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ABSTRACT 

Most existing distribution protocols for video-on-
demand are tailored for a specific range of video access 
rates and perform poorly beyond that range.  We present 
a dynamic heuristic broadcasting protocol that performs 
as well as stream tapping with unlimited extra tapping at 
low video access rates and has the same average band-
width requirements as the best existing broadcasting 
protocols at high video access rates.  We also show how 
our protocol can handle compressed video and adapt 
itself to the individual bandwidth requirements of each 
video. 

1. INTRODUCTION 

In the current state of the technology, video-on-
demand (VOD) is too expensive to effectively compete 
against cheaper rivals such as pay-per-view and video-
cassette rentals.  The major reason behind the high cost of 
VOD  is the extremely high bandwidths it requires to 
service individual customer requests.  Handling such 
bandwidths would require major outlays for upgrading the 
existing communication infrastructure and building 
servers capable of handling the resulting I/O traff ic. 

This situation has resulted in many proposals aimed at 
reducing the bandwidth requirements of VOD services.  
Despite all their differences, most of these proposals fit 
into one of two groups.  The first group of proposals fol-
lows a reactive approach.  These proposals assume that 
the video server will merely answer individual customer 
requests without trying to anticipate them.  Whenever 
several user requests for the same video arrive in close 
succession, the server will t ry to transmit only once all the 
data that can be shared by two or more requests. 

Proposals in the second group take a different 
approach: they anticipate customer demand and distribute 
the various segments of each video according to a deter-
ministic schedule.  These distribution protocols are said to 
be proactive and are grouped under the common name of 
broadcasting protocols [20]. 

Each of these two approaches has its own advantages 
and disadvantages.  Reactive protocols perform much 
better than broadcasting protocols as long as the request 
arrival rate for a two-hour video remains below, say ten to 
fifteen requests per hour [15].  Because proactive proto-
cols follow a deterministic broadcasting schedule, their 
bandwidth requirements are not affected by the request 
arrival rate for a given video.  Hence they are the best 
protocols for distributing videos that are in very heavy 
demand. 

The real problem is that the frequency of requests for 
any given video is li kely to vary widely with the time of 
the day.  Child-oriented fare will always be in higher 
demand during the day and early evening hours than at 
night.  Conversely, videos appealing to older viewers are 
li kely to follow an opposite pattern.  No conventional 
distribution protocols can effectively handle the distribu-
tion of these videos.  While reactive protocols will 
perform very well when the video is in low demand, they 
run the risk of overloading the server when the video is in 
high demand.  On the contrary, broadcasting protocols 
will perform very well when the video is in high demand 
but will waste a large fraction of their bandwidth in all 
other cases. 

One possible solution to this problem is to design 
better reactive protocols that can handle high request 
arrival rates. These protocols include Eager and Vernon's 
dynamic skyscraper broadcasting (DSB) protocol [5], 
their more recent hierarchical multicast stream merging 
(HMSM) protocol [6] and Gao, Zhang and Towsley 
selective catching (SC) [8].  Another solution is to 
combine the reactive and the proactive approaches as in 
our universal distribution protocol (UD) [17]. While all 
four protocols perform very well at low to medium 
request arrival rates, their performance at high request 
arrival rates is not as good as that of the best broadcasting 
protocols. 

The dynamic heuristic broadcasting protocol does not 
suffer from this limitation.  It performs reasonably well at 
all request arrival rates and can be easil y tailored to the 
specific bandwidth requirements of any given compressed 
video.   
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First Stream S1 S1 S1 S1 

Second Stream S2 S3 S2 S3 

Third Stream S4 S5 S6 S7 

Figure 1. The first three streams for fast broadcasting 

2. RELATED WORK 

The first video distribution protocols attempted to 
reduce bandwidth either by batching together several 
requests [3, 4] or by accelerating the video playback rate 
to let new requests catch up with previous transmissions 
[10].  This situation changed when Viswanathan and 
Imielinski [19] proposed to add to the customer set-top 
box (STB) enough buffer space to store between, say, 
thirty minutes and one hour of video data.  This allowed 
the STB to receive most video data out of sequence and 
thus resulted into the first eff icient broadcasting protocol.  
We will only mention here those broadcasting protocols 
that are directly relevant to our work. 

The simplest broadcasting protocol is Juhn and Tseng's 
fast broadcasting (FB) protocol [13].  FB allocates to 
each video k data streams whose bandwidths are all equal 
to the video consumption rate b.  It then partitions the 
video to be broadcast into 2k

 – 1 segments S1 to S2
k
–  1 of 

equal duration d.  As Figure 1 indicates, the first stream 
continuously rebroadcasts segment S1, the second stream 
transmits segments S2 and S3, and the third stream trans-
mits segments S4 to S7.  More generall y, stream j with 
1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
– 1.  

When customers want to watch a video, they wait until 
the beginning of the next transmission of segment S1.  
They then start watching the video on the first stream 
while their STB starts downloading data from all other 
streams.  By the time the customer has finished watching 
segment S1, segment S2 will either be already downloaded 
or ready to be downloaded.  More generall y, any given 
segment Si will either be already downloaded or ready to 
be downloaded by the time the customer has finished 
watching segment Si-1. 
The universal distribution (UD) protocol [17] is a 
dynamic broadcasting protocol based upon the FB 
protocol.  Segments are transmitted only on demand, 
which saves a considerable amount of bandwidth when 
the request arrival rates remains below 100 requests per 
hour.  Above 200 requests per hour, all channels become 
saturated and the UD reverts to a conventional FB 
protocol. 

First Stream S1 S1 S1 S1 S1 S1 

Second Stream S2 S4 S2 S5 S2 S4 

Third Stream S3 S6 S8 S3 S7 S9 

Figure 2. The first three streams for the NPB protocol 

The new pagoda broadcasting (NPB) [14] protocol 
improves upon the FB protocol by using a more complex 
segment-to-stream mapping.  As seen on Figure 2, the 
NPB protocol can pack nine segments into three streams 
while the FB protocol can only pack seven segments.  
Hence the segment size will be equal to one ninth of the 
duration of the video and no customer would ever have to 
wait more than 14 minutes for a two-hour video. 

First Stream S1 S1 S1 S1 S1 S1 

Second Stream S2 S3 S2 S3 S2 S3 

Third Stream S4 S5 S4 S5 S4 S5 

Figure 3. The first three streams for skyscraper broadcasting 

Hua and Sheu's skyscraper broadcasting (SB) [11] dif-
fers from both FB and NPB by never requiring the STB to 
receive more than two streams at the same time.  As 
Figure 3 shows, the result is a segment-to-stream mapping 
that packs fewer segments per stream.  Hence SB will 
always require more server bandwidth than NPB and FB 
to guarantee the same maximum waiting time d. Eager 
and Vernon's dynamic skyscraper broadcasting (DSB) [5] 
is a reactive protocol based upon the SB protocol.  Since 
it abides by the same restriction on client bandwidth as 
the original SB protocol, it also requires a higher server 
bandwidth than the UD protocol.  Their more recent 
hierarchical multicast stream merging (HMSM) protocol 
requires less server bandwidth than DSB to handle the 
same request arrival rate.  Its bandwidth requirements are 
indeed very close to the theoretical minimum for a reac-
tive protocol that does not require the STB to receive 
more than two streams at the same time [6]. 

Stream tapping [2] and patching [12] take a purely 
reactive approach.  To use one of these methods, clients 
must have a small buffer on their STB.  The buffer allows 
them to “ tap” into streams of data on the VOD server 
originall y created for other clients, and then store the data 
until they are needed.  In the best case, clients can get 
most of their data from existing streams, which greatly 
reduces the duration of their own stream.  
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Selective catching combines both reactive and proac-
tive approaches.  It dedicates a certain number of channels 
for periodic broadcasts of videos while using the other 
channels to allow incoming requests to catch up with the 
current broadcast cycle.  As a result, its bandwidth 
requirements are O(log(λι Li)) where λι is the request 
arrival rate and Lι the duration of the video [8]. 

3. OUR PROTOCOL 

While the UD protocol performed as well as the best 
reactive protocols at low request arrival rates, its per-
formance at high request arrival rates was less satisfactory 
as it was outperformed there by the NPB protocol [17].  
We wanted to design a better dynamic broadcasting pro-
tocol that would not be outperformed by any other 
distribution protocol at any request arrival rate. 

We first experimented with a dynamic version of the 
NPB protocol.  As we expected, it bested the UD protocol 
at moderate to high access rates because its bandwidth 
requirements never exceeded those of NPB.  Unfortu-
nately, its performance lagged behind that of both UD and 
stream tapping whenever there were less than 40 to 60 
requests per hour. 

We then decided in favor of a different approach.  Our 
new dynamic heuristic broadcasting (DHB) protocol 
would not be based on any existing broadcasting protocol.  
It would instead use a more flexible heuristic approach.  

The DHB protocol partitions each video into an arbi-
trary number n of segments Si of equal duration d = D/n, 
where D is the duration of the video.  These segments will 
be broadcast on demand on any of k identical data streams 
whose bandwidth is equal to the video consumption rate 
b.  DHB is a slotted protocol as all segments will always 
start at times that are multiples of the segment duration d. 

When customers request a video, their STB sends a 
message to the video server, which prepares a transmis-
sion schedule starting at the next slot.  Thus the segment 
duration d is also the maximum time any customer will 
ever wait before starting to watch a video.  
To reach peak performance and to achieve a minimum 
average bandwidth, we need to obtain maximum sharing 
of each video segment among all overlapping requests.  
To reali ze maximum sharing, each segment must be 
delayed as long as possible to allow a maximum number 
of future requests to share each segment. If a transmission 
schedule starting at slot i + 1 cannot share its j-th segment 
Sj with any previous transmission schedule, it should 
attempt to schedule it in slot i + j but never later than that. 
Note that each segment Si has to be scheduled at a unique 
minimum frequency 1/id (or a maximum period id).  Thus 
the first segment must be scheduled at least once every 
slots, and so on.  The DHB protocol achieves minimum 
 

Slot 1 2 3 4 5 6 7 8 9 

1st Stream – S1 S2 S3 S4 S5 S6 – – 

2nd Stream – – – – – – – – – 

Figure 4. Transmission schedule of an incoming request arriving 
into an idle system. 

slots, and so on.  The DHB protocol achieves minimum 
bandwidth by scheduling each segment on demand 
according to its minimum frequency.  

When a request arrives at the server, the DHB protocol 
first checks the transmission schedules of all current 
requests to find which segments are already scheduled in 
some future slot.  If this is the case then there is already a 
timely transmission of the segment and no new transmis-
sion has to be scheduled.  The protocol then schedules 
transmissions of all remaining segments, each in the 
furthest possible slot for that segment. 

Consider, for instance, the case a video that has been 
partitioned into six segments.  Figure 4 represents the seg-
ment-to-slot mapping that would have resulted from the 
arrival of an incoming request into an idle system during 
slot 1.  Since there were no previously scheduled 
transmission for any of the six video segments, the pro-
tocol will schedule one transmission of segment S1 during 
slot 2, one transmission of segment S2 scheduled during 
slot 3, and, more generall y, one transmission of segment 
Si during slot i + 1 for all 1 ≤ i ≤ 6.   

Slot 1 2 3 4 5 6 7 8 9 

1st Stream – S1 S2 S3 S4 S5 S6 – – 

2nd Stream – – – S1 S2 – – – – 

Figure 5. Combined transmission schedules of two overlapping 
requests for the same video. 

Consider now what would happen if a second request 
for the same video arrived during slot 3.  The new request 
could share segments S3 to S6 with the first request.  As 
Figure 5 shows, the protocol would only schedule one 
new transmission of segment S1 during slot 4 and one 
transmission of segment S2 scheduled during slot 5. 

Note that the protocol will never schedule more than 
one instance of segment Si once every i slots because all 
requests arriving within i – 1 slots after a request already 
having a transmission of that segment in its schedule will 
be able to share that transmission.   
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Assumptions: 
 slot k already contains mk segment instances 
 video contains n segments 
 new video request arrives during slot i 
Algorithm: 
 for j := 1 to n do 
  search slots i + 1 to i + j  for an already scheduled instance of Sj  
  if not found then 
   let mmin := min {mk | i + 1 ≤ k ≤ i + j } 
   let kmax := max {k | i + 1 ≤ k ≤ i + j and mk = mmin} 
   schedule one instance of Sj in slot kmax 
  end if 
 end for loop 

Figure 6.  The Dynamic Hybrid Broadcasting protocol. 

This very simple approach is not very different from 
that used in [6] to derive a lower bound on the server 
bandwidth for delivery techniques that provide immediate 
real time service to client.  It cannot work because intoler-
able bandwidth peaks would occur whenever too many 
segments are scheduled to the same slot.  Consider for 
instance a two-hour video that has been partitioned into 
120 segments to guarantee a maximum waiting time of 
one minute.  Assume that the video is in high demand and 
that there is at least one request arriving during each slot, 
starting with slot 1.  Since each segment Si with 
1 ≤ i ≤ 120 has to be scheduled once every i slots starting 
with slot i, slot 120! will contain one transmission of each 
and every segment of the video.  The result will be a 
bandwidth peak equal to 120 times the video consumption 
rate. 

As shown in Figure 6, the DHB protocol avoids this 
problem thanks to a simple scheduling heuristic. Consider 
a request arriving during slot i and assume that the request 
requires a new transmission of segment Sj.  Our protocol 
will search slots i + 1 to i + j to find the slot having the 
minimum number mmin of scheduled transmissions and 
schedule a new transmission of segment Sj during that 
slot.  If two or more slots are found to have the minimum 
number of scheduled transmissions, the protocol always 
picks the slot kmax with the longest delay.  Note that the 
heuristics never affects the customer waiting time as seg-
ment Sj can only be transmitted on time (when kmax = i + j) 
or ahead of schedule (kmax < i + j). 

To evaluate the performance of our protocol we wrote 
a simple simulation program assuming that requests for a 
particular video were distributed according to a Poisson 
law.  The results of our simulations are summarized in 
Figures 7 and 8. 

Figure 7 compares the average bandwidth require-
ments of our DHB protocol with 99 segments with the 
average bandwidth requirements of the universal 
distribution protocol (UD), stream tapping and new 

pagoda broadcasting (NPB)l.  Request arrival rates are 
expressed in arrivals per hour and bandwidths are 
expressed in multiples of the video consumption rate.  We 
assumed a video duration of two hours and an unlimited 
buffer size for stream tapping. 

Note that both stream tapping allows instant access to 
the video while the three other protocols only guarantee 
that no customer will ever wait more than 1/99 of the 
duration of the video, that is no more than 73 seconds for 
a two-hour video.  Observe also that the bandwidth 
requirements of NPB do not vary with the request arrival 
rate because NPB distributes video segments according to 
a deterministic schedule that is not affected by the timing 
of incoming requests. 

We can immediately see that the new DHB protocol 
requires less average bandwidth than its four rivals do for 
all request arrival rates above two requests per hour.  
Stream tapping performs slightly better than DHB at one 
request per hour but is outperformed by the four other 
protocols at higher request arrival rates above the same 
two requests per hour.  This should be expected from a 
reactive protocol offering zero-delay access to all videos.  
Similar considerations would apply to selective catching. 

We were particularly happy to observe that DHB had 
lower average bandwidth requirements than NPB at all 
request arrival rates because NPB is the most efficient 
broadcasting protocol that uses (a) fixed-sized segments 
and (b) a limited number of equal bandwidth data streams.  
DHB does not waste more bandwidth scheduling 
segments on the fly than NPB does by using a segment-
to-slot mapping that fills completely each data stream. 

Figure 8 compares the maximum bandwidth require-
ments of our DHB protocol with 99 segments with those 
of the UD and NPB protocols with the same number of 
segments. As one can see, NPB has the smallest maxi-
mum bandwidth and DHB the highest but the difference 
between these two protocols never exceeds twice the 
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Figure 7.  Compared average bandwidth requirements of stream tapping, NPB, UD and DHB protocols with 99 segments. 

video consumption rate.  We believe it is a very reason-
able price to pay for the better average performance of our 
new protocol. 

Another cost factor to consider is the cost of schedul-
ing segments on the fly rather than according to a 
predefined mapping.  Going back to our example of a 
video partitioned into 99 segments, we can see that each 
incoming request will result in the separate scheduling of 
99 possible new segment instances. Fortunately for us, the 
actual complexity of the task will be greatly reduced at 
high arrival rates because most of the segment instances 
required by a particular request would have been already 
scheduled by some previous request. 

4. HANDLING COMPRESSED VIDEOS 

Most broadcasting protocols assume that videos will 
have a fixed bandwidth corresponding to a fixed video 
consumption rate.  This assumption is incorrect because 
all video servers will broadcast compressed videos whose 
bandwidth requirements will depend on the rate at which 
the images being displayed change [1, 9, 7].  To ensure 
jitter-free delivery of video in a system allocating a fixed 
bandwidth to each video, the VOD server will have to set 
the broadcasting bandwidth to the maximum bit rate 
required by the most rapidly changing moments of the 
fastest paced scenes of the video. 

Two existing broadcasting protocols can handle com-
pressed videos.  They are polyharmonic broadcasting 
with partial preloading (PHB-PP) and the Mayan temple 
broadcasting protocol (MTB) [16], but these two pro-
tocols have never been tested on a real video.  In addition, 
these two protocols are much more complex to implement 
than FB or NPB as PHB-PP requires a large number of 
small bandwidth data streams and MTB uses segments of 
increasing durations. 

To evaluate how our DHB would handle compressed 
videos, we analyzed a DVD format version of the movie 
The Matrix.  We selected that format because it uses the 
MPEG compression algorithm and is widely available.  
The video lasts 8170 seconds, that is, 2 hours 16 minutes 
and 10 seconds.  The maximum bandwidth over a period 
of one second is 951 kilobytes per second and the average 
bandwidth 636 kilobytes per second. 

Assume that we wanted to distribute the video and 
guarantee a maximum waiting time of one minute.  The 
simplest solution would be to partition the video into 137 
segments and allocate to each data stream 951 kilobytes 
per second of bandwidth.  This is our base solution; we 
will refer to it as solution DHB-a. 

A much more economical solution would be to require 
each segment to be always completely downloaded by the 
STB before the customer finishes watching the previous 
segment of the video.  This will require all customers to 
wait for exactly the duration of one segment.  The average 
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Figure 8.  Compared maximum bandwidth requirements of NPB, UD and DHB protocols with 99 segments. 

waiting time would thus be doubled while the maximum 
waiting time would remain the same.  The great advan-
tage of this solution is that the actual frame arrival times 
at the STB become totally irrelevant as long as all the 
frames arrive within the required time interval.  The 
bandwidth required to ensure on time delivery of all seg-
ments will now be the maximum of the average 
bandwidths of all 137 segments, that is, 789 kilobytes per 
second.  We will refer to this solution as solution DHB-b. 

Even though it is much better than the base solution, 
solution DHB-b still does not use all the available band-
width.  A better solution is to make continuous use of all 
that bandwidth so that each one-minute segment would 
normally contain more than one minute of video data.  
This is what Salehi et al. call smoothing by work-ahead 
[18].  It would have two advantages.  First, we would 
pack the contents of the 137 original segments into 129 
segments of equal duration.  Second, so much data would 
be received ahead of time that the bandwidth peaks occur-
ring later in the video would be completely buffered.  As 
a result, solution DHB-c needs to transmit less segments 
than solutions DHB-a and DHB-b.  Since most bandwidth 
peaks have disappeared, the bandwidth at which each 
segment is transmitted is also reduced from 789 to 671 
kilobytes per second. 

One last optimization is possible.  As many video data 
are now transmitted ahead of time, most segments will not 
need to be transmitted as frequently as before.  Adjusting 

these minimum transmission frequencies will result in a 
further reduction of the average number of data streams 
that are needed to service a given number of customers 
per hour. We found, for instance, that the second segment 
of our video only needed to be broadcast every three slots 
and that nearly all other segments could be delayed by 
one to eight slots: the sole exceptions were segment S1, 
which still had to be transmitted once every slot, and 
segment S3 , which had still to be transmitted once every 
three slots.  We will refer to this solution as solution 
DHB-d. 

Figure 9 displays the average bandwidth requirements 
of implementations DHB-a to DHB-d protocol and com-
pares them to these of a UD protocol.  As one can see, 
more dramatic reductions in bandwidth can be achieved 
by tuning a specific broadcasting protocol to the require-
ments of a specific video rather than by replacing the 
protocol itself.  Switching to a deterministic waiting time 
has the most impact on the average bandwidth require-
ments of the protocol (DHB-b) followed by adjusting the 
minimum segment frequency (DHB-d). 

The very low bandwidth reduction that was achieved 
by merely reducing the number of segments being 
broadcast (DHB-c) should not surprise us.  One of the 
major characteristics of any good broadcasting protocol 
for video-on-demand is that the broadcasting of high-
numbered segments requires very little bandwidth. 
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Figure 9.  Compared average bandwidth requirements of the UD protocol and four implementations of the DHB protocol. 

Hence reducing the number of segments to be broadcast 
from 137 to 129 could not have had any significant 
impact on the total bandwidth.  Conversely, adjusting the 
minimum segment frequencies had a more significant 
impact because segment S2 and S4 were among the 
segments that were now transmitted less frequently. 

The impact of these modifications on the general phi-
losophy of the DHB protocol will be minimal.  The 
protocol will first analyze each video to be broadcast to 
find the minimum bandwidth bmin that need to be allocated 
to it to guarantee on -time delivery of all frames.  It will 
then select a channel bandwidth b that satisfies the condi-
tion b ≥ bmin.  Selecting a bandwidth b greater than bmin 
will increase the probability that the empty slots could be 
shared by other videos, which could have higher mini-
mum bandwidth requirements. 

Once an effective transmission bandwidth b is 
selected, the protocol will compute the number n′  of 
segments that need to be scheduled with n’  ≥ D/d.  It will 
then associate with each segment Si a maximum period T 

[i] representing the maximum number of slots by which 
the transmission of Si can be delayed.  We will necessarily 
have T [1] = 1 and, more generally, T [i] ≥ i for i ≥ 2.   

The protocol will otherwise remain unchanged with 
one sole exception.  Whenever a request arriving during 
slot i will require a new transmission of segment Sj, the 
protocol will now search slots i + 1 to i + T [j] to find the 

slot having the minimum number of scheduled transmis-
sions rather than searching only slots i + 1 to i + j. 

The cost of these modifications will also be minimal 
since each video to be broadcast will need to be analyzed 
only once.   

5. CONCLUSIONS 

Most existing distribution protocols for video-on-
demand are tailored for a specific range of video access 
rates and perform poorly beyond that range.  We have 
presented a dynamic heuristic broadcasting (DHB) proto-
col that performs as well as the best existing protocols at 
any access rate.  Because of its flexibility, our protocol 
can adapt itself to the individual bandwidth requirements 
of each video.  As it could be expected, considerable 
bandwidth savings can be achieved by (a) adopting a 
deterministic waiting time, (b) always using all available 
bandwidth and (c) never transmitting video data more 
frequently than required. 

More work is still needed.  We will first apply our 
DHB protocol to other videos in order to learn how its 
performance is affected by the individual characteristics 
of each video.  We also want to investigate how we could 
reduce or eliminate bandwidth peaks without increasing 
the average video bandwidth. Finally, we would like to 
investigate dynamic heuristic broadcasting protocols that 
limit the client bandwidth to two or three data streams [6].   
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