A Stream Tapping Protocol with Partial Preloading

Jehan-Francois Paris

Department of Computer Science
University of Houston
Houston, TX 772043475

paris@cs.uh.edu

Abstract

Sream tappng-also known as patching—can reduce
the bandnidth requirements of video-on-demand services
by allowing rew customer requests to “tap’ the data
streams of other requests for the same video. Previous
studies have shoan that stream tapping works best when
the request arrival rate does not excee ten to twenty
requests per hour for a two-hour video. At higher arrival
rates, it performs much worse than roadcasting
protocols.

To overcome this limitation, we propcse a stream
tappng protocol that preloadsin the austomer set-top box
the first few minutes of all popuar videos. To offset the
cost of the addtiond buffer space our protocol neve
requires the set-top b to receve data from the \ideo
server at more than twice vdeo consumption rate. Our
simulations indicate that preloadng the first eight min-
utes of a two-hour video was enoughto achieve lower
bandnvidth requirements than the best broadcasting
protocols at any request arrival rate.

1. Introduction

One of the reasons behind the dow deployment of
video-on-demand (VOD) services is the high cost of
providing these services. These high costs result mostly
from the high demands that VOD makes upon video
servers. Asauming that the videos are in MPEG-2
format, each user request will require the delivery of
around 5 Megabits of data per second. Hence a video
server alocating a separate stream of data to each request
would need an aggregate bandwidth of 5 Gigabit/s to
accommodate 1,000 concurrent users.

This stuation has led to numerous proposals aiming at
reducing the bandwidth requirements of VOD services.
These proposals can be broadly classfied into two
groups. Proposals in the first group are said to be
proactive because they distribute each video according to
a fixed schedule that is not affeded by the presence-or

the absence-of requests for that video. They are aso
known as broadcasting protocols. Some of the best-
known broadcasting protocols are staggered broadcasting
[AIm96], pyramid broadcasting [20], skyscraper
broadcasting [10], harmonic broadcasting [12] and its
variants [14].

Other solutions are purely reactive: they only transmit
data in response to a spedfic austomer request. Unlike
proactive protocols, reactive protocols do not consume
bandwidth in the absence of customer requests. The best
known reactive protocols include piggybacking [9],
stream tappng [2]-also known as patching [11]-and
dynamic skyscraper [5].

The main advantage of broadcasting protocols is that
they scale up extremely wel. Since broadcasting
protocols distribute each video according to a fixed
schedule, the number of incoming user requests does not
affed their bandwidth requirements. Hence they are
espedally suited to the distribution of videos that are in
very high demand. The most efficient broadcasting
protocols only require a bandwidth equal to six times the
video consumption rate to guaranteethat no customer will
have to wait more than one minute before starting to
watch atwo-hour video.

Despite their low bandwidth requirements,
broadcasting protocols have their own limitations. First,
the most efficient broadcasting protocols require a set-top
box (STB) capable of receving data & upto sSix or seven
times the video consumption rate. Those that have lower
client bandwidth requirements also put more demands on
the video server. While Hua and Sheu's skyscraper
broadcasting [10] never requires the STB to receve more
than two streams at the same time, it requires ten times
the video consumption rate to guarantee a maximum
customer waiting time of lessthan a minute for a two-
hour video. Seoond, most broadcasting protocols require
a STB capable of storing locally up to 60 percent of each
video being watched. Finally, they waste a considerable
amount of bandwidth whenever the request arrival rate
falls below ten to twenty requests per hour for the same
two-hour video.

<—AC—><—AC—>

c [] []

- Ab—><— Ab—>

]

Stream
O

B

2B

3B 43

Time (since the start of complete stream a)

Figure 1: How stream tapping works

We propose here a different approach. First, we will
use a reactive distribution protocol because these
protocols perform very well at low to medium request
arrival rates.

Semnd, we will never require the STB to receve data
at more than twicethe video consumption rate, which will
greatly smplify the design of the STB disk contraller.
Finaly, we will keg the server bandwidth low by
preloading in the austomer STB the first 8 to 15 minutes
of all popular videos, that is, between 300 and 563
Megabytes of data per video in MPEG-2 format. As a
result, our stream tapping protocol with partial
preloading will trade excessbandwidth for an increase of
the size of the STB buffer. All VOD distribution
protocols that minimize the server bandwidth require a
STB buffer of the order of a few Gigabytes. In the
present state of memory tedhnology, this implies the
presenceof adisk drivein each STB. The sole additional
requirement of our protocol isto have adisk drive apable
of storing twenty to thirty Gigabytes of datain each STB.
Such disk drives &l now at a retail prices below one
hundred dollars.

2. PreviousWork

Two o the erliest reactive distribution protocols are
batching and piggybacking. Batching [4] reduces the
bandwidth requirements of individual user requests by
multi casting one single data stream to all customers who
request the same video at the sametime. Some strategies
even involve delaying customer requests for a short
period of time in order to increase the number of
customers daring the same data stream. Piggybacking
[9] can be used alone or in combination with batching. It
adjusts the display rates of overlapping requests for the
same video until their corresponding data streams can be
merged into a single stream. Consider for instance, two

requests for the same video separated by atimeinterval of
three minutes. Increasing the display rate of the second
stream by 10 percent will alow it to catch up with the
first stream after 30 minutes.

Stream tapping [2, 3] or patching [11], assumes that
each customer STB has a buffer capable of storing at least
10 minutes of video data. This buffer will allow the STB
to “tap” into streams of data on the VOD server originally
created for other clients, and then store these data until
they are needed. In the best case, clients can get most of
their data from an existing stream.

In particular, stream tapping defines three types of
streams. Complete streams read out of a video in its
entirety. These are the streams clients typicall y tap from.
Full tap streams can be used if a complete stream for the
same video started A < 3 minutesin the past, where 3 is

the size of the dient buffer, measured in minutes of video
data. In this case, the dient can begin receving the
complete stream right away, storing the data in its buffer.
Simultaneoudly, it can receve the full tap stream and use
it to display the first A minutes of the video. After that,
the dient can consume diredly from its buffer, which will
then always contain a moving A-minute window of the
video. Stream tapping also defines partial tap streams,
which can be used when A < B. In this case dients must
go through cycles of filling up and then emptying their
buffer since the buffer is not large enough to account for
the cmplete differencein video position.

To usetap streams, clients only haveto receve at most
two streams at any one time. If they can actually handle a
higher bandwidth than this, they can use an option to the
protocol called extra tapping. Extra tapping alows
clients to tap data from any stream on the VOD server,
and not just from complete streams. Figure 1 shows sme
sample streams from the VOD server's perspedive.
Stream a is a complete stream, and it must exist for the

entirety of the video. Stream b is afull tap stream starting
A, minutes after stream a. It only has to exist for A,

minutes. Stream c is another full tap stream, but it isable
to use extra tapping to tap data from stream b, and so its
servicetimeis much smaller than A..

Eager and Vernon's dynamic skyscraper broadcasting
(DSB) [5] is areactive protocol based on Hua and Sheu’s
skyscraper broadcasting protocol [10]. Like skyscraper
broadcasting, it never requires the STB to receve more
than two streams at the same time. Their more recent
hierarchical multicast stream merging (HMSM) protocol
requires less &rver bandwidth than DSB to handle the
same request arrival rate. Its bandwidth requirements are
indeal very close to the upper bound of the minimum
bandwidth for a reactive protocol that does not require the
STB to recave more than two streams at the same time

n In%+ Ni E
2 n;

where n, =1+ \/E)IZ and N; isthe request arrival rate.

Selective catching combines bah reactive and
proactive approaches. It dedicates a certain number of
channels for periodic broadcasts of videos whil e using the
other channels to allow incoming requests to catch up
with the arrent broadcast cycle. As a result, its
bandwidth requirements are O(log(A, L;) where A, is the
request arrival rate and L, the duration of the video [7].

Partial preloading [15] loads in the austomer STB the
first few minutes of the top 10to 20 videos in order to
provide zero-delay accessto these videos and reduce the
server bandwidth of the broadcasting protocol distributing
the remainder of the video.

3. Our Protocol

Stream tapping, dynamic skyscraper broadcasting and
hierarchical multicast stream merging have two major
advantages over broadcasting protocols. First, they
provide true instant access to the video. Seand, they
require much lessbandwidth than broadcasting protocols
to distribute videos that are not requested more than ten
times per hour for a two-hour video.

Unfortunately, the same is not true at higher request
arrival rates. Sincethey handle all customer requests one
by one, these threeproactive protocols require much more
bandwidth than most broadcasting protocols whenever the
request arrival rate exceals 30 to 60 requests per hour.

One solution would be to batch requests together so that
several incoming requests could share the same data
streams. The sole probem with this approach is the
delays it would introduce As we said earlier, all three
proactive protocols outperform the best broadcasting
protocols when the rate remains below ten requests per
hour for a two-hour video. Achieving the same
performance at any request arrival rate would require a
batching interval of six minutes, which means that
customers wanting to watch a video would have to wait
an average of three minutes. While smaller batching
intervals are possble, they would have much less effed
on the server bandwidth.

We propose another solution. Over the last few years,
disk drive @pacities have been doubling every eighteen
months. One @n now find 30 Gigabyte hard drives at
retail prices below one hundred dollars. We @an store on
one of these hard drives more than 13 hours of video data
asaiming a very comfortable bandwidth of 5 Megahits per
seand. Thiswould allow usto store the first 10 minutes
of 80 videos or the first 15 minutes of 53 videos.
Preloading thefirst few minutes of all videosin the server
library would gve us the same bandwidth reduction as
batching all i ncoming requests and all ow us to continue a
zero-delay poalicy.

The impact of partial preloading on the protocol
bandwidth isindeed so strong that it all ows us to simplify
the stream tapping protocol and eliminate al cases of
extra tapping that require the aistomer STB to receve
video data from more than two channels at the sametime.
This will greatly smplify the design of the STB disk
controller and contribute to dfset the st of alarger disk
drive.

Let us consider a video o duration D and let us
assume that the first Dy, minutes of that video are already
present in the austomer STB. Four cases have to be
considered:

1. When thefirst request for avideo arrives at the server
at time t,, the server all ocates a complete stream to
the video. Since the austomer STB already has the
first Dy, minutes of the video on its hard drive, the
complete stream can be delayed by Dy, minutes. As
shown on Figure 2, the complete stream will start at
timet, =t + Dy, and last until t, + D. Thankstothis
delay, al requests arriving in thetime interval [t,, t.]
will be able to get al the data they need from the
compl ete stream.

Third request at t" < t' + D,

L

Extra Tap
Second request at t' appended to tap
g Tap ¢
a Delay Dy,
First request Complete sream

Delay D,

Time (since arival of first request)

Figure 2. How the STPPprotocol operates.

2. Asaume now that a second request arrives at time t'
such thatt. <t' <t, + D. Therequest will sill beable
to “tap” the complete stream of the first request but
will have missd the first d; = t' —t. minutes of that
stream. As down on Figure 2, the server will thus
schedule a full tap starting at time t; =t' + Dy, and
ending at timet' + Dy, + .

3. Consider now athird request arriving at timet" such
that t' <t" <t; + Dp,. That request will arrive before
the beginning of the full tap that was sheduled for
the second request. It will be able to find most data it
neals from the cmplete stream and the full tap but
will dtill need t" —t' minutes of additional data
Rather than start an extra tap stream for that request,
we will extend the duration of the last full tap by
t" —t' minutes.

4. A fourth request arriving after the beginning of the
full tap would ether require a new full tap if it
arrives before the end of the omplete stream or a
new complete stream if it arrives after that.

This informal description implicitly asaumes that the

server will always all ocate a tap stream to any incoming

request whenever it can, that is, as long as a complete
stream is gill active. Carter and Long [2] found that it
was much more dficient to stop the tapping earlier and
then start a new complete stream. To that effed, they
proposed a criterion based on the average st of all
requests saring the same mwmplete stream. We found
that their criterion did not work well i n our case duetothe
presence of numerous cases where no tap was necessary.
As one @n seein Figure 3, the STPP protocol uses a
much smpler criterion: it restarts a new complete stream

whenever the duration of the new tap stream excedls a
given threshold 6, which must satisfy the ndition
6<D - D

We have not yet discused how the preloaded
segments of each video are distributed to the aistomer
STB's. The task of distributing these data will be
assgned to ane or two dedicated channels that will
continuously broadcast the first D,, minutes of all videos
that are arrently offered for viewing. Any changein the
set of videos being broadcast will require each STB to
download the first Dy, minutes of the new videos being
offered and to store them on its hard drive. Our protocol
will thus need a mechanism al owing the VOD server to
notify the STB’s that they have new data to download but
this mechanism could be as smple as agreeng upon some
predefined time. It might also be more practical not to
require al customers to have in their STB the first Dy,
minutes of al videos that are arrently offered for
viewing. Two good candidates for this option are less
frequently requested videos and customers joining the
service ether for the first time or after a power failure.
One of the mogt attractive options for reducing the storage
costs of our protocal is to begin each program by one or
two trailers announcing future releases. This would not
be very different of what is being done today in movie
theaters, on videocassttes or on DVDs. The main
advantage of this olution is that a smal number of
trailers could be shared among a much larger number of
videos.

Assumptions:

D is the duration of the video
first Dy, minutes of video are preloaded in the customer STB

tc is start time of last complete stream

t; is start time of last full tap
ds is duration of last full tap

6< D — Dy, is policy threshold
a new request arrives at time t,

Algorithm:

if t.<t;. then

STB will receive data from complete stream starting at t.

else if t, <t then

increase duration of last full tap by t, — (t. + dy)
STB will receive data from the complete stream starting at t.
and the full tap starting at t;

else if t;—t. < 6 then

start full tap at t; = to + Dpp
set full tap duration df = t,—t;
STB will receive data from complete stream starting at t.

and full tap starting at t;

else

start complete stream at t; =ty + Dy,
STB will receive data from complete stream starting at t.

endif

Figure 3. The stream tapping protocol with partial preloading.

We saw in a previous example that we can store the
first 10 minutes of 80 videos on a 30-Gigabyte hard drive.
Requiring customers to watch a 3-minute trailer before
each video would allow usto store on the same hard drive
the first 7 minutes of 112 videos while leaving enough
space for 5 different trailers.

4. Performance Analysis

To evaluate the performance of our protocol we wrote
a smple simulation program assuming that request
arrivals for a particular video were distributed according
to a Poisson law. The program was written in CSIM and
simulated requests for a single two-hour video. Since no
data are shared among customers watching different
videos, the total bandwidth of a server distributing several
videos will always be equal to the sum of the bandwidths
it dedicates to each video.

We considered six possible durations for the preloaded
part of the video, namely 3 minutes, 5 minutes, 8 minutes,
10 minutes, 15 minutes, and 20 minutes. We measured
the average bandwidth of the STPP protocols at request
arrival rates varying between one and one thousand
requests per hour. We did not consider higher arrival
rates as we found the protocol bandwidth requirements to
stabilize around 60 requests per hour. Each simulation
run involved 200,000 arrivals over a simulated time
period of at least 200 hours. We assumed for al runsthe
same threshold value of 35 minutes for 6 because it
provided the best average results over all arrival ratesand
all durations of the preloaded part.

Our results are summarized in Figure 4. Request
arrival rates are expressed in arrivals per hour and
bandwidths are expressed in multiples of the video con-
sumption rate. We assumed a video duration of two hours
and an unlimited buffer size for stream tapping.

Bandwidth

—&— Stream Tapping
— =Skyscraper
—{— STPP-3 min
A\ —/—STPP-5min
= = -Polyharmonic
—%—STPP-8 min

X— STPP-10 min
—O—STPP-15 min
L +—STPP-20 min

1 10

100 1000

Requests per hour

Figure 3.

Compared average bandwidth requirements of stream tapping, skyscraper broadcasting, new

pagoda broadcasting and stream tapping with partial preloading for a two-hour video and various durations of

the preloaded portion of the video.

The two horizontal lines represent the bandwidth
requirements of the skyscraper broadcasting and the
polyharmonic broadcasting protocols for a maximum
waiting time of one minute. Both protocols provide
interesting benchmarks against which to compare the
bandwidth requirements of our STPP protocol. As we
saw earlier, skyscraper broadcasting [10] is the sole
broadcasting protocol that never requires the STB to
receive more than two streams at the sametime. Henceit
has the same client bandwidth requirements as our STPP
protocol. Polyharmonic broadcasting [14] is the
broadcasting protocol that requires the least amount of
server bandwidth to guarantee a given maximum waiting
time. The price to pay for this excellent performance is
higher demands on the STB hardware, as the STB has to
receive data broadcast over one hundred to one thousand
low bandwidth channels.

AsFigure 4 indicates, our STTP protocol only requires
three minutes of preloaded data per video to perform
better than skyscraper broadcasting at every request
arrival rate. Increasing the duration of these prel oaded
data to eight minutes suffices to guarantee that STPP will
also outperform polyharmonic broadcasting.

These results are even more impressive if we consider
that the STTP protocol provides instant access to the
video while skyscraper broadcasting introduces an
average delay of 30 seconds and polyharmonic
broadcasting imposes a fixed delay of one minute. In

addition, the polyharmonic protocol requires each STB to
receive data from the video server at a maximum
bandwidth equal to 5.18 times the video consumption
rate.

Even lower bandwidths can be achieved by increasing
the duration of the preloaded segment to 10, 15 or 20
minutes. Unfortunately, these bandwidth savings obey to
the law of diminishing returns because equal amounts of
additional storage space result in ever decreasing
bandwidth savings. For this reason, we see little
motivation for preloading much more than 15 minutes of
video data per video.

While the STTP protocol requires less bandwidth than
stream tapping whenever the request arrival exceeds 20
reguests per hour, it does not compare as favorably with
stream tapping at arrival rates. The worst performance
gap occurred at one request per hour where our protocol
required up to 29 percent more bandwidth than stream
tapping. We should note that this only occurred when the
protocol preloaded three minutes of video data per video.
In fact, the gap becomes insignificant when the protocol
preloads at least 15 minutes of data per video.

Two factors can explain this performance gap. First,
the stream tapping protocol we used as benchmark allows
unlimited extra tapping and requires a STB capable of
recelving video data at more than twice the video
consumption rate. Second, the fixed 35-minute threshold
we used in all our simulations resulted in a rather poor

threshold at low request arrival rates. Increasing the
threshold to 70 minutes at one request per hour would
reduce the bandwidth requirements of our protocol by 9 to
10 percent. As a result a better-tuned STPP protocol
preloading at least 15 minutes of video data would have a
lower bandwidth requirements than stream tapping for all
request arrival rates. Achieving even lower bandwidths
would require a more complex protocol integrating some
features from optimal stream merging [5, 6].

A last issue to address is the asymptotic performance
of the protocol at very high customer arrival rates. Thisis
clearly an exceptional situation. It could only happenin a
large metropolitan and would require a large percentage
of the customer base to watch the same video the same
night.

Under very heavy load, the STPP protocol will
continuously repeat a cycle starting with the arrival of a
request causing a new complete stream and ending with
the arrival of the next request causing a new complete
stream. Let t. and t.+ A respectively designate the arrival
times of these two requests.

Since the complete stream resulting from the first
request of the cycle will be delayed by Dp, minutes, all
requests arriving during the Dy, first minutes of the cycle
will get all their data from the compete stream. All
requests arriving during the next Dy, minutes, that is
within the time interval (t.+Dpp, t+2Dp,] will have
missed at most Dy, minutes from the compl ete stream and
will share a common tap stream of duration Dy, minutes.

Similarly all requests that arrive during the following
Dpp, minutes will have missed at most 2Dy, minutes from
the complete stream and will share a common tap stream
of duration 2Dy, minutes. More generaly, al requests
arriving within the time interval (t;+KkDpp, tc+ (K+ 1)Dpp]
with 0<k <6/Dp+1 will have missed at most kDp,
minutes from the complete stream and will share a
common tap stream of duration kD, minutes.

The cycle will end when k= 8/Dy, + 1 because the
protocol will then restart a new complete stream rather
than starting atap of initial duration d = 6.

The total duration of the cycle will thus be equal to
A = (Ko +)D,, With

Og O

O
pp E
and the duration of all the data streams initiated in that
timeinterval equal to

k =

max

Kina
T=(D-D,+ ;(k—l)Dpp)b

where b represents the video consumption rate.
The average bandwidth B of the protocol is then
obtained by dividing T by A, which gives

A (kmax +1)Dpp
For instance, a STPP protocol preloading the first eight
minutes of each video will never require more than 4.8
times the video consumption rate to distribute a two-hour
video, which is well below the requirements of the
polyharmonic broadcasting protocol [14].

kr“a)(
T b (D-Dy, + Zk:l(k ~DDp)

5. Discussion

The critical assumption in our proposal isthe necessity
of having a disk drive in each customer STB. It will
necessarily impact the cost of this STB and would result
in additional outlays. One may therefore wonder whether
the savings in server bandwidth will be sufficient to
compensate these outlays.

The best answer to this question is mentioning the
several additional advantages of having a very large
buffer in each STB. First, we could keep in the STB
buffer the previoudly viewed portion of each video. This
would allow a very inexpensive implementation of
interactive VOD because the STB could handle all pause
and rewind requests [16]. The video server would till
have to handle fast forward commands but we can expect
this command to be infrequently used by most viewers.
The STB could indeed store in its buffer the last thirty to
sixty minutes of any program being watched to provide
the same pause and rewind featuresas a ReplayTV [17], a
TiVo[18], or an UltimateTV [19] STB.

A very large buffer would also allow a more efficient
utilization of the channel bandwidth. Future VOD
services will distribute videos in compressed form and the
bandwidth regquirements of these videos will depend on
the rate at which the images being displayed change [1,
8]. For instance, daytime action scenes and cartoons will
require more bandwidth than sower moving scenes and
night scenes. The buffer sizes of conventional diskless
STBs are limited by memory cost considerations. Hence
buffer overflow is as a serious concern as buffer
underflow. As a result, the video server will have to
transmit at a lower bandwidth during slower moving
scenes. A STB with a disk drive will not have that
problem. Hence the video server will always transmit at
the maximum bandwidth that has been allocated to the
channel. Most video data would arrive sufficiently ahead
of time to reduce or even eiminate bandwidth
fluctuations [13].

6. CONCLUSION

Most existing distribution protocols for video-on-
demand are tailored for a specific range of video request
arrival rates and perform poorly beyond that range.

Reactive protocols like stream tapping, patching or
dynamic skyscraper do not anticipate user requests and
perform best when the request arrival rate does not exceal
twenty requests per hour for a two-hour video. Abowe
that, they require much more bandwidth than
broadcasting protocols.

We have presented a stream tapping protocol that
preloads in the auistomer set-top bax the first few minutes
of all popular videos. Asaresult, our stream tapping with
partial preloading (STPP protocol provides true instant
access to the videos. In addition, it never requires the
customer STB to receve video data & more than twice
the video consumption rate.

We found that our STPP protocol only needed to have
the first three minutes of a two-hour video preloaded in
the austomer STB to be able to distribute it at alower cost
than the best existing broadcasting protocols. We also
found that our protocol performed much better than
stream tapping with unlimited extra tapping at high
request arrival rates. In addition, an STTP protocol
preloading the first eight minutes of the same two-hour
video would aways outperform the best harmonic
broadcasting protocols.

References

[1] Beran, J, R. Sherman, M. Tagqu, and W.

Willi nger. Long-range dependencein variable bit-
rate video traffic. IEEE Transactions on Conr
munications, 43:1566-1579 1995

[2] Carter, S W.andD.D.E. Long. Improving video-
on-demand server efficiency through stream
tapping. Proceadings of the 5" Internationd
Conference on Computer Comrrunications and
Networks, pages 200-207, Sep. 1997.

[3] S.W.Carter and D. D. E. Long. Improving
bandwidth efficiency on video-on-demand servers.
Computer Networks andISDN Systems, 30(1—
2):99-111

[4] Dan, A., P. Shahabuddn, D. Sitaram and D.
Towdley. Channd all ocation under batching and
VCR contral in video-on-demand systems.
Journal of Parallel and Distributed Computing,
30(2):168-179 Nov. 1994

[5] Eager,D.L.and M. K. Vernon. Dynamic
skyscraper broadcast for video-on-demand.
Procealings of the 4" Internationa Workshop on
Advancesin Multimedia Information Sstems,
pages 18-32, Sep. 1998

[6] Eager,D. L., M.K.Vernon and J. Zahorjan.
Minimizing bandwidth requirements for on-
demand data delivery. Procedlings of the 5™
Internationd Workshop onAdvances in Multi me-
dia Information §stems, , Oct. 1999

[71 Gao, L., Z.-L Zhang and D. Towsley. Catching
and seledive atching: efficient latency reduction

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

tedhniques for delivering continuous multimedia
streams. Procealings of the 1999ACM Multi me-
dia Conference, pages 203-206, Nov. 1999
Garrett, M. and W. Willi nger. Analysis, modeling
and generation of self-similar VBR video traffic.
Procedalings of the ACM SGCOMM '94
Conference, pages 269-280, Aug. 1994
Golubchik, L., J. Lui, and R. Muntz. Adaptive
piggybacking: anovel techniquefor data sharingin
video-on-demand storage servers. ACM Multi -
media Systems Journal, 4(3): 140-155 1996

Hua, K. A. and S. Sheu. Skyscraper broadcasting:
a new broadcasting scheme for metropolitan video-
on-demand systems. Proceadings of the ACM
SIGCOMM '97 Conference, pages 89-100, Sept.
1997

Hua, K. A., Y. Cai, and S. Sheu. Patching: amulti-
cast technique for true video-on-demand services.
Procealings of the 6" ACM Multimedia
Conference, pages 191200, Sep. 1998.

L. Juhnand L. Tseng. Harmonic broadcasting for
video-on-demand service |EEE Transactionson
Broadcasting, 43(3):268-271, Sep. 1997.
McManus, J. M. and K. W. Ross “Video-on-
demand over ATM: constant rate transmisson and
transport,” IEEE Journa on Sleded Areasin
Comrmunication, 14(6):108741098 1996

Péris, J-F., S.W. Carter and D. D. E. Long. A low
bandwidth broadcasting protocol for video an
demand. Procealings of the 7" Internationd
Conference on Computer Comrrunications and
Networks (ICCCN '98), pages 690-697, Oct. 1998
Péris, J-F.,D. D. E. Longand P. E. Mantey. A
zero-delay broadcasting protocol for video an
demand. Proceealings of the 1999ACM Multi me-
dia Conference, pages 189-197, Nov. 1999

Péris, J.-F. Aninteractive broadcasting protocol
for video-on-demand, Procealings of the 20"
Internationd Performance of Computers and
Comnmunication Conference, pages 657664, April
2001

ReplayTV. http://www.replay.com/.

TiVo Tedhnologies. http://www.tivo.com/.
UltimateTV. http://www.ultimatetv.com/.
Viswanathan, S. and T. Imidlinski. Metropolitan
area video-on-demand serviceusing pyramid
broadcasting. ACM Multimedia Systems Journal,
4(4):197-208 1996

