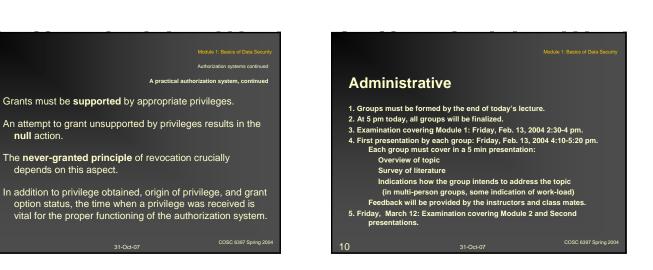
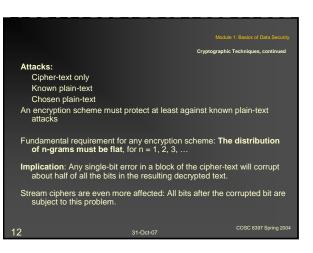
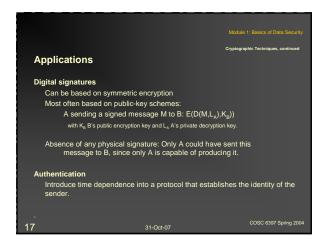

	Module 1:		
Module 1: Instructor E. L. Leiss			
Content:			
Introduction to the major issues in Data			
security and integrity:	0.5	i weeks	
 Authorization systems: 	0.5	i weeks	
 Cryptographic techniques and their use in 			
security and integrity of data; watermarks:	1	week	
 Web-based attacks (incl. Viruses and worms; 			
denial of service, spam, etc.):	1	week	
Test covering Module 1:	0.5	i weeks	
4		COSC 6397 Spring	200

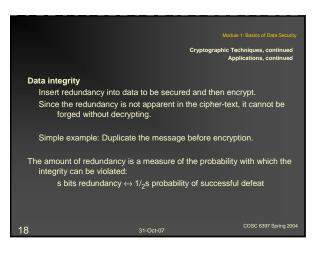




COSC 6397 Spring 2004

- Symmetric encryption
- Public-key encryption


9


- Both have advantages and disadvantages.

Symmetric encryption : Must keep both encrypti secret (knowing one allows one to determine t ease).		Main public-key		Module 1: Basics of Data Security ptographic Techniques, continued
Public-key encryption: One key is public (simila number), the other is private. Crucial is the rec one key does <u>not</u> permit determining the other One-way functions: Encryption and decryption a	uirement that knowing	<u>Choose</u> e relativ of e with resp <u>Publish</u> n and e;	<pre>e prime p and q; compute n = p·q. ely prime to (p-1)·(q-1); compute d eect to (p-1)·(q-1). keep <u>private</u> e (as well as p and q essage M to be sent: C = M^e.</pre>	
other; computing one must be easy, computing Symmetric encryption: Transposition and substitu DES and successors.	g the other hard.	Decryption of cip (M and C are viewed as Fundamentally b	oher-text C received: $M = C^d$. s a number between 0 and n-1.) based on the difference in the comp	putational complexities
The problem of key length. 13 31-0et-07	COSC 6397 Spring 2004	14	integers and testing for primality. 31-Oct-07	COSC 6397 Spring 2004

		Module 1: Basics of Data Security			
	Crypto	graphic Techniques, continued			Cryptographic Techniques, continued
	Assume n participants, message length m				
	n s-digit integer is a prime nu er some mild assumptions].	mber: Polynomial		Symmetric	Public-key
			Advantages	O(m) time en/decryption	
	git integer: No algorithm know	n that works in			O(n) keys No prior contact needed
polynomial time in s.			Disadvantages		en/decryption >> O(m) time
Current state-of-the-art:			Disauvantages	O(n²) keys	
	n knowing p and q (each of le	ngth O(s)): O(m).		Prior contact required	
Determining d whe	n knowing n: super-polynomia	al in s.	Key manager schemes.	ment typically a problem, b	ut more so for symmetric
But: No non-trivial lowe	er bound known for factoring.				
			In practice: Use public-key to distribute keys, which are then used to encrypt symmetrically the actual messages.		
15	31-Oct-07	COSC 6397 Spring 2004	16	31-Oct-07	COSC 6397 Spring 2004

