH and
EH. Since gateways can fail without causing a total net-
work failure, such networks can be partitioned. The key
difference with conventional point-to-point networks is
that nodes that are on the same network segment will
never be separated by a partition.

Modeling the availability of replicated data having
replicas that can be separated by network partitions is a
complex task. Hence most studies of replication control
protocols neglect network partitions and assume a perfect
communication subnet. The aggregate site method oper-
ates by selecting first abackbonesegment which is nor-
mally the network segment containing the largest number
of replicas. It then replaces all replicas residing on other
network segments by aggregate sites that contain the node
holding the replica and all the gateways through which
the replica communicates with the replicas on the back-
bone segment. Assuming that the segmentGABCH was
selected as backbone segment, a replica located on node
E would be replaced by an aggregate site consisting of
nodeE and the gatewayH.

Each aggregate site is assumed to remain opera-
tional as long as the node holding the replica is opera-
tional and can communicate with the nodes on the back-
bone segment. This means that the aggregate site {E, H }
would remain operational as long asboth EandH remain
operational. Once all replicas that are not located on the
backbone segments are replaced by their aggregate sites,
the original network can be replaced by an equivalentpar-
tition-free network containing the nodes on the backbone
segment and the aggregate sites corresponding to all other
nodes.

It should be pointed out that the method tends to
underestimate the availability of the replicated data
because it assumes that non-backbone that cannot com-
municate with the nodes on the backbone segment do not
contribute to the availability of the replicated data. [10]

3. OUR PROTOCOL

Consider again the network of Figure 1 and assume it
contains a replicated fileR with two replicasR1 and R2.

2

Assume thatR1 is located on nodeA while R2 is located
on nodeB. Since the two nodes are on the same network
segmentGABCH, the two replicas can be managed by an
AC protocol without risking any inconsistent updates.
Should a higher level of data availability be required, a
third replica R3 could be added on nodeC. The repli-
cated data would then remain available as long as at least
one of the three nodes holding one of the replicas remains
operational.

LocatingR3 on nodeD would have a very different
effect. SinceD is not on segmentGABCH, a failure of
gatewayG could preventR3 from communicating with
R1 andR2. To guarantee the consistency of the replicated
data, we would have to turn to a voting protocol, which
would deliver alower data availability than the AC proto-
col did with the two original replicas. In other words,
adding an extra replica on siteD would actually lower the
availability of the replicated data. This would be true for
protocols such as Weighted Voting [4], Dynamic Voting
[3] and Dynamic-Linear Voting [5] or even Voting with
Ghosts [11, 13].

We propose an alternative approach that does not
rely on quorum consensus to maintain the data consistent
across network partitions. Our protocol divides nodes
holding replicas intolocal nodesthat can communicate
directly with each other andnon-local nodesthat commu-
nicate with other nodes through one or more gateways.
Local nodes are assumed to remain up to date as long as
they are operational since they will directly receive all
updates. Non-local nodes may miss updates and are
therefore required to maintain a witness on the same net-
work segment as the local nodes. This witness will main-
tain aversion numberthat is incremented every time the
replicated file is updated. Whenever a non-local replica
wants to verify that it is still up to date, it only needs to
compare its own version number with that recorded by the
witness.

Our new write rule would thus be: write toall avail-
able replicas and toall available witnesses as long as
there is at least one available local replica or one non-
local replica and one available witness having identical
version numbers. Data can then be read fromany avail-
able local replica or fromany pairconsisting ofonenon-
local replica andone available witness having identical
version number.

3.1. Handling Node Failures

When a node holding a replica recovers from a failure, the
replica cannot become available again until it can com-
pare its version number with that of an available local
replica or a witness. If the version numbers do not match,
it must read the current state of the replicated data from
an available local replica or a non-local replica whose ver-
sion number matches that of one witness. A similar pro-
cedure also applies to volatile witnesses: a volatile wit-
ness recovering from a node failure will remain

unavailable until it can read the current version number
from an available local replica or an available witness.

From time to time, it may happen that all nodes
holding replicas fail simultaneously. This will somewhat
complicate the recovery since Two cases can happen
depending on the state of the volatile witnesses:

(a) If there is at least one available witness, recovering
replicas can compare their version numbers with
that of one of the remaining witnesses. If the two
values coincide, the replica is immediately returned
to the available state; otherwise it needs to wait for
the recovery of other replicas.

(b) If all witnesses have failed, the replicated file will
remain unavailable until the replicas that were the
last to become unavailable can communicate with
each other and compare their version numbers.

The simplest way to find these last available replicas is to
wait for the recovery ofall replicas. This is the strategy
used by the naive available copy protocol [7]. While
being extremely easy to implement, it does not provide
the highest possible data availability. We decided instead
to follow the strategy used by the optimistic available
copy protocol [7]. We associate with each replicaRi and
a was-availableset listing those copies that received the
most recent update. This set includes all replicas that
received the most recent write and all replicas that have
repaired fromRi since the last write.

Was-available sets can be maintained inexpensively
by ascertaining which replicas are accessible when the
replicated file is first accessed and by sending this infor-
mation along with the first write; the second write will
contain the set of replicas which received the first write
and so forth. By delaying the information in this way,
communication costs are minimized at the expense of
some increase in recovery time.

To find the last available replica, we compute the
closure of the was-available set with respect to the recov-
ering siteRi The closureof a was-available setWs, writ-
tenC* (Ws), is given by:

C* (Ws) =
n

i=0
∪ Ck(Ws)

whereCk(Ws) =
t ∈Ws

∪ Ck−1(Wt) andC0(Ws) = Ws.

There is an interesting interaction between the
method used to maintain was-available sets and our
reliance on volatile witnesses. Consider the replicated file
represented on Figure 2 (a). It consists of two replicasR1
and R2 respectively stored on the serversA andC and a
volatile witnessw on siteB. We assumeR1 to be a local
replica andR2 a non-local replica.

3

A

R1

B
w

G

C

R2

(a) Volatile Witness on NodeB

A

R1

B G
w

C

R2

(b) Volatile Witness on GatewayG

Figure 2: Two Replicas on Two Network Segments

Initially R1, R2 andw are all available and their three ver-
sions numbers are all equal to zero:

A B C
vA = 0 vB = 0 vC = 0

WA = { A, C } WC = { A, C}

Assume now the following scenario:

(1) nodeC fails;

A B (C)
vA = 0 vB = 0 (vC = 0)

WA = { A, C } (WC = { A, C})

(2) nodeA fails before any other update occurs;

(A) B (C)
(vA = 0) vB = 0 (vC = 0)

(WA = { A, C }) (WC = { A, C})

(3) nodeC recovers and its replica becomes available
again since its version number matches that of the
volatile witness;

(A) B C
(vA = 0) vB = 0 vC = 0

(WA = { A, C }) WC = { A, C}

(4) replicaR2 and witnessw record several updates;

(A) B C
(vA = 0) vB = k vk = k

(WA = { A, C }) WC = { C}

(5) nodesB andC both fail;

(A) (B) (C)
(vA = 0) (vB = ?) (vk = k)

(WA = { A, C }) (WC = { C})

(6) serverA recovers: its replica waits for C recovery.

A (B) (C)
(vA = 0) (vB = ?) (vk = k)

(WA = { A, C }) (WC = { C})

If replica R1 had kept its was-available set updated in real
time, it would notice at recovery time that it was the last
available replica of the data and would not wait for the
recovery ofR2 to mark itself available again. As a result,
the data would be left in an inconsistent state. One possi-
ble way to avoid this type of occurrence would be

(a) to include witnesses in was-available sets, and

(b) to require witnesses to maintain their own was-
available sets and to store them in stable storage.

This would have the obvious disadvantage of forcing the
witnesses to become non-volatile.

A better approach is to restrict was-available set
updates to write times and recovery times as the original
optimistic available copy protocol did [7]. Since replicas
can only be excluded from an available set because they
did not participate to an update, excluded nodes will
always be out of date and unable to recover by consulting
a volatile witness. ‘‘Dummy updates’’ are not excluded
but they must increment the version number of all replicas
and witnesses receiving the update.

3.2. A Last Optimization

From time to time, a non-local replica will become the
last available replica. Our protocol will detect the situa-
tion as soon as the replica gets updated because the was
available set of the replica will then become a singleton.
Once the protocol has noticed that a non-local replica is
the last available replica, it does not need to consult a
volatile witness to be sure that the replica has not missed
an update.

4

A

R1

B

R2

C
w

G

D

R3

(a) Volatile Witness on NodeC

A

R1

B

R2

C G
w

D

R3

(b) Volatile Witness on GatewayG

Figure 3: Three Replicas on Two Network Segments

The non-local replica can then safely become atem-
porary localreplica until another replica recovers from it.
Until then it can remain operational even if all volatile
witnesses have failed. Our write rule then becomes: write
to all available replicas and toall available witnesses as
long as there is at least

(a) one available local replica or

(b) one non-local replica and one available witness
having identical version numbers or

(c) one available replica whose was-available set is a
singleton.

Data can then be read from:

(a) anyavailable local replica or

(b) any pair consisting ofone non-local replica and
oneavailable witness having identical version num-
ber or

(c) any available replica whose was-available set is a
singleton.

G

C

R2

A

R1

B
w

H

D

R3

(a) Volatile Witness on NodeB

G

C

R2

A

R1

B
w

H

D

R3

(b) Volatile Witnesses on GatewaysG and H

Figure 4: Three Replicas on Three Network Segments

4. AVAILABILITY ANALYSIS

In this section we present an analysis of the availability
provided by our protocol and compare it to that afforded
by the dynamic-linear voting, which is the best pes-
simistic protocol that does not regenerate witnesses or
replicas.

Several definitions of the availability of a replicated
data have been proposed [6, 9]. We will assume here that
the availability of a replicated file is the stationary proba-
bility of the file being in a state permitting access.

Our model consists of a set of nodes with indepen-
dent failure modes that are connected via a network com-
posed of network segments linked by gateways or
repeaters. When a site fails, a repair process is immedi-
ately initiated at that site. Should several nodes fail, the
repair process will be performed in parallel on those
failed nodes. We assume that failures are exponentially
distributed with mean failure rateλ , and that repairs are
exponentially distributed with mean repair rateµ. The
system is assumed to exist in statistical equilibrium and to
be characterized by a discrete-state Markov process. The
assumptions that we have made are required for a steady-

5

11 10

01 00

λ

µ

λµ λµ

λ

µ

(a) State Transition Diagram for a Node and its Gateway

1 0

λ′ = 2λ

µ′ =
µ

1+ λ / 2 µ

(b) State Transition Diagram for the Equivalent
Aggregate Site

Figure 5: Aggregating a Node with its Gateway

state analysis to be tractable. They have been made in
most recent probabilistic analyses of the availability of
replicated data [5, 7, 9]. Purely combinational models
that do not require assumptions about failure and repair
distributions have been proposed [12-13] but these mod-
els cannot distinguish between live and comatose replicas.

We will consider six possible replica configurations.
They were selected to provide a good sample of all possi-
ble configurations with two or three replicas located on
two or three different network segments. Configurations
where all the replicas are on the same network segment
were specifically excluded because our protocol then
degenerates into a conventional Available Copy protocol.
The two replica configurations represented in Figure 2
consist of two replicasR1 and R2 located on two distinct
network segments.R1 is the local replica whileR2 is
non-local and needs to access the volatile witnessw to
check whether it is up to date. Configuration 2(a) has the
volatile witness located on one arbitrary node of the net-
work segmentABG while configuration 2(b) has the
volatile witness located on the gatewayG joining the two
segments. The two replica configurations of Figure 3
have three replicas on two segments:R1 and R2 are local
replicas whileR3 is non local. Configurations 3(a) and
3(b) only differ in the location of the volatile witnessw.
The two configurations of Figure 4 have both three repli-
cas on three network segment. Configuration 4(a) has one
volatile witnessw on the same segment as the local

replica R1 while configuration 4(b) has one volatile wit-
ness on each gateway.

The aggregate site method was used to model the
impact of network partitions on the availability of the
replicated data. Nodes holding non-local replicas were
replaced by equivalent aggregate sites consisting of the
node itself and its gateway to the network segment con-
taining the local replicas. This process is illustrated on
Figure 5. The state transition diagram 5(a) represents the
four possible states for the node and its gateway: they can
be both operational (state 11), one of them can be opera-
tional while the other is down (states 10 and 01) and both
can be down (state 00). Since the aggregate site is opera-
tional only when both the node and its gateway are opera-
tional, its aggregate failure and repair rates are respec-

tively λ′ = 2λ andµ′ =
µ

1 + λ / 2 µ
.

While the aggregate site method produces systems
of steady-state equations that are tractable by any good
symbolic algebra package, these systems of equations
tend to be rather large. We will therefore focus here on
the simplest configuration under study and present its
state transition diagram in some detail. As seen on Figure
6, the state transition diagram for configuration 2(b) has
seven states. Each state is identified by a pair <uv >
where:

(a) u is the state of the replicaR1, namely be available
(1), unavailable (0) or awaiting recovery (X);

(b) v is the state of the aggregate siteCG including R2
(1, 0 orX as forR1).

Thus state < 11 > represents the state of the replicated
data when both replicas are available. Note that the state
of the volatile witness is not explicitly represented since
that witness resides on the gatewayG, and gateway G has
been included in the aggregate siteCG.

Primed states identify the unavailable states where
R1 is the last available replica while double primed states
identify the unavailable states whereR2 was the last avail-
able replica. Hence the three available states are < 11 >,
< 10 > and < 01 >.

The availability of the replicated data is then given
by

A = p11 + p10 + p01

where puv is the probability that the system is in state
< uv >.

The availability figures for the six configurations
under study are summarized in Figure 7. All these avail-
abilities were computed for values of the failure rate to
repair rate ratioρ = λ / µ varying between 0 and 0.20. The
first value corresponds to perfectly reliable sites and the
latter to sites that are repaired five times faster than they
fail and have an individual availability of 0. 833.

6

0X’ 00’ 10 11 01 00’’ X0’’

λ′

µ′

λ

µ

λ′

µ′

λ

µ

λ′

µ′

λ

µ

µ′ µ

Figure 6: State Transition Diagram for Configuration 2(b)

One will notice first that all three configurations
having their witnesses on the gateway, namely configura-
tions 2(b), 3(b) and 4(b) provide much higher availabili-
ties than the corresponding configurations where the wit-
nesses are located on an arbitrary node. The explanation
of this phenomenon is simple: whenever a volatile witness
is located on the gateway linking a non-local node to the
local nodes, it is located within the aggregate site of that
node. As a result, the witness will always be operational
when the aggregate site (and its replica) are operational.
Hence, it appears to the non-local replica as being nearly
infallible.

The graph also shows the benefits of as many local
replicas as possible. Configurations 3(a) and 3(b), which
have two local nodes and one non-local node provides
much better data availabilities than configurations 4(a)
and 4(b), which have one local node and two non-local
nodes.

Our performance study would not be complete
without a comparison with extant replication control pro-
tocols. We decided to chose thedynamic-linear voting
protocol (DLV) [5] as benchmark because it is the best
pessimistic protocol that does not regenerate failed repli-
cas. The DLV protocol also has the major advantage of
providing an upper-bound for the availability of configu-
rations including witnesses: since witnesses do not con-
tain any information that a replica does not contain, we
know that the availability afforded byn replicas andm
witnesses will always be bounded by that of a replicated
file obtained by replicating them witnesses bymr full
replicas.

The results of this comparison are displayed on Fig-
ure 8, which was obtained by superimposing on Figure 7
the availability curves for a few replica configurations
managed by the DLV protocol. All these curves were
obtained by the same aggregate site method we used for
our AC protocol with witnesses. Configurations managed
the DLV protocols are identified by the number of replicas
on each network segment; thus 3+ 1 identifies a configu-
ration with three replicas on the backbone segment and
one replica on another one while 1+ 2 + 1 identifies a
configuration with two replicas on the backbone segment
and two replicas on two distinct segments.

Availability

Failure rate to repair rate ratio

.88

.90

.92

.94

.96

.98

1

.05 .10 .15 .20

2(b)

2(a)

3(a)

3(b)

4(a)

4(b)

Figure 7: Availabilities of Replicated Data Managed
By Our Protocol

(the labels refer to the numbers of the figures 2(a) to 4(b))

The graph emphasizes again the excellent perfor-
mance of configuration 3(a) and 3(b), which outperform
configurations with four replicas, namely 3+ 1 and
2 + 1 + 1, managed by DLV. Even when we take into
account the cost of the volatile witness, we find that three
replicas and one volatile witness outperform four full
replicas.

5. EXTENSIONS TO THE ACW PROTOCOL

Many enhancements to our ACW are possible. We briefly
discuss two of them.

7

Availability

Failure rate to repair rate ratio

.88

.90

.92

.94

.96

.98

1

.05 .10 .15 .20

2(b)

2(a)

3(a)

3(b)

4(a)

4(b)

DLV:2+1

DLV:1+1+1

DLV:1+2+1

DLV:3+1

Figure 8: Comparing Our Protocol with Dynamic-
Linear Voting

5.1. Replacing Volatile Witnesses by Conventional
Witnesses

One way to improve the performance of our proto-
col would be to replace the volatile witnesses by wit-
nesses that store their version numbers in stable storage.
This potential enhancement has the major drawback of
excluding all diskless nodes as potential hosts for wit-
nesses. Besides, slightly more robust witnesses are not
likely to provide a better data availability than that
achieved by locating volatile witnesses on the gateways.

5.2. Implementing Regenerable Witnesses

Another possible approach to increase the resiliency of
volatile witnesses would be to replace failed witnesses
instead of waiting for the recovery of the failed site. This
technique, known asregeneration[12], approximates the
protection provided by additional witnesses, but at a much
lower cost. Here too, the benefits of regeneration are not
likely to exceed those that can be achieved by locating
volatile witnesses on the gateways.

6. CONCLUSION

We have presented a pessimistic AC protocol tailored to
environments where network partitions are always the
result of a gateway failure. Our protocol divides nodes
holding replicas intolocal nodesthat can communicate
directly with each other andnon-local nodesthat commu-
nicate with other nodes through one or more gateways.

While local nodes are assumed to remain up to date as
long as they are operational, non-local nodes are required
to maintain a volatile witness on the same network seg-
ment as the local nodes and need to interrogate this wit-
ness before answering any user request. A major advan-
tage of our protocol is the fact that the data will remain
available as long as at least one local site or one non-local
site and a witness remain available. A preliminary
stochastic analysis of the protocol under standard Markov
assumptions has indeed confirmed its excellent perfor-
mance.

REFERENCES
[1] P.A. Bernstein, V. Hadzilakos and V. Goodman,Concur-

rency Control and Recovery in Database Systems, Addi-
son Wesley, Reading, (1987).

[2] P.A. Bernstein and N. Goodman, ‘‘An Algorithm for
Concurrency Control and Recovery in Replicated Dis-
tributed Databases,’’ACM TODS, Vol. 9, No. 4 (1984),
pp. 596-615.

[3] D. Davcev and W.A. Burkhard, ‘‘Consistency and Recov-
ery Control for Replicated Files,’’Proc. 10th ACM
SOSP, (1985) pp. 87-96.

[4] D.K. Gifford, ‘‘Weighted Voting for Replicated Data,’’
Proc. 7th ACM SOSP, (1979), pp. 150-161.

[5] S. Jajodia and D. Mutchler, ‘‘Enhancements to the Voting
Algorithm,’’ Proc. 13th VLDB Conf. (1987), pp.
399-405.

[6] S. Jajodia and D. Mutchler, ‘‘Integrating static and
dynamic voting protocols to enhance file availability,’’
Proc. 4th ICDE(1988) pp. 144-153.

[7] J.-F. Paˆris and D.D.E. Long ‘‘On the Performance of
Available Copy Protocols,’’Performance Evaluation,
Vol. 11 (1990), pp. 9-30.

[8] J.-F. Paˆris and D.D.E. Long, ‘‘Voting with Regenerable
Volatile Witnesses,’’ Proc. 7th ICDE, (1991), pp.
112-119.

[9] J.-F. Paˆris, ‘‘Voting with Witnesses: A Consistency
Scheme for Replicated Files,’’Proc. 6th ICDCS, (1986),
pp. 606-612.

[10] J.-F. Paˆris, ‘‘Evaluating the Impact of Network Partitions
on Replicated Data Availability,’’Proc. 2nd IFIP Work-
ing Conf. on Dependable Computing for Critical Appli-
cations, (1991), pp. 28-35.

[11] J.-F. Paˆris and Q.R. Wang, ‘‘On the Performance of Vot-
ing with Ghosts,’’Proc. Int. Symp. on Applied Computer
Sciences, Monnterrey (1993), pp. 75-84 (also available as
technical report UH-CS-93-08).

[12] C. Pu, J. D. Noe and A. Proudfoot, ‘‘Regeneration of
Replicated Objects: A Technique and its Eden Implemen-
tation,’’ IEEE TSE, Vol. SE-14, No. 7 (1988), pp.
936-945.

[13] R. van Renesse and A. Tanenbaum, ‘‘Voting with
Ghosts,’’Proc. 8th ICDCS, (1988), pp. 456-462.

[14] M.D. Skeen, ‘‘Determining the Last Process to Fail,’’
ACM TOCS, Vol. 3, No. 1 (1985), pp. 15-30.

8

