
A Stream Tapping Protocol with Partial Preloading

Jehan-François Pâris

Department of Computer Science
University of Houston

Houston, TX 77204-3475

paris@cs.uh.edu

Abstract

Stream tapping–also known as patching–can reduce
the bandwidth requirements of video-on-demand services
by allowing new customer requests to “ tap” the data
streams of other requests for the same video. Previous
studies have shown that stream tapping works best when
the request arr ival rate does not exceed ten to twenty
requests per hour for a two-hour video. At higher arr ival
rates, it performs much worse than broadcasting
protocols.

To overcome this limitation, we propose a stream
tapping protocol that preloads in the customer set-top box
the first few minutes of all popular videos. To offset the
cost of the additional buffer space, our protocol never
requires the set-top box to receive data from the video
server at more than twice video consumption rate. Our
simulations indicate that preloading the first eight min-
utes of a two-hour video was enough to achieve lower
bandwidth requirements than the best broadcasting
protocols at any request arr ival rate.

1. Introduction

One of the reasons behind the slow deployment of
video-on-demand (VOD) services is the high cost of
providing these services. These high costs result mostly
from the high demands that VOD makes upon video
servers. Assuming that the videos are in MPEG-2
format, each user request will require the deli very of
around 5 Megabits of data per second. Hence a video
server allocating a separate stream of data to each request
would need an aggregate bandwidth of 5 Gigabit/s to
accommodate 1,000 concurrent users.

This situation has led to numerous proposals aiming at
reducing the bandwidth requirements of VOD services.
These proposals can be broadly classified into two
groups. Proposals in the first group are said to be
proactive because they distribute each video according to
a fixed schedule that is not affected by the presence–or

the absence–of requests for that video. They are also
known as broadcasting protocols. Some of the best-
known broadcasting protocols are staggered broadcasting
[Alm96], pyramid broadcasting [20], skyscraper
broadcasting [10], harmonic broadcasting [12] and its
variants [14].

Other solutions are purely reactive: they only transmit
data in response to a specific customer request. Unlike
proactive protocols, reactive protocols do not consume
bandwidth in the absence of customer requests. The best
known reactive protocols include piggybacking [9],
stream tapping [2]–also known as patching [11]–and
dynamic skyscraper [5].

The main advantage of broadcasting protocols is that
they scale up extremely well . Since broadcasting
protocols distribute each video according to a fixed
schedule, the number of incoming user requests does not
affect their bandwidth requirements. Hence they are
especiall y suited to the distribution of videos that are in
very high demand. The most eff icient broadcasting
protocols only require a bandwidth equal to six times the
video consumption rate to guarantee that no customer will
have to wait more than one minute before starting to
watch a two-hour video.

Despite their low bandwidth requirements,
broadcasting protocols have their own limitations. First,
the most eff icient broadcasting protocols require a set-top
box (STB) capable of receiving data at up to six or seven
times the video consumption rate. Those that have lower
client bandwidth requirements also put more demands on
the video server. While Hua and Sheu’s skyscraper
broadcasting [10] never requires the STB to receive more
than two streams at the same time, it requires ten times
the video consumption rate to guarantee a maximum
customer waiting time of less than a minute for a two-
hour video. Second, most broadcasting protocols require
a STB capable of storing locall y up to 60 percent of each
video being watched. Finall y, they waste a considerable
amount of bandwidth whenever the request arrival rate
fall s below ten to twenty requests per hour for the same
two-hour video.

...

β 2β 3β 4β

Time (since the start of complete stream a)

a

b

c
St

re
am

∆ b∆ b

c∆ c∆

Figure 1: How stream tapping works

We propose here a different approach. First, we will
use a reactive distribution protocol because these
protocols perform very well at low to medium request
arrival rates.

Second, we will never require the STB to receive data
at more than twice the video consumption rate, which will
greatly simpli fy the design of the STB disk controller.
Finall y, we will keep the server bandwidth low by
preloading in the customer STB the first 8 to 15 minutes
of all popular videos, that is, between 300 and 563
Megabytes of data per video in MPEG-2 format. As a
result, our stream tapping protocol with partial
preloading will t rade excess bandwidth for an increase of
the size of the STB buffer. All VOD distribution
protocols that minimize the server bandwidth require a
STB buffer of the order of a few Gigabytes. In the
present state of memory technology, this implies the
presence of a disk drive in each STB. The sole additional
requirement of our protocol is to have a disk drive capable
of storing twenty to thirty Gigabytes of data in each STB.
Such disk drives sell now at a retail prices below one
hundred dollars.

2. Previous Work

Two of the earliest reactive distribution protocols are
batching and piggybacking. Batching [4] reduces the
bandwidth requirements of individual user requests by
multi casting one single data stream to all customers who
request the same video at the same time. Some strategies
even involve delaying customer requests for a short
period of time in order to increase the number of
customers sharing the same data stream. Piggybacking
[9] can be used alone or in combination with batching. It
adjusts the display rates of overlapping requests for the
same video until their corresponding data streams can be
merged into a single stream. Consider for instance, two

requests for the same video separated by a time interval of
three minutes. Increasing the display rate of the second
stream by 10 percent will allow it to catch up with the
first stream after 30 minutes.

Stream tapping [2, 3] or patching [11], assumes that
each customer STB has a buffer capable of storing at least
10 minutes of video data. This buffer will allow the STB
to “ tap” into streams of data on the VOD server originall y
created for other clients, and then store these data until
they are needed. In the best case, clients can get most of
their data from an existing stream.

In particular, stream tapping defines three types of
streams. Complete streams read out of a video in its
entirety. These are the streams clients typicall y tap from.
Full tap streams can be used if a complete stream for the
same video started β≤∆ minutes in the past, where β is

the size of the client buffer, measured in minutes of video
data. In this case, the client can begin receiving the
complete stream right away, storing the data in its buffer.
Simultaneously, it can receive the full tap stream and use
it to display the first ∆ minutes of the video. After that,
the client can consume directly from its buffer, which will
then always contain a moving ∆-minute window of the
video. Stream tapping also defines partial tap streams,
which can be used when ∆ < β. In this case clients must
go through cycles of filli ng up and then emptying their
buffer since the buffer is not large enough to account for
the complete difference in video position.

To use tap streams, clients only have to receive at most
two streams at any one time. If they can actuall y handle a
higher bandwidth than this, they can use an option to the
protocol called extra tapping. Extra tapping allows
clients to tap data from any stream on the VOD server,
and not just from complete streams. Figure 1 shows some
sample streams from the VOD server's perspective.
Stream a is a complete stream, and it must exist for the

entirety of the video. Stream b is a full tap stream starting

b∆ minutes after stream a. It only has to exist for
b

∆
minutes. Stream c is another full tap stream, but it is able
to use extra tapping to tap data from stream b, and so its
service time is much smaller than c∆ .

Eager and Vernon's dynamic skyscraper broadcasting
(DSB) [5] is a reactive protocol based on Hua and Sheu’s
skyscraper broadcasting protocol [10]. Like skyscraper
broadcasting, it never requires the STB to receive more
than two streams at the same time. Their more recent
hierarchical multicast stream merging (HMSM) protocol
requires less server bandwidth than DSB to handle the
same request arrival rate. Its bandwidth requirements are
indeed very close to the upper bound of the minimum
bandwidth for a reactive protocol that does not require the
STB to receive more than two streams at the same time







+

2
2 1ln

η
η iN

where 2/)51(2 +=η and Ni is the request arrival rate.
Selective catching combines both reactive and

proactive approaches. It dedicates a certain number of
channels for periodic broadcasts of videos while using the
other channels to allow incoming requests to catch up
with the current broadcast cycle. As a result, its
bandwidth requirements are O(log(λι Li) where λι is the
request arrival rate and Lι the duration of the video [7].

Partial preloading [15] loads in the customer STB the
first few minutes of the top 10 to 20 videos in order to
provide zero-delay access to these videos and reduce the
server bandwidth of the broadcasting protocol distributing
the remainder of the video.

3. Our Protocol

Stream tapping, dynamic skyscraper broadcasting and
hierarchical multi cast stream merging have two major
advantages over broadcasting protocols. First, they
provide true instant access to the video. Second, they
require much less bandwidth than broadcasting protocols
to distribute videos that are not requested more than ten
times per hour for a two-hour video.

Unfortunately, the same is not true at higher request
arrival rates. Since they handle all customer requests one
by one, these three proactive protocols require much more
bandwidth than most broadcasting protocols whenever the
request arrival rate exceeds 30 to 60 requests per hour.

One solution would be to batch requests together so that
several incoming requests could share the same data
streams. The sole problem with this approach is the
delays it would introduce. As we said earlier, all three
proactive protocols outperform the best broadcasting
protocols when the rate remains below ten requests per
hour for a two-hour video. Achieving the same
performance at any request arrival rate would require a
batching interval of six minutes, which means that
customers wanting to watch a video would have to wait
an average of three minutes. While smaller batching
intervals are possible, they would have much less effect
on the server bandwidth.

We propose another solution. Over the last few years,
disk drive capacities have been doubling every eighteen
months. One can now find 30 Gigabyte hard drives at
retail prices below one hundred dollars. We can store on
one of these hard drives more than 13 hours of video data
assuming a very comfortable bandwidth of 5 Megabits per
second. This would allow us to store the first 10 minutes
of 80 videos or the first 15 minutes of 53 videos.
Preloading the first few minutes of all videos in the server
library would give us the same bandwidth reduction as
batching all i ncoming requests and allow us to continue a
zero-delay poli cy.

The impact of partial preloading on the protocol
bandwidth is indeed so strong that it allows us to simpli fy
the stream tapping protocol and eliminate all cases of
extra tapping that require the customer STB to receive
video data from more than two channels at the same time.
This will greatly simpli fy the design of the STB disk
controller and contribute to offset the cost of a larger disk
drive.

Let us consider a video of duration D and let us
assume that the first Dpp minutes of that video are already
present in the customer STB. Four cases have to be
considered:
1. When the first request for a video arrives at the server

at time ta, the server allocates a complete stream to
the video. Since the customer STB already has the
first Dpp minutes of the video on its hard drive, the
complete stream can be delayed by Dpp minutes. As
shown on Figure 2, the complete stream will start at
time tc = ta + Dpp and last until ta + D. Thanks to this
delay, all requests arriving in the time interval [ta, tc]
will be able to get all the data they need from the
complete stream.

Second request at t'
Tap

S
tr

ea
m

Delay Dpp

Complete stream

Delay Dpp

appended to tap

Third request at t'' < t' + Dpp

Extra Tap

Time (since arrival of f irst request)

First request

Figure 2. How the STPP protocol operates.

2. Assume now that a second request arrives at time t'
such that tc < t' < ta + D. The request will still be able
to “ tap” the complete stream of the first request but
will have missed the first df = t' – tc minutes of that
stream. As shown on Figure 2, the server will t hus
schedule a full tap starting at time tf = t' + Dpp and
ending at time t' + Dpp + df.

3. Consider now a third request arriving at time t" such
that t' < t'' < tf + Dpp. That request will arrive before
the beginning of the full tap that was scheduled for
the second request. It will be able to find most data it
needs from the complete stream and the full tap but
will still need t'' – t' minutes of additional data.
Rather than start an extra tap stream for that request,
we will extend the duration of the last full tap by
t'' – t' minutes.

4. A fourth request arriving after the beginning of the
full tap would either require a new full tap if it
arrives before the end of the complete stream or a
new complete stream if it arrives after that.

This informal description implicitl y assumes that the
server will always allocate a tap stream to any incoming
request whenever it can, that is, as long as a complete
stream is still active. Carter and Long [2] found that it
was much more eff icient to stop the tapping earlier and
then start a new complete stream. To that effect, they
proposed a criterion based on the average cost of all
requests sharing the same complete stream. We found
that their criterion did not work well i n our case due to the
presence of numerous cases where no tap was necessary.

As one can see in Figure 3, the STPP protocol uses a
much simpler criterion: it restarts a new complete stream

whenever the duration of the new tap stream exceeds a
given threshold θ, which must satisfy the condition
θ ≤ D – Dpp.

We have not yet discussed how the preloaded
segments of each video are distributed to the customer
STB’s. The task of distributing these data will be
assigned to one or two dedicated channels that will
continuously broadcast the first Dpp minutes of all videos
that are currently offered for viewing. Any change in the
set of videos being broadcast will require each STB to
download the first Dpp minutes of the new videos being
offered and to store them on its hard drive. Our protocol
will t hus need a mechanism allowing the VOD server to
notify the STB’s that they have new data to download but
this mechanism could be as simple as agreeing upon some
predefined time. It might also be more practical not to
require all customers to have in their STB the first Dpp
minutes of all videos that are currently offered for
viewing. Two good candidates for this option are less
frequently requested videos and customers joining the
service either for the first time or after a power failure.
One of the most attractive options for reducing the storage
costs of our protocol is to begin each program by one or
two trailers announcing future releases. This would not
be very different of what is being done today in movie
theaters, on videocassettes or on DVDs. The main
advantage of this solution is that a small number of
trailers could be shared among a much larger number of
videos.

Assumptions:

D is the duration of the video
first Dpp minutes of video are preloaded in the customer STB
tc is start time of last complete stream
tf is start time of last full tap
df is duration of last full tap
θ ≤ D – Dpp is policy threshold
a new request arrives at time ta

Algorithm:

if ta≤ tc then

STB will receive data from complete stream starting at tc

else if ta ≤ tf then

increase duration of last full tap by ta – (tc + df)
STB will receive data from the complete stream starting at tc

and the full tap starting at tf

else if ta – tc ≤ θ then

start full tap at tf = ta + Dpp

set full tap duration df = ta – tc
STB will receive data from complete stream starting at tc

and full tap starting at tf

else

start complete stream at tc = ta + Dpp
STB will receive data from complete stream starting at tc

end if

Figure 3. The stream tapping protocol with partial preloading.

We saw in a previous example that we can store the
first 10 minutes of 80 videos on a 30-Gigabyte hard drive.
Requiring customers to watch a 3-minute trailer before
each video would allow us to store on the same hard drive
the first 7 minutes of 112 videos while leaving enough
space for 5 different trailers.

4. Performance Analysis

To evaluate the performance of our protocol we wrote
a simple simulation program assuming that request
arrivals for a particular video were distributed according
to a Poisson law. The program was written in CSIM and
simulated requests for a single two-hour video. Since no
data are shared among customers watching different
videos, the total bandwidth of a server distributing several
videos will always be equal to the sum of the bandwidths
it dedicates to each video.

We considered six possible durations for the preloaded
part of the video, namely 3 minutes, 5 minutes, 8 minutes,
10 minutes, 15 minutes, and 20 minutes. We measured
the average bandwidth of the STPP protocols at request
arrival rates varying between one and one thousand
requests per hour. We did not consider higher arrival
rates as we found the protocol bandwidth requirements to
stabilize around 60 requests per hour. Each simulation
run involved 200,000 arrivals over a simulated time
period of at least 200 hours. We assumed for all runs the
same threshold value of 35 minutes for θ because it
provided the best average results over all arrival rates and
all durations of the preloaded part.

Our results are summarized in Figure 4. Request
arrival rates are expressed in arrivals per hour and
bandwidths are expressed in multiples of the video con-
sumption rate. We assumed a video duration of two hours
and an unlimited buffer size for stream tapping.

0

2

4

6

8

10

12

1 10 100 1000
Requests per hour

B
an

d
w

id
th

Stream Tapping
Skyscraper
STPP-3 min
STPP-5 min
Polyharmonic
STPP-8 min
STPP-10 min
STPP-15 min
STPP-20 min

Figure 3. Compared average bandwidth requirements of stream tapping, skyscraper broadcasting, new
pagoda broadcasting and stream tapping with partial preloading for a two-hour video and various durations of
the preloaded portion of the video.

The two horizontal lines represent the bandwidth
requirements of the skyscraper broadcasting and the
polyharmonic broadcasting protocols for a maximum
waiting time of one minute. Both protocols provide
interesting benchmarks against which to compare the
bandwidth requirements of our STPP protocol. As we
saw earlier, skyscraper broadcasting [10] is the sole
broadcasting protocol that never requires the STB to
receive more than two streams at the same time. Hence it
has the same client bandwidth requirements as our STPP
protocol. Polyharmonic broadcasting [14] is the
broadcasting protocol that requires the least amount of
server bandwidth to guarantee a given maximum waiting
time. The price to pay for this excellent performance is
higher demands on the STB hardware, as the STB has to
receive data broadcast over one hundred to one thousand
low bandwidth channels.

As Figure 4 indicates, our STTP protocol only requires
three minutes of preloaded data per video to perform
better than skyscraper broadcasting at every request
arrival rate. Increasing the duration of these preloaded
data to eight minutes suffices to guarantee that STPP will
also outperform polyharmonic broadcasting.

These results are even more impressive if we consider
that the STTP protocol provides instant access to the
video while skyscraper broadcasting introduces an
average delay of 30 seconds and polyharmonic
broadcasting imposes a fixed delay of one minute. In

addition, the polyharmonic protocol requires each STB to
receive data from the video server at a maximum
bandwidth equal to 5.18 times the video consumption
rate.

Even lower bandwidths can be achieved by increasing
the duration of the preloaded segment to 10, 15 or 20
minutes. Unfortunately, these bandwidth savings obey to
the law of diminishing returns because equal amounts of
additional storage space result in ever decreasing
bandwidth savings. For this reason, we see little
motivation for preloading much more than 15 minutes of
video data per video.

While the STTP protocol requires less bandwidth than
stream tapping whenever the request arrival exceeds 20
requests per hour, it does not compare as favorably with
stream tapping at arrival rates. The worst performance
gap occurred at one request per hour where our protocol
required up to 29 percent more bandwidth than stream
tapping. We should note that this only occurred when the
protocol preloaded three minutes of video data per video.
In fact, the gap becomes insignificant when the protocol
preloads at least 15 minutes of data per video.

Two factors can explain this performance gap. First,
the stream tapping protocol we used as benchmark allows
unlimited extra tapping and requires a STB capable of
receiving video data at more than twice the video
consumption rate. Second, the fixed 35-minute threshold
we used in all our simulations resulted in a rather poor

threshold at low request arrival rates. Increasing the
threshold to 70 minutes at one request per hour would
reduce the bandwidth requirements of our protocol by 9 to
10 percent. As a result a better-tuned STPP protocol
preloading at least 15 minutes of video data would have a
lower bandwidth requirements than stream tapping for all
request arrival rates. Achieving even lower bandwidths
would require a more complex protocol integrating some
features from optimal stream merging [5, 6].

A last issue to address is the asymptotic performance
of the protocol at very high customer arrival rates. This is
clearly an exceptional situation. It could only happen in a
large metropolitan and would require a large percentage
of the customer base to watch the same video the same
night.

Under very heavy load, the STPP protocol will
continuously repeat a cycle starting with the arrival of a
request causing a new complete stream and ending with
the arrival of the next request causing a new complete
stream. Let tc and tc + ∆ respectively designate the arrival
times of these two requests.

Since the complete stream resulting from the first
request of the cycle will be delayed by Dpp minutes, all
requests arriving during the Dpp first minutes of the cycle
will get all their data from the compete stream. All
requests arriving during the next Dpp minutes, that is
within the time interval (tc + Dpp, t + 2Dpp] will have
missed at most Dpp minutes from the complete stream and
will share a common tap stream of duration Dpp minutes.

Similarly all requests that arrive during the following
Dpp minutes will have missed at most 2Dpp minutes from
the complete stream and will share a common tap stream
of duration 2Dpp minutes. More generally, all requests
arriving within the time interval (tc + kDpp, tc + (k + 1)Dpp]
with 0 ≤ k < θ/Dpp+ 1 will have missed at most kDpp
minutes from the complete stream and will share a
common tap stream of duration kDpp minutes.

The cycle will end when k ≥ θ /Dpp + 1 because the
protocol will then restart a new complete stream rather
than starting a tap of initial duration d ≥ θ.

The total duration of the cycle will thus be equal to

ppDk)1(max +=∆ with












=

ppD
k

θ
max

and the duration of all the data streams initiated in that
time interval equal to

∑
=

−+−=
max

1

))1((
k

k
pppp bDkDDT

where b represents the video consumption rate.
The average bandwidth B of the protocol is then

obtained by dividing T by ∆, which gives

pp

k

k pppp

Dk

DkDD
b

T
B

)1(

))1((

max

1

max

+
−+−

=
∆

= ∑ =

For instance, a STPP protocol preloading the first eight
minutes of each video will never require more than 4.8
times the video consumption rate to distribute a two-hour
video, which is well below the requirements of the
polyharmonic broadcasting protocol [14].

5. Discussion

The critical assumption in our proposal is the necessity
of having a disk drive in each customer STB. It will
necessarily impact the cost of this STB and would result
in additional outlays. One may therefore wonder whether
the savings in server bandwidth will be sufficient to
compensate these outlays.

The best answer to this question is mentioning the
several additional advantages of having a very large
buffer in each STB. First, we could keep in the STB
buffer the previously viewed portion of each video. This
would allow a very inexpensive implementation of
interactive VOD because the STB could handle all pause
and rewind requests [16]. The video server would still
have to handle fast forward commands but we can expect
this command to be infrequently used by most viewers.
The STB could indeed store in its buffer the last thirty to
sixty minutes of any program being watched to provide
the same pause and rewind features as a ReplayTV [17], a
TiVo[18], or an UltimateTV [19] STB.

A very large buffer would also allow a more efficient
utilization of the channel bandwidth. Future VOD
services will distribute videos in compressed form and the
bandwidth requirements of these videos will depend on
the rate at which the images being displayed change [1,
8]. For instance, daytime action scenes and cartoons will
require more bandwidth than slower moving scenes and
night scenes. The buffer sizes of conventional diskless
STBs are limited by memory cost considerations. Hence
buffer overflow is as a serious concern as buffer
underflow. As a result, the video server will have to
transmit at a lower bandwidth during slower moving
scenes. A STB with a disk drive will not have that
problem. Hence the video server will always transmit at
the maximum bandwidth that has been allocated to the
channel. Most video data would arrive sufficiently ahead
of time to reduce or even eliminate bandwidth
fluctuations [13].

6. CONCLUSION

Most existing distribution protocols for video-on-
demand are tailored for a specific range of video request
arrival rates and perform poorly beyond that range.

Reactive protocols li ke stream tapping, patching or
dynamic skyscraper do not anticipate user requests and
perform best when the request arrival rate does not exceed
twenty requests per hour for a two-hour video. Above
that, they require much more bandwidth than
broadcasting protocols.

We have presented a stream tapping protocol that
preloads in the customer set-top box the first few minutes
of all popular videos. As a result, our stream tapping with
partial preloading (STPP) protocol provides true instant
access to the videos. In addition, it never requires the
customer STB to receive video data at more than twice
the video consumption rate.

We found that our STPP protocol only needed to have
the first three minutes of a two-hour video preloaded in
the customer STB to be able to distribute it at a lower cost
than the best existing broadcasting protocols. We also
found that our protocol performed much better than
stream tapping with unlimited extra tapping at high
request arrival rates. In addition, an STTP protocol
preloading the first eight minutes of the same two-hour
video would always outperform the best harmonic
broadcasting protocols.

References

[1] Beran, J., R. Sherman, M. Taqqu, and W.
Willi nger. Long-range dependence in variable bit-
rate video traff ic. IEEE Transactions on Com-
munications, 43:1566–1579, 1995.

[2] Carter, S. W. and D. D. E. Long. Improving video-
on-demand server eff iciency through stream
tapping. Proceedings of the 5th International
Conference on Computer Communications and
Networks, pages 200-207, Sep. 1997.

[3] S. W. Carter and D. D. E. Long. Improving
bandwidth eff iciency on video-on-demand servers.
Computer Networks and ISDN Systems, 30(1–
2):99–111.

[4] Dan, A., P. Shahabuddin, D. Sitaram and D.
Towsley. Channel allocation under batching and
VCR control in video-on-demand systems.
Journal of Parallel and Distributed Computing,
30(2):168–179, Nov. 1994.

[5] Eager, D. L. and M. K. Vernon. Dynamic
skyscraper broadcast for video-on-demand.
Proceedings of the 4th International Workshop on
Advances in Multimedia Information Systems,
pages 18–32, Sep. 1998.

[6] Eager, D. L., M. K. Vernon and J. Zahorjan.
Minimizing bandwidth requirements for on-
demand data deli very. Proceedings of the 5th

International Workshop on Advances in Multime-
dia Information Systems, , Oct. 1999.

[7] Gao, L., Z.-L Zhang and D. Towsley. Catching
and selective catching: eff icient latency reduction

techniques for deli vering continuous multimedia
streams. Proceedings of the 1999 ACM Multime-
dia Conference, pages 203–206, Nov. 1999.

[8] Garrett, M. and W. Willi nger. Analysis, modeling
and generation of self-similar VBR video traff ic.
Proceedings of the ACM SIGCOMM '94
Conference, pages 269–280, Aug. 1994.

[9] Golubchik, L., J. Lui, and R. Muntz. Adaptive
piggybacking: a novel technique for data sharing in
video-on-demand storage servers. ACM Multi -
media Systems Journal, 4(3): 140–155, 1996.

[10] Hua, K. A. and S. Sheu. Skyscraper broadcasting:
a new broadcasting scheme for metropoli tan video-
on-demand systems. Proceedings of the ACM
SIGCOMM '97 Conference, pages 89–100, Sept.
1997.

[11] Hua, K. A., Y. Cai, and S. Sheu. Patching: a multi -
cast technique for true video-on-demand services.
Proceedings of the 6th ACM Multimedia
Conference, pages 191–200, Sep. 1998.

[12] L. Juhn and L. Tseng. Harmonic broadcasting for
video-on-demand service. IEEE Transactions on
Broadcasting, 43(3):268–271, Sep. 1997.

[13] McManus, J. M. and K. W. Ross, “Video-on-
demand over ATM: constant rate transmission and
transport,” IEEE Journal on Selected Areas in
Communication, 14(6):1087–1098, 1996.

[14] Pâris, J.-F., S. W. Carter and D. D. E. Long. A low
bandwidth broadcasting protocol for video on
demand. Proceedings of the 7th International
Conference on Computer Communications and
Networks (ICCCN '98), pages 690–697, Oct. 1998.

[15] Pâris, J.-F., D. D. E. Long and P. E. Mantey. A
zero-delay broadcasting protocol for video on
demand. Proceedings of the 1999 ACM Multime-
dia Conference, pages 189–197, Nov. 1999.

[16] Pâris, J.-F. An interactive broadcasting protocol
for video-on-demand, Proceedings of the 20th
International Performance of Computers and
Communication Conference, pages 657–664, April
2001.

[17] ReplayTV. http://www.replay.com/.
[18] TiVo Technologies. http://www.tivo.com/.
[19] UltimateTV. http://www.ultimatetv.com/.
[20] Viswanathan, S. and T. Imielinski. Metropolitan

area video-on-demand service using pyramid
broadcasting. ACM Multimedia Systems Journal,
4(4):197–208, 1996.

