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Abstract 

Stream tapping–also known as patching–can reduce 
the bandwidth requirements of video-on-demand services 
by allowing new customer requests to “ tap” the data 
streams of other requests for the same video.  Previous 
studies have shown that stream tapping works best when 
the request arr ival rate does not exceed ten to twenty 
requests per hour for a two-hour video.  At higher arr ival 
rates, it performs much worse than broadcasting 
protocols. 

To overcome this limitation, we propose a stream 
tapping protocol that preloads in the customer set-top box 
the first few minutes of all popular videos.  To offset the 
cost of the additional buffer space, our protocol never 
requires the set-top box to receive data from the video 
server at more than twice video consumption rate.  Our 
simulations indicate that preloading the first eight min-
utes of a two-hour video was enough to achieve lower 
bandwidth requirements than the best broadcasting 
protocols at any request arr ival rate.   

1. Introduction 

One of the reasons behind the slow deployment of 
video-on-demand (VOD) services is the high cost of 
providing these services.  These high costs result mostly 
from the high demands that VOD makes upon video 
servers.   Assuming that the videos are in MPEG-2 
format, each user request will require the deli very of 
around  5 Megabits of data per second.  Hence a video 
server allocating a separate stream of data to each request 
would need an aggregate bandwidth of 5 Gigabit/s to 
accommodate 1,000 concurrent users.   

This situation has led to numerous proposals aiming at 
reducing the bandwidth requirements of VOD services.  
These proposals can be broadly classified into two 
groups.  Proposals in the first group are said to be 
proactive because they distribute each video according to 
a fixed schedule that is not affected by the presence–or 

the absence–of requests for that video.  They are also 
known as broadcasting protocols.  Some of the best-
known broadcasting protocols are staggered broadcasting 
[Alm96], pyramid broadcasting [20], skyscraper 
broadcasting [10], harmonic broadcasting [12] and its 
variants [14]. 

Other solutions are purely reactive: they only transmit 
data in response to a specific customer request.  Unlike 
proactive protocols, reactive protocols do not consume 
bandwidth in the absence of customer requests.  The best 
known reactive protocols include piggybacking [9], 
stream tapping [2]–also known as patching [11]–and 
dynamic skyscraper [5].  

The main advantage of broadcasting protocols is that 
they scale up extremely well .  Since broadcasting 
protocols distribute each video according to a fixed 
schedule, the number of incoming user requests does not 
affect their bandwidth requirements.  Hence they are 
especiall y suited to the distribution of videos that are in 
very high demand.  The most eff icient broadcasting 
protocols only require a bandwidth equal to six times the 
video consumption rate to guarantee that no customer will 
have to wait more than one minute before starting to 
watch a two-hour video. 

Despite their low bandwidth requirements, 
broadcasting protocols have their own limitations.  First, 
the most eff icient broadcasting protocols require a set-top 
box (STB) capable of receiving data at up to six or seven 
times the video consumption rate.  Those that have lower 
client bandwidth requirements also put more demands on 
the video server.  While Hua and Sheu’s skyscraper 
broadcasting [10] never requires the STB to receive more 
than two streams at the same time, it requires ten times 
the video consumption rate to guarantee a maximum 
customer waiting time of less than a minute for a two-
hour video.  Second, most broadcasting protocols require 
a STB capable of storing locall y up to 60 percent of each 
video being watched.  Finall y, they waste a considerable 
amount of bandwidth whenever the request arrival rate 
fall s below ten to twenty requests per hour for the same 
two-hour video.   
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Figure 1: How stream tapping works 

We propose here a different approach.  First, we will 
use a reactive distribution protocol because these 
protocols perform very well at low to medium request 
arrival rates. 

Second, we will never require the STB to receive data 
at more than twice the video consumption rate, which will 
greatly simpli fy the design of the STB disk controller.  
Finall y, we will keep the server bandwidth low by 
preloading in the customer STB the first 8 to 15 minutes 
of all popular videos, that is, between 300 and 563 
Megabytes of data per video in MPEG-2 format.  As a 
result, our stream tapping protocol with partial 
preloading will t rade excess bandwidth for an increase of 
the size of the STB buffer.  All VOD distribution 
protocols that minimize the server bandwidth require a 
STB buffer of the order of a few Gigabytes.  In the 
present state of memory technology, this implies the 
presence of a disk drive in each STB.  The sole additional 
requirement of our protocol is to have a disk drive capable 
of storing twenty to thirty Gigabytes of data in each STB.  
Such disk drives sell now at a retail prices below one 
hundred dollars. 

2. Previous Work 

Two of the earliest reactive distribution protocols are 
batching and piggybacking.  Batching [4] reduces the 
bandwidth requirements of individual user requests by 
multi casting one single data stream to all customers who 
request the same video at the same time.  Some strategies 
even involve delaying customer requests for a short 
period of time in order to increase the number of 
customers sharing the same data stream.  Piggybacking 
[9] can be used alone or in combination with batching.  It 
adjusts the display rates of overlapping requests for the 
same video until their corresponding data streams can be 
merged into a single stream.  Consider for instance, two 

requests for the same video separated by a time interval of 
three minutes.  Increasing the display rate of the second 
stream by 10 percent will allow it to catch up with the 
first stream after 30 minutes. 

Stream tapping [2, 3] or patching [11], assumes that 
each customer STB has a buffer capable of storing at least 
10 minutes of video data.  This buffer will allow the STB 
to “ tap” into streams of data on the VOD server originall y 
created for other clients, and then store these data until 
they are needed.  In the best case, clients can get most of 
their data from an existing stream. 

In particular, stream tapping defines three types of 
streams. Complete streams read out of a video in its 
entirety.  These are the streams clients typicall y tap from.  
Full tap streams can be used if a complete stream for the 
same video started β≤∆ minutes in the past, where β is 

the size of the client buffer, measured in minutes of video 
data. In this case, the client can begin receiving the 
complete stream right away, storing the data in its buffer. 
Simultaneously, it can receive the full tap stream and use 
it to display the first ∆ minutes of the video. After that, 
the client can consume directly from its buffer, which will 
then always contain a moving ∆-minute window of the 
video.  Stream tapping also defines partial tap streams, 
which can be used when ∆ <  β. In this case clients must 
go through cycles of filli ng up and then emptying their 
buffer since the buffer is not large enough to account for 
the complete difference in video position. 

To use tap streams, clients only have to receive at most 
two streams at any one time. If they can actuall y handle a 
higher bandwidth than this, they can use an option to the 
protocol called extra tapping.  Extra tapping allows 
clients to tap data from any stream on the VOD server, 
and not just from complete streams.  Figure 1 shows some 
sample streams from the VOD server's perspective.  
Stream a is a complete stream, and it must exist for the 



entirety of the video. Stream b is a full tap stream starting 

b∆  minutes after stream a.  It only has to exist for 
b

∆  
minutes.  Stream c is another full tap stream, but it is able 
to use extra tapping to tap data from stream b, and so its 
service time is much smaller than c∆ . 

Eager and Vernon's dynamic skyscraper broadcasting 
(DSB) [5] is a reactive protocol based on Hua and Sheu’s 
skyscraper broadcasting protocol [10].  Like skyscraper 
broadcasting, it never requires the STB to receive more 
than two streams at the same time.  Their more recent 
hierarchical multicast stream merging (HMSM) protocol 
requires less server bandwidth than DSB to handle the 
same request arrival rate.  Its bandwidth requirements are 
indeed very close to the upper bound of the minimum 
bandwidth for a reactive protocol that does not require the 
STB to receive more than two streams at the same time 
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where 2/)51(2 +=η  and Ni is the request arrival rate. 
Selective catching combines both reactive and 

proactive approaches.  It dedicates a certain number of 
channels for periodic broadcasts of videos while using the 
other channels to allow incoming requests to catch up 
with the current broadcast cycle.  As a result, its 
bandwidth requirements are O(log(λι Li) where λι is the 
request arrival rate and Lι the duration of the video [7]. 

Partial preloading [15] loads in the customer STB the 
first few minutes of the top 10 to 20 videos in order to 
provide zero-delay access to these videos and reduce the 
server bandwidth of the broadcasting protocol distributing 
the remainder of the video. 

3. Our Protocol 

Stream tapping, dynamic skyscraper broadcasting and 
hierarchical multi cast stream merging have two major 
advantages over broadcasting protocols.  First, they 
provide true instant access to the video. Second, they 
require much less bandwidth than broadcasting protocols 
to distribute videos that are not requested more than ten 
times per hour for a two-hour video.   

Unfortunately, the same is not true at higher request 
arrival rates.  Since they handle all customer requests one 
by one, these three proactive protocols require much more 
bandwidth than most broadcasting protocols whenever the 
request arrival rate exceeds 30 to 60 requests per hour.  

One solution would be to batch requests together so that 
several incoming requests could share the same data 
streams.  The sole problem with this approach is the 
delays it would introduce.  As we said earlier, all three 
proactive protocols outperform the best broadcasting 
protocols when the rate remains below ten requests per 
hour for a two-hour video.  Achieving the same 
performance at any request arrival rate would require a 
batching interval of six minutes, which means that 
customers wanting to watch a video would have to wait 
an average of three minutes.  While smaller batching 
intervals are possible, they would have much less effect 
on the server bandwidth. 

We propose another solution.  Over the last few years, 
disk drive capacities have been doubling every eighteen 
months.  One can now find 30 Gigabyte hard drives at 
retail prices below one hundred dollars.  We can store on 
one of these hard drives more than 13 hours of video data 
assuming a very comfortable bandwidth of 5 Megabits per 
second.  This would allow us to store the first 10 minutes 
of 80 videos or the first 15 minutes of 53 videos.  
Preloading the first few minutes of all videos in the server 
library would give us the same bandwidth reduction as 
batching all i ncoming requests and allow us to continue a 
zero-delay poli cy. 

The impact of partial preloading on the protocol 
bandwidth is indeed so strong that it allows us to simpli fy 
the stream tapping protocol and eliminate all cases of 
extra tapping that require the customer STB to receive 
video data from more than two channels at the same time.  
This will greatly simpli fy the design of the STB disk 
controller and contribute to offset the cost of a larger disk 
drive. 

Let us consider a video of duration D and let us 
assume that the first Dpp minutes of that video are already 
present in the customer STB.  Four cases have to be 
considered: 
1. When the first request for a video arrives at the server 

at time ta, the server allocates a complete stream to 
the video.  Since the customer STB already has the 
first Dpp minutes of the video on its hard drive, the 
complete stream can be delayed by Dpp minutes.  As 
shown on Figure 2, the complete stream will start at 
time tc = ta + Dpp and last until ta + D.  Thanks to this 
delay, all requests arriving in the time interval [ta, tc] 
will be able to get all the data they need from the 
complete stream. 
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Figure 2.  How the STPP protocol operates. 

2. Assume now that a second request arrives at time t' 
such that tc < t' < ta + D.  The request will still be able 
to “ tap” the complete stream of the first request but 
will have missed the first df = t' – tc minutes of that 
stream.  As shown on Figure 2, the server will t hus 
schedule a full tap starting at time tf = t' + Dpp and 
ending at time t' + Dpp + df.   

3. Consider now a third request arriving at time t" such 
that t' < t'' < tf + Dpp.  That request will arrive before 
the beginning of the full tap that was scheduled for 
the second request. It will be able to find most data it 
needs from the complete stream and the full tap but 
will still need t'' – t' minutes of additional data.  
Rather than start an extra tap stream for that request, 
we will extend the duration of the last full tap by  
t'' – t' minutes. 

4. A fourth request arriving after the beginning of the 
full tap would either require a new full tap if it 
arrives before the end of the complete stream or a 
new complete stream if it arrives after that.   

This informal description implicitl y assumes that the 
server will always allocate a tap stream to any incoming 
request whenever it can, that is, as long as a complete 
stream is still active.  Carter and Long [2] found that it 
was much more eff icient to stop the tapping earlier and 
then start a new complete stream.  To that effect, they 
proposed a criterion based on the average cost of all 
requests sharing the same complete stream.  We found 
that their criterion did not work well i n our case due to the 
presence of numerous cases where no tap was necessary. 

As one can see in Figure 3, the STPP protocol uses a 
much simpler criterion: it restarts a new complete stream 

whenever the duration of the new tap stream exceeds a 
given threshold θ, which must satisfy the condition 
θ ≤ D – Dpp. 

We have not yet discussed how the preloaded 
segments of each video are distributed to the customer 
STB’s.  The task of distributing these data will be 
assigned to one or two dedicated channels that will 
continuously broadcast the first Dpp minutes of all videos 
that are currently offered for viewing.  Any change in the 
set of videos being broadcast will require each STB to 
download the first Dpp minutes of the new videos being 
offered and to store them on its hard drive.  Our protocol 
will t hus need a mechanism allowing the VOD server to 
notify the STB’s that they have new data to download but 
this mechanism could be as simple as agreeing upon some 
predefined time.  It might also be more practical not to 
require all customers to have in their STB the first Dpp 
minutes of all videos that are currently offered for 
viewing.  Two good candidates for this option are less 
frequently requested videos and customers joining the 
service either for the first time or after a power failure. 
One of the most attractive options for reducing the storage 
costs of our protocol is to begin each program by one or 
two trailers announcing future releases.  This would not 
be very different of what is being done today in movie 
theaters, on videocassettes or on DVDs.  The main 
advantage of this solution is that a small number of 
trailers could be shared among a much larger number of 
videos. 

 



Assumptions: 

D is the duration of the video 
first Dpp minutes of video are preloaded in the customer STB 
tc is start time of last complete stream 
tf is start time of last full tap 
df is duration of last full tap 
θ ≤ D – Dpp is policy threshold 
a new request arrives at time ta 

Algorithm: 

if  ta≤ tc  then 

STB will receive data from complete stream starting at tc 

else if ta ≤ tf  then 

increase duration of last full tap by ta – (tc  + df) 
STB will receive data from the complete stream starting at tc  

and the full tap starting at tf 

else if  ta – tc ≤ θ  then  

start full tap at tf = ta + Dpp 

set full tap duration df = ta – tc 
STB will receive data from complete stream starting at tc  

and full tap starting at tf 

else 

start complete stream at tc = ta + Dpp 
STB will receive data from complete stream starting at tc  

end if 

Figure 3.  The stream tapping protocol with partial preloading. 

We saw in a previous example that we can store the 
first 10 minutes of 80 videos on a 30-Gigabyte hard drive.  
Requiring customers to watch a 3-minute trailer before 
each video would allow us to store on the same hard drive 
the first 7 minutes of 112 videos while leaving enough 
space for 5 different trailers. 

4. Performance Analysis 

To evaluate the performance of our protocol we wrote 
a simple simulation program assuming that request 
arrivals for a particular video were distributed according 
to a Poisson law.  The program was written in CSIM and 
simulated requests for a single two-hour video.  Since no 
data are shared among customers watching different 
videos, the total bandwidth of a server distributing several 
videos will always be equal to the sum of the bandwidths 
it dedicates to each video. 

We considered six possible durations for the preloaded 
part of the video, namely 3 minutes, 5 minutes, 8 minutes, 
10 minutes, 15 minutes, and 20 minutes.  We measured 
the average bandwidth of the STPP protocols at request 
arrival rates varying between one and one thousand 
requests per hour.  We did not consider higher arrival 
rates as we found the protocol bandwidth requirements to 
stabilize around 60 requests per hour.  Each simulation 
run involved 200,000 arrivals over a simulated time 
period of at least 200 hours.  We assumed for all runs the 
same threshold value of 35 minutes for θ because it 
provided the best average results over all arrival rates and 
all durations of the preloaded part. 

Our results are summarized in Figure 4.  Request 
arrival rates are expressed in arrivals per hour and 
bandwidths are expressed in multiples of the video con-
sumption rate.  We assumed a video duration of two hours 
and an unlimited buffer size for stream tapping. 
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Figure 3.  Compared average bandwidth requirements of stream tapping, skyscraper broadcasting, new 
pagoda broadcasting and stream tapping with partial preloading for a two-hour video and various durations of 
the preloaded portion of the video. 

The two horizontal lines represent the bandwidth 
requirements of the skyscraper broadcasting and the 
polyharmonic broadcasting protocols for a maximum 
waiting time of one minute.  Both protocols provide 
interesting benchmarks against which to compare the 
bandwidth requirements of our STPP protocol.  As we 
saw earlier, skyscraper broadcasting [10] is the sole 
broadcasting protocol that never requires the STB to 
receive more than two streams at the same time.  Hence it 
has the same client bandwidth requirements as our STPP 
protocol.  Polyharmonic broadcasting [14] is the 
broadcasting protocol that requires the least amount of 
server bandwidth to guarantee a given maximum waiting 
time.  The price to pay for this excellent performance is 
higher demands on the STB hardware, as the STB has to 
receive data broadcast over one hundred to one thousand 
low bandwidth channels. 

As Figure 4 indicates, our STTP protocol only requires 
three minutes of preloaded data per video to perform 
better than skyscraper broadcasting at every request 
arrival rate.  Increasing the duration of these preloaded 
data to eight minutes suffices to guarantee that STPP will 
also outperform polyharmonic broadcasting. 

These results are even more impressive if we consider 
that the STTP protocol provides instant access to the 
video while skyscraper broadcasting introduces an 
average delay of 30 seconds and polyharmonic 
broadcasting imposes a fixed delay of one minute.  In 

addition, the polyharmonic protocol requires each STB to 
receive data from the video server at a maximum 
bandwidth equal to 5.18 times the video consumption 
rate. 

Even lower bandwidths can be achieved by increasing 
the duration of the preloaded segment to 10, 15 or 20 
minutes.  Unfortunately, these bandwidth savings obey to 
the law of diminishing returns because equal amounts of 
additional storage space result in ever decreasing 
bandwidth savings.  For this reason, we see little 
motivation for preloading much more than 15 minutes of 
video data per video. 

While the STTP protocol requires less bandwidth than 
stream tapping whenever the request arrival exceeds 20 
requests per hour, it does not compare as favorably with 
stream tapping at arrival rates.  The worst performance 
gap occurred at one request per hour where our protocol 
required up to 29 percent more bandwidth than stream 
tapping.  We should note that this only occurred when the 
protocol preloaded three minutes of video data per video.  
In fact, the gap becomes insignificant when the protocol 
preloads at least 15 minutes of data per video. 

Two factors can explain this performance gap.  First, 
the stream tapping protocol we used as benchmark allows 
unlimited extra tapping and requires a STB capable of 
receiving video data at more than twice the video 
consumption rate.  Second, the fixed 35-minute threshold 
we used in all our simulations resulted in a rather poor 



threshold at low request arrival rates.  Increasing the 
threshold to 70 minutes at one request per hour would 
reduce the bandwidth requirements of our protocol by 9 to 
10 percent.  As a result a better-tuned STPP protocol 
preloading at least 15 minutes of video data would have a 
lower bandwidth requirements than stream tapping for all 
request arrival rates.  Achieving even lower bandwidths 
would require a more complex protocol integrating some 
features from optimal stream merging [5, 6]. 

A last issue to address is the asymptotic performance 
of the protocol at very high customer arrival rates.  This is 
clearly an exceptional situation.  It could only happen in a 
large metropolitan and would require a large percentage 
of the customer base to watch the same video the same 
night. 

Under very heavy load, the STPP protocol will 
continuously repeat a cycle starting with the arrival of a 
request causing a new complete stream and ending with 
the arrival of the next request causing a new complete 
stream.  Let tc and tc + ∆ respectively designate the arrival 
times of these two requests. 

Since the complete stream resulting from the first 
request of the cycle will be delayed by Dpp minutes, all 
requests arriving during the Dpp first minutes of the cycle 
will get all their data from the compete stream.  All 
requests arriving during the next Dpp minutes, that is 
within the time interval (tc + Dpp, t + 2Dpp] will have 
missed at most Dpp minutes from the complete stream and 
will share a common tap stream of duration Dpp minutes. 

Similarly all requests that arrive during the following 
Dpp minutes will have missed at most 2Dpp minutes from 
the complete stream and will share a common tap stream 
of duration 2Dpp minutes.  More generally, all requests 
arriving within the time interval (tc + kDpp, tc + (k + 1)Dpp] 
with 0 ≤ k  < θ/Dpp+ 1 will have missed at most kDpp 
minutes from the complete stream and will share a 
common tap stream of duration kDpp minutes. 

The cycle will end when k ≥ θ /Dpp + 1 because the 
protocol will then restart a new complete stream rather 
than starting a tap of initial duration d ≥ θ. 

The total duration of the cycle will thus be equal to 
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For instance, a STPP protocol preloading the first eight 
minutes of each video will never require more than 4.8 
times the video consumption rate to distribute a two-hour 
video, which is well below the requirements of the 
polyharmonic broadcasting protocol [14]. 

5. Discussion 

The critical assumption in our proposal is the necessity 
of having a disk drive in each customer STB.  It will 
necessarily impact the cost of this STB and would result 
in additional outlays.  One may therefore wonder whether 
the savings in server bandwidth will be sufficient to 
compensate these outlays.   

The best answer to this question is mentioning the 
several additional advantages of having a very large 
buffer in each STB.  First, we could keep in the STB 
buffer the previously viewed portion of each video.  This 
would allow a very inexpensive implementation of 
interactive VOD because the STB could handle all pause 
and rewind requests [16].  The video server would still 
have to handle fast forward commands but we can expect 
this command to be infrequently used by most viewers.  
The STB could indeed store in its buffer the last thirty to 
sixty minutes of any program being watched to provide 
the same pause and rewind features as a ReplayTV [17], a 
TiVo[18], or an UltimateTV [19] STB. 

A very large buffer would also allow a more efficient 
utilization of the channel bandwidth.  Future VOD 
services will distribute videos in compressed form and the 
bandwidth requirements of these videos will depend on 
the rate at which the images being displayed change [1, 
8].  For instance, daytime action scenes and cartoons will 
require more bandwidth than slower moving scenes and 
night scenes.  The buffer sizes of conventional diskless 
STBs are limited by memory cost considerations.  Hence 
buffer overflow is as a serious concern as buffer 
underflow.  As a result, the video server will have to 
transmit at a lower bandwidth during slower moving 
scenes.  A STB with a disk drive will not have that 
problem.  Hence the video server will always transmit at 
the maximum bandwidth that has been allocated to the 
channel.  Most video data would arrive sufficiently ahead 
of time to reduce or even eliminate bandwidth 
fluctuations  [13].   

6. CONCLUSION 

Most existing distribution protocols for video-on-
demand are tailored for a specific range of video request 
arrival rates and perform poorly beyond that range.  



Reactive protocols li ke stream tapping, patching or 
dynamic skyscraper do not anticipate user requests and 
perform best when the request arrival rate does not exceed 
twenty requests per hour for a two-hour video.  Above 
that, they require much more bandwidth than 
broadcasting protocols.   

We have presented a stream tapping protocol that 
preloads in the customer set-top box the first few minutes 
of all popular videos.  As a result, our stream tapping with 
partial preloading (STPP) protocol provides true instant 
access to the videos.  In addition, it never requires the 
customer STB to receive video data at more than twice 
the video consumption rate. 

We found that our STPP protocol only needed to have 
the first three minutes of a two-hour video preloaded in 
the customer STB to be able to distribute it at a lower cost 
than the best existing broadcasting protocols.  We also 
found that our protocol performed much better than 
stream tapping with unlimited extra tapping at high 
request arrival rates.  In addition, an STTP protocol 
preloading the first eight minutes of the same two-hour 
video would always outperform the best harmonic 
broadcasting protocols. 

References 

[1] Beran, J., R. Sherman, M. Taqqu, and W. 
Willi nger.  Long-range dependence in variable bit-
rate video traff ic.  IEEE Transactions on Com-
munications, 43:1566–1579, 1995. 

[2] Carter, S. W. and D. D. E. Long.  Improving video-
on-demand server eff iciency through stream 
tapping.  Proceedings of the 5th International 
Conference on Computer Communications and 
Networks, pages 200-207, Sep. 1997.  

[3] S. W. Carter and D. D. E. Long.  Improving 
bandwidth eff iciency on video-on-demand servers.  
Computer Networks and ISDN Systems, 30(1–
2):99–111. 

[4] Dan, A., P. Shahabuddin, D. Sitaram and D. 
Towsley.  Channel allocation under batching and 
VCR control in video-on-demand systems.  
Journal of Parallel and Distributed Computing, 
30(2):168–179, Nov. 1994. 

[5] Eager, D. L. and M. K. Vernon.  Dynamic 
skyscraper broadcast for video-on-demand.  
Proceedings of the 4th International Workshop on 
Advances in Multimedia Information Systems, 
pages 18–32, Sep. 1998. 

[6] Eager, D. L., M. K. Vernon and J. Zahorjan.  
Minimizing bandwidth requirements for on-
demand data deli very.  Proceedings of the 5th 

International Workshop on Advances in Multime-
dia Information Systems, , Oct. 1999. 

[7] Gao, L., Z.-L Zhang and D. Towsley.  Catching 
and selective catching: eff icient latency reduction 

techniques for deli vering continuous multimedia 
streams.  Proceedings of the 1999 ACM Multime-
dia Conference, pages 203–206, Nov. 1999. 

[8] Garrett, M. and W. Willi nger.  Analysis, modeling 
and generation of self-similar VBR video traff ic.  
Proceedings of the ACM SIGCOMM '94 
Conference, pages 269–280, Aug. 1994. 

[9] Golubchik, L., J. Lui, and R. Muntz.  Adaptive 
piggybacking: a novel technique for data sharing in 
video-on-demand storage servers.  ACM Multi -
media Systems Journal, 4(3): 140–155, 1996. 

[10] Hua, K. A. and S. Sheu.  Skyscraper broadcasting: 
a new broadcasting scheme for metropoli tan video-
on-demand systems.  Proceedings of the ACM 
SIGCOMM '97 Conference, pages 89–100, Sept. 
1997. 

[11] Hua, K. A., Y. Cai, and S. Sheu.  Patching: a multi -
cast technique for true video-on-demand services.  
Proceedings of the 6th ACM Multimedia 
Conference, pages 191–200, Sep. 1998. 

[12] L. Juhn and L. Tseng.  Harmonic broadcasting for 
video-on-demand service.  IEEE Transactions on 
Broadcasting, 43(3):268–271, Sep. 1997. 

[13] McManus, J. M. and K. W. Ross, “Video-on-
demand over ATM: constant rate transmission and 
transport,” IEEE Journal on Selected Areas in 
Communication, 14(6):1087–1098, 1996. 

[14] Pâris, J.-F., S. W. Carter and D. D. E. Long.  A low 
bandwidth broadcasting protocol for video on 
demand.  Proceedings of the 7th International 
Conference on Computer Communications and 
Networks (ICCCN '98), pages 690–697, Oct. 1998. 

[15] Pâris, J.-F., D. D. E. Long and P. E. Mantey.  A 
zero-delay broadcasting protocol for video on 
demand.  Proceedings of the 1999 ACM Multime-
dia Conference, pages 189–197, Nov. 1999. 

[16] Pâris, J.-F.  An interactive broadcasting protocol 
for video-on-demand, Proceedings of the 20th 
International Performance of Computers and 
Communication Conference, pages 657–664, April 
2001. 

[17] ReplayTV.  http://www.replay.com/. 
[18] TiVo Technologies.  http://www.tivo.com/. 
[19] UltimateTV.  http://www.ultimatetv.com/. 
[20] Viswanathan, S. and T. Imielinski.  Metropolitan 

area video-on-demand service using pyramid 
broadcasting.  ACM Multimedia Systems Journal, 
4(4):197–208, 1996. 


