
Proc.21st International Conference on Distributed Computing Systems, Mesa, Arizona, April 2001.

 657

A Dynamic Heuristic Broadcasting Protocol for Video-on-Demand

Scott R. Carter
Jehan-François Pâris

Saurabh Mohan

Department of Computer Science
University of Houston

Houston, TX 77204-3475

Darrell D. E. Long

Department of Computer Science
Jack Baskin School of Engineering

University of California
Santa Cruz, CA 95064

ABSTRACT

Most existing distribution protocols for video-on-
demand are tailored for a specific range of video access
rates and perform poorly beyond that range. We present
a dynamic heuristic broadcasting protocol that performs
as well as stream tapping with unlimited extra tapping at
low video access rates and has the same average band-
width requirements as the best existing broadcasting
protocols at high video access rates. We also show how
our protocol can handle compressed video and adapt
itself to the individual bandwidth requirements of each
video.

1. INTRODUCTION

In the current state of the technology, video-on-
demand (VOD) is too expensive to effectively compete
against cheaper rivals such as pay-per-view and video-
cassette rentals. The major reason behind the high cost of
VOD is the extremely high bandwidths it requires to
service individual customer requests. Handling such
bandwidths would require major outlays for upgrading the
existing communication infrastructure and building
servers capable of handling the resulting I/O traff ic.

This situation has resulted in many proposals aimed at
reducing the bandwidth requirements of VOD services.
Despite all their differences, most of these proposals fit
into one of two groups. The first group of proposals fol-
lows a reactive approach. These proposals assume that
the video server will merely answer individual customer
requests without trying to anticipate them. Whenever
several user requests for the same video arrive in close
succession, the server will t ry to transmit only once all the
data that can be shared by two or more requests.

Proposals in the second group take a different
approach: they anticipate customer demand and distribute
the various segments of each video according to a deter-
ministic schedule. These distribution protocols are said to
be proactive and are grouped under the common name of
broadcasting protocols [20].

Each of these two approaches has its own advantages
and disadvantages. Reactive protocols perform much
better than broadcasting protocols as long as the request
arrival rate for a two-hour video remains below, say ten to
fifteen requests per hour [15]. Because proactive proto-
cols follow a deterministic broadcasting schedule, their
bandwidth requirements are not affected by the request
arrival rate for a given video. Hence they are the best
protocols for distributing videos that are in very heavy
demand.

The real problem is that the frequency of requests for
any given video is li kely to vary widely with the time of
the day. Child-oriented fare will always be in higher
demand during the day and early evening hours than at
night. Conversely, videos appealing to older viewers are
li kely to follow an opposite pattern. No conventional
distribution protocols can effectively handle the distribu-
tion of these videos. While reactive protocols will
perform very well when the video is in low demand, they
run the risk of overloading the server when the video is in
high demand. On the contrary, broadcasting protocols
will perform very well when the video is in high demand
but will waste a large fraction of their bandwidth in all
other cases.

One possible solution to this problem is to design
better reactive protocols that can handle high request
arrival rates. These protocols include Eager and Vernon's
dynamic skyscraper broadcasting (DSB) protocol [5],
their more recent hierarchical multicast stream merging
(HMSM) protocol [6] and Gao, Zhang and Towsley
selective catching (SC) [8]. Another solution is to
combine the reactive and the proactive approaches as in
our universal distribution protocol (UD) [17]. While all
four protocols perform very well at low to medium
request arrival rates, their performance at high request
arrival rates is not as good as that of the best broadcasting
protocols.

The dynamic heuristic broadcasting protocol does not
suffer from this limitation. It performs reasonably well at
all request arrival rates and can be easil y tailored to the
specific bandwidth requirements of any given compressed
video.

 658

First Stream S1 S1 S1 S1

Second Stream S2 S3 S2 S3

Third Stream S4 S5 S6 S7

Figure 1. The first three streams for fast broadcasting

2. RELATED WORK

The first video distribution protocols attempted to
reduce bandwidth either by batching together several
requests [3, 4] or by accelerating the video playback rate
to let new requests catch up with previous transmissions
[10]. This situation changed when Viswanathan and
Imielinski [19] proposed to add to the customer set-top
box (STB) enough buffer space to store between, say,
thirty minutes and one hour of video data. This allowed
the STB to receive most video data out of sequence and
thus resulted into the first eff icient broadcasting protocol.
We will only mention here those broadcasting protocols
that are directly relevant to our work.

The simplest broadcasting protocol is Juhn and Tseng's
fast broadcasting (FB) protocol [13]. FB allocates to
each video k data streams whose bandwidths are all equal
to the video consumption rate b. It then partitions the
video to be broadcast into 2k

 – 1 segments S1 to S2
k
– 1 of

equal duration d. As Figure 1 indicates, the first stream
continuously rebroadcasts segment S1, the second stream
transmits segments S2 and S3, and the third stream trans-
mits segments S4 to S7. More generall y, stream j with
1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
– 1.

When customers want to watch a video, they wait until
the beginning of the next transmission of segment S1.
They then start watching the video on the first stream
while their STB starts downloading data from all other
streams. By the time the customer has finished watching
segment S1, segment S2 will either be already downloaded
or ready to be downloaded. More generall y, any given
segment Si will either be already downloaded or ready to
be downloaded by the time the customer has finished
watching segment Si-1.
The universal distribution (UD) protocol [17] is a
dynamic broadcasting protocol based upon the FB
protocol. Segments are transmitted only on demand,
which saves a considerable amount of bandwidth when
the request arrival rates remains below 100 requests per
hour. Above 200 requests per hour, all channels become
saturated and the UD reverts to a conventional FB
protocol.

First Stream S1 S1 S1 S1 S1 S1

Second Stream S2 S4 S2 S5 S2 S4

Third Stream S3 S6 S8 S3 S7 S9

Figure 2. The first three streams for the NPB protocol

The new pagoda broadcasting (NPB) [14] protocol
improves upon the FB protocol by using a more complex
segment-to-stream mapping. As seen on Figure 2, the
NPB protocol can pack nine segments into three streams
while the FB protocol can only pack seven segments.
Hence the segment size will be equal to one ninth of the
duration of the video and no customer would ever have to
wait more than 14 minutes for a two-hour video.

First Stream S1 S1 S1 S1 S1 S1

Second Stream S2 S3 S2 S3 S2 S3

Third Stream S4 S5 S4 S5 S4 S5

Figure 3. The first three streams for skyscraper broadcasting

Hua and Sheu's skyscraper broadcasting (SB) [11] dif-
fers from both FB and NPB by never requiring the STB to
receive more than two streams at the same time. As
Figure 3 shows, the result is a segment-to-stream mapping
that packs fewer segments per stream. Hence SB will
always require more server bandwidth than NPB and FB
to guarantee the same maximum waiting time d. Eager
and Vernon's dynamic skyscraper broadcasting (DSB) [5]
is a reactive protocol based upon the SB protocol. Since
it abides by the same restriction on client bandwidth as
the original SB protocol, it also requires a higher server
bandwidth than the UD protocol. Their more recent
hierarchical multicast stream merging (HMSM) protocol
requires less server bandwidth than DSB to handle the
same request arrival rate. Its bandwidth requirements are
indeed very close to the theoretical minimum for a reac-
tive protocol that does not require the STB to receive
more than two streams at the same time [6].

Stream tapping [2] and patching [12] take a purely
reactive approach. To use one of these methods, clients
must have a small buffer on their STB. The buffer allows
them to “ tap” into streams of data on the VOD server
originall y created for other clients, and then store the data
until they are needed. In the best case, clients can get
most of their data from existing streams, which greatly
reduces the duration of their own stream.

 659

Selective catching combines both reactive and proac-
tive approaches. It dedicates a certain number of channels
for periodic broadcasts of videos while using the other
channels to allow incoming requests to catch up with the
current broadcast cycle. As a result, its bandwidth
requirements are O(log(λι Li)) where λι is the request
arrival rate and Lι the duration of the video [8].

3. OUR PROTOCOL

While the UD protocol performed as well as the best
reactive protocols at low request arrival rates, its per-
formance at high request arrival rates was less satisfactory
as it was outperformed there by the NPB protocol [17].
We wanted to design a better dynamic broadcasting pro-
tocol that would not be outperformed by any other
distribution protocol at any request arrival rate.

We first experimented with a dynamic version of the
NPB protocol. As we expected, it bested the UD protocol
at moderate to high access rates because its bandwidth
requirements never exceeded those of NPB. Unfortu-
nately, its performance lagged behind that of both UD and
stream tapping whenever there were less than 40 to 60
requests per hour.

We then decided in favor of a different approach. Our
new dynamic heuristic broadcasting (DHB) protocol
would not be based on any existing broadcasting protocol.
It would instead use a more flexible heuristic approach.

The DHB protocol partitions each video into an arbi-
trary number n of segments Si of equal duration d = D/n,
where D is the duration of the video. These segments will
be broadcast on demand on any of k identical data streams
whose bandwidth is equal to the video consumption rate
b. DHB is a slotted protocol as all segments will always
start at times that are multiples of the segment duration d.

When customers request a video, their STB sends a
message to the video server, which prepares a transmis-
sion schedule starting at the next slot. Thus the segment
duration d is also the maximum time any customer will
ever wait before starting to watch a video.
To reach peak performance and to achieve a minimum
average bandwidth, we need to obtain maximum sharing
of each video segment among all overlapping requests.
To reali ze maximum sharing, each segment must be
delayed as long as possible to allow a maximum number
of future requests to share each segment. If a transmission
schedule starting at slot i + 1 cannot share its j-th segment
Sj with any previous transmission schedule, it should
attempt to schedule it in slot i + j but never later than that.
Note that each segment Si has to be scheduled at a unique
minimum frequency 1/id (or a maximum period id). Thus
the first segment must be scheduled at least once every
slots, and so on. The DHB protocol achieves minimum

Slot 1 2 3 4 5 6 7 8 9

1st Stream – S1 S2 S3 S4 S5 S6 – –

2nd Stream – – – – – – – – –

Figure 4. Transmission schedule of an incoming request arriving
into an idle system.

slots, and so on. The DHB protocol achieves minimum
bandwidth by scheduling each segment on demand
according to its minimum frequency.

When a request arrives at the server, the DHB protocol
first checks the transmission schedules of all current
requests to find which segments are already scheduled in
some future slot. If this is the case then there is already a
timely transmission of the segment and no new transmis-
sion has to be scheduled. The protocol then schedules
transmissions of all remaining segments, each in the
furthest possible slot for that segment.

Consider, for instance, the case a video that has been
partitioned into six segments. Figure 4 represents the seg-
ment-to-slot mapping that would have resulted from the
arrival of an incoming request into an idle system during
slot 1. Since there were no previously scheduled
transmission for any of the six video segments, the pro-
tocol will schedule one transmission of segment S1 during
slot 2, one transmission of segment S2 scheduled during
slot 3, and, more generall y, one transmission of segment
Si during slot i + 1 for all 1 ≤ i ≤ 6.

Slot 1 2 3 4 5 6 7 8 9

1st Stream – S1 S2 S3 S4 S5 S6 – –

2nd Stream – – – S1 S2 – – – –

Figure 5. Combined transmission schedules of two overlapping
requests for the same video.

Consider now what would happen if a second request
for the same video arrived during slot 3. The new request
could share segments S3 to S6 with the first request. As
Figure 5 shows, the protocol would only schedule one
new transmission of segment S1 during slot 4 and one
transmission of segment S2 scheduled during slot 5.

Note that the protocol will never schedule more than
one instance of segment Si once every i slots because all
requests arriving within i – 1 slots after a request already
having a transmission of that segment in its schedule will
be able to share that transmission.

 657

Assumptions:
 slot k already contains mk segment instances
 video contains n segments
 new video request arrives during slot i
Algorithm:
 for j := 1 to n do
 search slots i + 1 to i + j for an already scheduled instance of Sj
 if not found then
 let mmin := min {mk | i + 1 ≤ k ≤ i + j }
 let kmax := max {k | i + 1 ≤ k ≤ i + j and mk = mmin}
 schedule one instance of Sj in slot kmax
 end if
 end for loop

Figure 6. The Dynamic Hybrid Broadcasting protocol.

This very simple approach is not very different from
that used in [6] to derive a lower bound on the server
bandwidth for delivery techniques that provide immediate
real time service to client. It cannot work because intoler-
able bandwidth peaks would occur whenever too many
segments are scheduled to the same slot. Consider for
instance a two-hour video that has been partitioned into
120 segments to guarantee a maximum waiting time of
one minute. Assume that the video is in high demand and
that there is at least one request arriving during each slot,
starting with slot 1. Since each segment Si with
1 ≤ i ≤ 120 has to be scheduled once every i slots starting
with slot i, slot 120! will contain one transmission of each
and every segment of the video. The result will be a
bandwidth peak equal to 120 times the video consumption
rate.

As shown in Figure 6, the DHB protocol avoids this
problem thanks to a simple scheduling heuristic. Consider
a request arriving during slot i and assume that the request
requires a new transmission of segment Sj. Our protocol
will search slots i + 1 to i + j to find the slot having the
minimum number mmin of scheduled transmissions and
schedule a new transmission of segment Sj during that
slot. If two or more slots are found to have the minimum
number of scheduled transmissions, the protocol always
picks the slot kmax with the longest delay. Note that the
heuristics never affects the customer waiting time as seg-
ment Sj can only be transmitted on time (when kmax = i + j)
or ahead of schedule (kmax < i + j).

To evaluate the performance of our protocol we wrote
a simple simulation program assuming that requests for a
particular video were distributed according to a Poisson
law. The results of our simulations are summarized in
Figures 7 and 8.

Figure 7 compares the average bandwidth require-
ments of our DHB protocol with 99 segments with the
average bandwidth requirements of the universal
distribution protocol (UD), stream tapping and new

pagoda broadcasting (NPB)l. Request arrival rates are
expressed in arrivals per hour and bandwidths are
expressed in multiples of the video consumption rate. We
assumed a video duration of two hours and an unlimited
buffer size for stream tapping.

Note that both stream tapping allows instant access to
the video while the three other protocols only guarantee
that no customer will ever wait more than 1/99 of the
duration of the video, that is no more than 73 seconds for
a two-hour video. Observe also that the bandwidth
requirements of NPB do not vary with the request arrival
rate because NPB distributes video segments according to
a deterministic schedule that is not affected by the timing
of incoming requests.

We can immediately see that the new DHB protocol
requires less average bandwidth than its four rivals do for
all request arrival rates above two requests per hour.
Stream tapping performs slightly better than DHB at one
request per hour but is outperformed by the four other
protocols at higher request arrival rates above the same
two requests per hour. This should be expected from a
reactive protocol offering zero-delay access to all videos.
Similar considerations would apply to selective catching.

We were particularly happy to observe that DHB had
lower average bandwidth requirements than NPB at all
request arrival rates because NPB is the most efficient
broadcasting protocol that uses (a) fixed-sized segments
and (b) a limited number of equal bandwidth data streams.
DHB does not waste more bandwidth scheduling
segments on the fly than NPB does by using a segment-
to-slot mapping that fills completely each data stream.

Figure 8 compares the maximum bandwidth require-
ments of our DHB protocol with 99 segments with those
of the UD and NPB protocols with the same number of
segments. As one can see, NPB has the smallest maxi-
mum bandwidth and DHB the highest but the difference
between these two protocols never exceeds twice the

 658

0

1

2

3

4

5

6

7

1 10 100 1000

Requests/hour

A
ve

ra
g

e
B

an
d

w
id

th
 (

d
at

a
st

re
am

s)

Stream Tapping/Patching

UD Protocol

 DHB Protocol

New Pagoda Broadcasting

Figure 7. Compared average bandwidth requirements of stream tapping, NPB, UD and DHB protocols with 99 segments.

video consumption rate. We believe it is a very reason-
able price to pay for the better average performance of our
new protocol.

Another cost factor to consider is the cost of schedul-
ing segments on the fly rather than according to a
predefined mapping. Going back to our example of a
video partitioned into 99 segments, we can see that each
incoming request will result in the separate scheduling of
99 possible new segment instances. Fortunately for us, the
actual complexity of the task will be greatly reduced at
high arrival rates because most of the segment instances
required by a particular request would have been already
scheduled by some previous request.

4. HANDLING COMPRESSED VIDEOS

Most broadcasting protocols assume that videos will
have a fixed bandwidth corresponding to a fixed video
consumption rate. This assumption is incorrect because
all video servers will broadcast compressed videos whose
bandwidth requirements will depend on the rate at which
the images being displayed change [1, 9, 7]. To ensure
jitter-free delivery of video in a system allocating a fixed
bandwidth to each video, the VOD server will have to set
the broadcasting bandwidth to the maximum bit rate
required by the most rapidly changing moments of the
fastest paced scenes of the video.

Two existing broadcasting protocols can handle com-
pressed videos. They are polyharmonic broadcasting
with partial preloading (PHB-PP) and the Mayan temple
broadcasting protocol (MTB) [16], but these two pro-
tocols have never been tested on a real video. In addition,
these two protocols are much more complex to implement
than FB or NPB as PHB-PP requires a large number of
small bandwidth data streams and MTB uses segments of
increasing durations.

To evaluate how our DHB would handle compressed
videos, we analyzed a DVD format version of the movie
The Matrix. We selected that format because it uses the
MPEG compression algorithm and is widely available.
The video lasts 8170 seconds, that is, 2 hours 16 minutes
and 10 seconds. The maximum bandwidth over a period
of one second is 951 kilobytes per second and the average
bandwidth 636 kilobytes per second.

Assume that we wanted to distribute the video and
guarantee a maximum waiting time of one minute. The
simplest solution would be to partition the video into 137
segments and allocate to each data stream 951 kilobytes
per second of bandwidth. This is our base solution; we
will refer to it as solution DHB-a.

A much more economical solution would be to require
each segment to be always completely downloaded by the
STB before the customer finishes watching the previous
segment of the video. This will require all customers to
wait for exactly the duration of one segment. The average

 659

2

3

4

5

6

7

8

9

1 10 100 1000

Requests/hour

M
ax

im
u

m
 B

an
d

w
id

th
 (

d
at

a
st

re
am

s)

UD Protocol

 DHB Protocol

New Pagoda Broadcasting

Figure 8. Compared maximum bandwidth requirements of NPB, UD and DHB protocols with 99 segments.

waiting time would thus be doubled while the maximum
waiting time would remain the same. The great advan-
tage of this solution is that the actual frame arrival times
at the STB become totally irrelevant as long as all the
frames arrive within the required time interval. The
bandwidth required to ensure on time delivery of all seg-
ments will now be the maximum of the average
bandwidths of all 137 segments, that is, 789 kilobytes per
second. We will refer to this solution as solution DHB-b.

Even though it is much better than the base solution,
solution DHB-b still does not use all the available band-
width. A better solution is to make continuous use of all
that bandwidth so that each one-minute segment would
normally contain more than one minute of video data.
This is what Salehi et al. call smoothing by work-ahead
[18]. It would have two advantages. First, we would
pack the contents of the 137 original segments into 129
segments of equal duration. Second, so much data would
be received ahead of time that the bandwidth peaks occur-
ring later in the video would be completely buffered. As
a result, solution DHB-c needs to transmit less segments
than solutions DHB-a and DHB-b. Since most bandwidth
peaks have disappeared, the bandwidth at which each
segment is transmitted is also reduced from 789 to 671
kilobytes per second.

One last optimization is possible. As many video data
are now transmitted ahead of time, most segments will not
need to be transmitted as frequently as before. Adjusting

these minimum transmission frequencies will result in a
further reduction of the average number of data streams
that are needed to service a given number of customers
per hour. We found, for instance, that the second segment
of our video only needed to be broadcast every three slots
and that nearly all other segments could be delayed by
one to eight slots: the sole exceptions were segment S1,
which still had to be transmitted once every slot, and
segment S3 , which had still to be transmitted once every
three slots. We will refer to this solution as solution
DHB-d.

Figure 9 displays the average bandwidth requirements
of implementations DHB-a to DHB-d protocol and com-
pares them to these of a UD protocol. As one can see,
more dramatic reductions in bandwidth can be achieved
by tuning a specific broadcasting protocol to the require-
ments of a specific video rather than by replacing the
protocol itself. Switching to a deterministic waiting time
has the most impact on the average bandwidth require-
ments of the protocol (DHB-b) followed by adjusting the
minimum segment frequency (DHB-d).

The very low bandwidth reduction that was achieved
by merely reducing the number of segments being
broadcast (DHB-c) should not surprise us. One of the
major characteristics of any good broadcasting protocol
for video-on-demand is that the broadcasting of high-
numbered segments requires very little bandwidth.

 660

0

1

2

3

4

5

6

7

1 10 100 1000

Requests/hour

A
ve

ra
g

e
B

an
d

w
id

th
 (

M
B

/s
)

UD

DHB-a

DHB-b
DHB-c

DHB-d

Figure 9. Compared average bandwidth requirements of the UD protocol and four implementations of the DHB protocol.

Hence reducing the number of segments to be broadcast
from 137 to 129 could not have had any significant
impact on the total bandwidth. Conversely, adjusting the
minimum segment frequencies had a more significant
impact because segment S2 and S4 were among the
segments that were now transmitted less frequently.

The impact of these modifications on the general phi-
losophy of the DHB protocol will be minimal. The
protocol will first analyze each video to be broadcast to
find the minimum bandwidth bmin that need to be allocated
to it to guarantee on -time delivery of all frames. It will
then select a channel bandwidth b that satisfies the condi-
tion b ≥ bmin. Selecting a bandwidth b greater than bmin
will increase the probability that the empty slots could be
shared by other videos, which could have higher mini-
mum bandwidth requirements.

Once an effective transmission bandwidth b is
selected, the protocol will compute the number n′ of
segments that need to be scheduled with n’ ≥ D/d. It will
then associate with each segment Si a maximum period T

[i] representing the maximum number of slots by which
the transmission of Si can be delayed. We will necessarily
have T [1] = 1 and, more generally, T [i] ≥ i for i ≥ 2.

The protocol will otherwise remain unchanged with
one sole exception. Whenever a request arriving during
slot i will require a new transmission of segment Sj, the
protocol will now search slots i + 1 to i + T [j] to find the

slot having the minimum number of scheduled transmis-
sions rather than searching only slots i + 1 to i + j.

The cost of these modifications will also be minimal
since each video to be broadcast will need to be analyzed
only once.

5. CONCLUSIONS

Most existing distribution protocols for video-on-
demand are tailored for a specific range of video access
rates and perform poorly beyond that range. We have
presented a dynamic heuristic broadcasting (DHB) proto-
col that performs as well as the best existing protocols at
any access rate. Because of its flexibility, our protocol
can adapt itself to the individual bandwidth requirements
of each video. As it could be expected, considerable
bandwidth savings can be achieved by (a) adopting a
deterministic waiting time, (b) always using all available
bandwidth and (c) never transmitting video data more
frequently than required.

More work is still needed. We will first apply our
DHB protocol to other videos in order to learn how its
performance is affected by the individual characteristics
of each video. We also want to investigate how we could
reduce or eliminate bandwidth peaks without increasing
the average video bandwidth. Finally, we would like to
investigate dynamic heuristic broadcasting protocols that
limit the client bandwidth to two or three data streams [6].

 661

ACKNOWLEDGEMENTS

Scott R. Carter was partiall y supported by the
University of Houston Scholars Program. J.-F. Pâris
acknowledges the support of the Texas Advanced
Research Program under grant 003652-0124-1999 and the
National Science Foundation under grant CCR-9988390.
Saurabh Mohan was partiall y supported by the Texas
Advanced Research Program under grant 003652-0124-
1999. Darrell Long acknowledges the support of the
National Science Foundation under grant CCR-9988363.

REFERENCES

[1] Beran, J., R. Sherman, M. Taqqu, and W. Willi nger.
Long-range dependence in variable bit-rate video
traff ic. IEEE Trans. on Communication, 43:1566–
1579, 1995.

[2] Carter, S. W. and D. D. E. Long. Improving video-
on-demand server eff iciency through stream tapping.
Proc. 5th Int. Conf. on Computer Communications
and Networks. pages 200-207, Sep. 1997.

[3] Dan, A., P. Shahabuddin, D. Sitaram and D.
Towsley. Channel allocation under batching and
VCR control in video-on-demand systems. Journal
of Parallel and Distributed Computing, 30(2):168–
179, Nov. 1994.

[4] Dan, A., D. Sitaram, and P. Shahabuddin. Dynamic
batching poli cies for an on-demand video server.
Multimedia Systems, 4(3):112–121, June 1996.

[5] Eager, D. L. and M. K. Vernon. Dynamic
skyscraper broadcast for video-on-demand. Proc.
4th Int. Workshop on Advances in Multimedia
Information Systems, pages 18–32, Sep. 1998.

[6] Eager, D. L., M. K. Vernon and J. Zahorjan.
Minimizing bandwidth requirements for on-demand
data deli very. Proc. 5th Int. Workshop on Advances
in Multimedia Information Systems, Oct. 1999.

[7] Feng, W. and J. Rexford. Performance evaluation of
smoothing algorithms for transmitting prerecorded
variable-bit-rate video. IEEE Trans. on Multimedia,
September 1999, 302–313.

[8] Gao, L., Z.-L Zhang and D. Towsley. Catching and
selective catching: eff icient latency reduction tech-
niques for deli vering continuous multimedia
streams. Proc. 1999 ACM Multimedia Conf., pages
203–206, Nov. 1999.

[9] Garrett, M. and W. Willi nger. Analysis, modeling
and generation of self-similar VBR video traff ic.
Proc. ACM SIGCOMM '94 Conference, pages 269–
280, Aug. 1994.

[10] Golubchik, L., J. Lui, and R. Muntz. Adaptive
piggybacking: a novel technique for data sharing in
video-on-demand storage servers. Multimedia
Systems, 4(3): 140–155, 1996.

[11] Hua, K. A. and S. Sheu. Skyscraper broadcasting: a
new broadcasting scheme for metropoli tan video-on-
demand systems. Proc. ACM SIGCOMM '97 Conf.,
pages 89–100, Sept. 1997.

[12] Hua, K. A., Y. Cai, and S. Sheu. Patching: a multi -
cast technique for true video-on-demand services.
Proc. 6th ACM Multimedia Conf, pages 191–200,
Sep. 1998.

[13] Juhn, L. and L. Tseng. Fast data broadcasting and
receiving scheme for popular video service. IEEE
Trans. on Broadcasting, 44(1):100–105, March
1998.

[14] Pâris, J.-F.. A simple low-bandwidth broadcasting
protocol for video on demand, Proc. 7th Int. Conf. on
Computer Communications and Networks
(ICCCN'99), pages 690–697, Oct. 1999.

[15] Pâris, J.-F., D. D. E. Long and P. E. Mantey. A zero-
delay broadcasting protocol for video on demand.
Proc. 1999 ACM Multimedia Conf., pages 189–197,
Nov. 1999.

[16] Pâris, J.-F., S. W. Carter and D. D. E. Long. A
reactive broadcasting protocol for video on demand.
Proc. 2000 Multimedia Computing and Networking
Conf., pages 216–223, Jan. 2000.

[17] Pâris, J.-F., S. W. Carter and D. D. E. Long. A uni-
versal distribution protocol for video-on-demand.
Proc. Int. Conf. on Multimedia and Expo 2000, July
2000.

[18] Salehi, J. D., Z.-L. Zhang, J. Kurose, and D.
Towsley. Supporting stored video: reducing rate
variabilit y and end-to-end resource requirements
through optimal smoothing. Proc. 1996 ACM
SIGMETRICS Conf., pages 222–231, May 1996

[19] Viswanathan, S. and T. Imielinski. Metropolitan
area video-on-demand service using pyramid broad-
casting. Multimedia Systems, 4(4):197–208, 1996.

[20] Wong, J. W. Broadcast deli very. Proc. of the IEEE,
76(12), 1566–1577, Dec. 1988.

