
Improving Techniques for Proving Undecidability of Checking Cryptographic
Protocols

Zhiyao Liang
Computer Science Department

University of Houston
Houston TX 77204-3010, USA

zliang@cs.uh.edu

Rakesh M Verma
Computer Science Department

University of Houston
Houston TX 77204-3010, USA

rmverma@cs.uh.edu

Abstract

Existing undecidability proofs of checking secrecy of
cryptographic protocols have the limitations of not consid-
ering protocols common in literature, which are in the form
of communication sequences, since only protocols as non-
matching roles are considered, and not considering an at-
tacker who is an insider since only an outsider attacker is
considered. Therefore the complexity of checking the real-
istic attacks, such as the attack to the public key Needham-
Schroeder protocol, is unknown. The limitations have been
observed independently and described similarly by Froschle
in a recently published paper [9], where two open prob-
lems are posted. This paper investigates these limitations,
and we present a generally applicable approach by reduc-
tions with novel features from the reachability problem of
2-counter machines, and we solve the two open problems.
We also prove the undecidability of checking authentication
which is the first detailed proof to our best knowledge. A
unique feature of the proof is to directly address the se-
crecy and authentication goals as defined for the public key
Needham-Schroeder protocol, whose attack has motivated
many researches of formal verification of security protocols.

1. Introduction

Since networks are indispensable to all kinds of commu-
nications nowadays, checking and analyzing cryptographic
protocols are especially important. A significant research
direction is to check secrecy and authentication of protocols
against a dominating attacker, first introduced by Dolev and
Yao [4], assuming the cryptographic primitives cannot be
broken. Since Lowe discovered an attack [16] on the public
key Needham-Schroeder protocol (call it PKNS protocol)
17 years after it was published [19], many papers have fo-

cused on the topics in this area using formal methods. An
essential part of these researches is to investigate the com-
plexity of checking security protocols. Here we focus on
the undecidability results.

Undecidability results are important practically since
they are helpful to find scenarios that are decidable. Pro-
vided with precise undecidability results, people can save
time and focus on more promising directions to find de-
cidable or semi-decidable solutions, or to avoid the trouble
by following some prudent engineering approach to design
protocols so that checking security goals is decidable, or to
understand better the limitations of some automatic verifiers
or model checkers, such as to understand why their termi-
nation cannot be proved, or why they detect false attacks. In
general the more precise and specific undecidability results
are stronger and more helpful.

1.1. Limitations of Existing Undecidability
proofs

Undecidability of secrecy checking has been mentioned
by other researchers in several papers [1] [3] [6] [5] [7]
[21] [8], and [6] [5] [21] provide proofs with details. In
[5] and [6] the authors used multi-set rewriting to analyze
protocols. The proof is by a two-stage reduction from the
halting problem of Turing machine with the style of Turing
machine tableau to Horn clause theories without function
symbols and then from Horn clause theories to protocols
specified as a set or roles. In [21] the authors showed that
the undecidability result of [6] can be proved more directly
by a reduction from the reachability problem of 2-counter
machines to the secrecy checking problem of protocols as
sets of roles (we call them role-oriented protocols).

The above proofs of undecidability have three limita-
tions. First, all of the undecidability proofs, except [3],
do not consider a protocol as a sequence of message ex-
changes, which we call a communication sequence, or CS
for short. The published protocols we have noticed (see the

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.198

1067

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.198

1067

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.198

1067

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

protocol library [2]) are all in the form of communication
sequences. These undecidability proofs directly consider a
protocol as a set of roles, we call this kind of protocols Role
Oriented or RO for short, where each role is a sequence of
message sending and receiving executed by a principal (also
called an agent). Usually the first step to analyze a protocol
as a communication sequence is to translate it into a set of
roles, where the action steps executed by the same agent are
organized into a role, and the relative order of action steps
in the communication sequence is kept. Every step of the
communication sequence implies two action steps, one is
the message sending from the sender’s role, and the other is
the corresponding message receiving in the receiver’s role.

However, there is a difference between an RO protocol
translated from a CS, and a RO protocol directly designed
without considering the corresponding CS. The first one is
matching, in the sense that every message sending (or re-
ceiving) action step in a role can always be matched with
(be unified with) a unique message receiving (or sending)
action step in another role. The second one could be non-
matching. We call a RO protocol non-matching if for some
message received (sent) in a role, the other corresponding
role in the protocol where this message is sent (received)
does not exist. In other words, a set of non-matching roles
are impossible to be obtained by parsing any CS. In the
proofs mentioned earlier, except [3], the protocols consid-
ered are non-matching RO.

In [3] the authors showed a proof of the undecidability of
secrecy checking by a reduction from the reachability prob-
lem of Petri nets. The protocol constructed in the reduction
is called ’real’ and has at least one honest run. A ’real’
protocol is equivalent to what we call a communication se-
quence in this paper. However, as noticed by Froschle in
[9], the proof of [3] depends on messages with unbounded
size in a run, which is a part of the motivation of the first
open problem of [9] (quoted later in this paper). Bounding
message size in a run (or only consider runs where message
size is bounded) is a condition making the undecidability
stronger and more interesting as proposed by [6]. The proof
of [3] has another limitation of considering an outsider at-
tacker (the third limitation, described later). A unique fea-
ture of our proof to handle ’real’ protocol is that we directly
address secrecy as in the public key Needham-Schroeder
protocol, which has been a phenomenal research focus.

Second, improper secrecy declaration. This limitation,
described below, is directly related to the first limitation and
can show further why the proofs are not quite suitable for
practically designed protocols. The proofs (except [3]) have
some role where a term, which is declared as the secret one,
is sent out in a message, not encrypted or trivially encrypted
so that the attacker can know the secret term once he can
get the message. Suppose this role belongs to a set of roles
which are translated from some practically designed proto-

col as a CS, we can see that an honest run of the protocol
(running the CS) will inevitably send the message contain-
ing a secret term and the attacker can always know the secret
term. In other words, secrecy checking for protocols in the
form of a CS with this ’trivial’ secrecy declaration is always
decidable, and the undecidability proofs will not work.

Froschle has independently noticed the above two lim-
itations in a recently published paper [9]. She mentioned
protocols having an honest run or ‘real’ protocols (notions
first used by [3]), and proposed the first open problem, as
quoted below.

“A protocol has an honest run if all of its rules can
be played in the given orders: the first rule, then
the second, and so on. ”

Problem 1. “Is Insecurity decidable for proto-
cols with honest runs when the message size is
bounded?”

Third, considering the attacker as an outsider.
Every protocol assumes a perfect initial knowledge es-

tablishing stage at the beginning of a run. Note that if the
initial knowledge of agents are not established perfectly and
securely, there is no way to guarantee any security of the
protocol. In this stage, keys and other terms will be dis-
tributed among a group of agents following some initial
knowledge policy required by the protocol. We call this
group as the legitimate agents group. We call every agent
belonging to this group as an insider to this group, and ev-
ery other agent as an outsider to this group.

All of the proofs, cited earlier, assume there is some
term, say a key K, which is known (initially) to all agents
(other than the attacker) participating a run of the protocol,
but the attacker does not know the term. This restriction
makes the reasoning of the proofs easier since for any en-
crypted term appearing in a run where the encryption key is
K, it is guaranteed that the encrypted term is not created by
the attacker but by some regular agent. It is clear that the
proofs assume that the attacker does not participate in the
initial knowledge establishing stage as other agents did, and
the attacker is an outsider, while all other agents in the run,
who are honest, are insiders.

Actually to consider an insider attacker has special im-
portance, since in practice, the majority of security failures
may be due to some insider attacker [10]. Gollmann men-
tioned in [10] that in the attack to the PKNS protocol [16]
the attacker should be considered as an insider. The rea-
son seems to be that one of the regular agent must initially
know the attacker. We define insider based on the initial
knowledge establishing stage of a run so that the intuition
of insider attacker is exposed more clearly.

In practice the terminologies of “insider” and “outsider”
are used to describe some real security cases. Despite some

106810681068

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

difference of the details among cases, essentially the behind
meaning is quite similar, So using this two terminologies
here is appropriate.

Froschle also independently noticed that in the existing
undecidability proofs the attacker is different from any reg-
ular agents in terms of initial knowledge, which is not very
“natural”. She described the notion of natural key policy,
and the second open problem in [9] as follows.

“A protocol has a natural key policy if in the spec-
ification of the initial key knowledge the Intruder
is treated like all other principals.”

Problem 2. “Is Insecurity decidable for protocols
with a natural key policy when the message size
is bounded?”

Note that the existing undecidability results cannot cover
the two open problems of [9], therefore their solutions are
unknown.

Our reduction scheme using 2-counter machine is in-
spired from [21]. However, there are some key differences.
First, the proofs in [21] assume non-matching RO protocols
and an outsider attacker and we need new ideas of reduc-
tion to avoid the limitations. Furthermore, we have found
and fixed two minor errors in the work of [21]: a counter
can be negative, and zero can be used as a positive num-
ber. The proof of correctness of the reduction in [21] is
sketchy and consequently misses the two errors. Details of
the errors and our fixes are presented in the Appendix of
[13]. We have adapted the approach of using 2-counter ma-
chine in [13] and [14] to prove the undecidability of an open
problem pinpointed by [6]. Our work in [13] and [14] give
us some confidence and motivation in finding a general and
powerful proof scheme. However the proof in [13] also has
the limitations of assuming non-matching RO protocols and
an outsider attacker.

2. Notations and Modeling

In order to make the proof rigorous, the notions related
to protocol, attacker, and protocol run must be established.
These concepts have been extensively studied and are famil-
iar to researchers. There are different formalization systems
to describe a protocol and a protocol run assuming a Dolev-
Yao attacker [4], such as (not a comprehensive list) the
model defined by Paulson [20], Multi-set Rewriting (MSR)
[6], Strand Space [11], and Constraint Solving [18]. While
these models emphasize the behavior of the attacker and a
protocol run, they may gloss over some details.

Due to limit of space, we only present the well-known
key ideas of protocol, protocol run, terms, and the attacker,
which should be enough for the proof. More details are pre-
sented in [15]. A reader familiar with modeling of Dolev-

Yao attacker and protocol run can directly verify the cor-
rectness of the proof in Section 3 using their own modeling
system, while paying attention to the design features that
the attacker is an insider and the roles are matching.

Notations are chosen in a style similar to other papers,
e.g., [16]. A variable is a symbol with at least one uppercase
letter, such as NA, A2, A. A constant is an atomic term
with no uppercase letter, such as a, na, r1.

A pair of asymmetric keys is represented as k1
X and k0

X .
X is the unique ID (UID) of the asymmetric key pair. If X
is an agent name, k1

X is X’s public key and usually should
be initially known to other agents, and k0

X is X’s private
key that should be known only to X . This notation can also
describe the asymmetric keys generated during a run.

A term is an atomic term (a variable or a constant), or a
list, or an asymmetric encryption, or a symmetric encryp-
tion. A list has the form [X,Y, · · ·], where X and Y are
terms and the list contains finite number of terms. A list
is a simpler representation of a sequence of nested pairs.
For example [W,X, Y, Z] is the same as [W, [X, [Y,Z]]].
A message is a term. When a message is a list, the top
level enclosing [] is omitted. An asymmetric encryption
has the form {T}→

ki
A

, i ∈ {0, 1}, where T is a term called

the encrypted text, and ki
A is the atomic encryption key. A

symmetric encryption has the form {T}↔Y , where T is the
encrypted text and Y is a term which is the encryption key.
Messages in a run are ground (variables are instantiated).

A special constant is the upper case letter I , for intruder,
which is reserved as the name of the attacker.

An action can be an internal action or an external ac-
tion. Let P , A, and B be agent names. An internal action of
fresh term generation is denoted as #P (t1, t2, · · ·), where
“t1, t2, · · · ” represent the fresh terms generated by agent P
before P sends a message that contains these fresh terms.
A fresh term (such as a nonce) should be different from all
other terms appeared in the run so far. An external action
can be a message sending or a message receiving. The ac-
tion of agent A to send a message Msg, when the intended
receiver is B, A �= B, is denoted as +(A ⇒ B) : Msg.
The action of agent A to receive a message Msg from a sup-
posed sender B, A �= B, is denoted as −(B ⇒ A) : Msg.
In this paper the only kind of internal actions explicitly ex-
pressed in action code is fresh term generation.

An action step is a sequence of actions which can be
considered as being executed together in a unit. It has four
forms. 1) #I(term1, term2,· · ·); 2) +(A ⇒ B) : Msg;
3) −(B ⇒ A) : Msg; 4) #A(t1, t2, · · ·) +(A ⇒ B) :
Msg. 1) is executed by I , while the other three can be
executed by both regular agents and I . 4) is the only kind
of action step that contains more than one action.

The well-known Dolev-Yao model [4] commonly refers
to two assumptions: 1) a dominating attacker who records
every message immediately when the message is sent, and

106910691069

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

can prevent a message from being received, and can send
any message it can obtain to any agent; 2) perfect encryp-
tion, which means no agent can decrypt a term unless the
agent knows the decryption key. This paper assumes every
agent (including the attacker) has equal power of generating
unbounded fresh terms. When a fresh term is generated it
is different from all other terms appeared in the run so far.
We need unbounded nonces to address undecidability. Note
that if only bounded many nonces can be generated while
message size is bounded, there are bounded many terms ap-
pearing in the run and secrecy checking is decidable [6].

The attacker initially knows a set of terms, denoted as
I.init, before a run of a protocol. The attacker’s knowledge
(the set of terms I can obtain) grows during a run. After a
sequence E of action steps has been executed, the attacker’s
knowledge is denoted as knowI(E), which includes: 1) all
terms in I.init; 2) all messages that has been sent in E; 3)
all fresh term X that have been generated by I in E, i.e., an
action step of the form #I(X, · · ·) is included in E; 4) an
infinite set of terms described as the closure of applying a
set of well known rules of term synthesis and analysis [20]
to terms in knowI(E). More details can be found in [13].

Roles usually contain variables since they are the tem-
plates of action steps. A role instance will replace all vari-
ables in a role by some ground terms.

A consensus of the different modeling systems, cited at
the beginning of this section, is the follows. A protocol Pro
can be analyzed as a set of roles. A run of Pro can be de-
scribed a sequence E of actions steps associated with a set
R of role instances executed by regular agents. E is formed
by interleaving (prefixes of) role instances in R, provided
that before every message Msg can be received by a regular
agent after a certain point of the run, say after E′ which is
a prefix of E, the attacker I must be able to construct Msg,
denoted as Msg ∈ knowI(E′). Secrecy checking for a pro-
tocol Pro is to check if there is a run E of Pro, such that af-
ter E, a secret term Sec can be leaked, or Sec ∈ knowI(E).
The formal proof of our reduction is based on the formal
definitions of a protocol run and knowI(E), and should be
independent to different but equivalent choices that can de-
scribe them. It can be proved that for protocol analysis a run
represented as bundle of role instances [11] is equivalent to
a run represented as a trace.

A run should always be associated with a set AN of the
names of legitimate agents (explained earlier), and a spe-
cific initial knowledge pattern of the attacker, call it D. If
I ∈ AN , then I is an insider attacker. And D should be the
same as the initial knowledge pattern of other regular agents
in AN . Formally a run is a tuple (Pro,D,R,AN,E). Pro
is the protocol. R is a set of role instances executed by reg-
ular agents. E is the trace of actions steps described earlier.
A trace of a run is denoted as run.E.

The set of all possible runs of a protocol Pro with a

specific initial knowledge pattern D of the attacker is de-
noted as runsD:Pro. A secrecy checking problem can be
described as follows. Given a protocol Pro and an initial
knowledge pattern D of the attacker, and a set of secret term
SEC, to check the validity of the following statement.

∃run,∃X, run ∈ runsD:Pro,X ∈ SEC :
X ∈ knowI(run.E)

In addition to a set of (matching) roles, a protocol should
specify the initial knowledge patterns of the agents of AN .
The initial knowledge of an agent P is denoted as P.init.

Since we address the undecidability of analyzing a proto-
col, the number of role instances should not be bounded. It
has been proved by [22] that if the number of role instances
in a run is bounded, secrecy is decidable.

3. Proving Undecidability of Checking Secrecy
and Authentication

We want to prove that, an arbitrary deterministic 2-
counter machine [12] with no input (well-known concept,
defined in Def. 1), call it M , can reach a final configuration,
if and only if the corresponding protocol Pro has a secrecy
attack. Pro is a matching RO protocol. The attack is a run
of Pro where the attacker, who is an insider, finally knows
some secret term. The secret term is declared by the same
way Nb is declared as the secret term for the well-known
attack to the PKNS protocol [16]. Since the 2-directional
proof can be carried out in a straightforward style, we focus
on presenting the “parameters” of the design of the proof,
which are the encoding schemes and protocol design. The
remaining technical details are included in [15].

Definition 1. A deterministic 2-counter machine [12]
with empty input is a pair (Q, δ), where Q is a set of states
including the starting state q0 and the accepting state qfinal

and δ is a set of transition rules. A configuration of a 2-
counter machine is a tuple (q, V1, V2), where q is the cur-
rent state and V1 and V2 are two non-negative integers rep-
resenting the two counters. The 2-counter machine can de-
tect whether a counter is 0 or not. A transition rule, (call
the rule T ∈ δ) is of the form [q, i1, i2] → [q′, j1, j2],
where q, q′ ∈ Q; i1, i2 ∈ {0, 1}; j1, j2 ∈ {−1, 0,+1}.
An application of T can be described as (q, V1, V2) −→T

(q′, V ′
1 , V ′

2), where LHS and RHS are the configuration be-
fore and after the transition respectively. For h ∈ 1, 2, when
ih = 0, it means that Vh = 0. When ih = 1, it means
that Vh > 0. When jh = +1 (jh = 0, jh = −1), it
means that after the transition, V ′

h = Vh + 1 (V ′
h = Vh,

V ′
h = Vh − 1). Especially, when jh = −1, ih must be 1,

since decrementing 0 is not allowed. The reachability prob-
lem of such a 2-counter machine is to decide that, starting
from the initial configuration (q0, 0, 0), after applying some
applicable transition rules, whether some final configura-

107010701070

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

tion (qfinal, ,) can be reached, where represents an ar-
bitrary possible value. We assume (for convenience) that
q0 �= qfinal and, for nontriviality, that δ is not empty.

Theorem 1. Secrecy checking of matching RO protocols is
undecidable while considering an insider attacker, and runs
of protocols with bounded message size.

Proof. Given a 2-counter machine M = (Q, δ), let Q =
{q0, qfinal, q1, q2, · · · , qm} and δ = {T1, T2, · · · , Tn}.

Encoding is a correspondence between a term and its
designed meaning in a reduction. In the reductions of un-
decidability [3] [6] [21] and NP-hardness [22] [8] encod-
ing is implemented by symmetric encryptions using some
key shared by agents. Using shared symmetric key could
make the proofs easier and we could also design the encod-
ing scheme using symmetric keys. However we implement
the encoding and design the protocols in the proof using
only public keys and private keys, like the PKNS protocol,
to make the proof more interesting and convincing.

A configuration term has the form {5, B, e,
q, C1, C2}→k0

A
, where A and B are two different regu-

lar agent names, which means {A,B} ⊂ AN , A �= I ,
B �= I , A �= B. C1 and C2 could be any terms. e is
a special constant used in the reduction as an evidence
to distinguish a real configuration term from a term of
the form {5, B,NA, q, C1, C2}→k0

A
, which can be easily

obtained by the attacker, where NA is a nonce generated
by A in the first message of a role Sf (introduced later),
1 ≤ f ≤ n. An honestly generated nonce NA cannot
be e, due to the assumption of unbounded fresh nonce
generation. q is a constant that could be any state in Q. The
regular agent name B included in a configuration term is
also designed to prevent the I from getting a (final) con-
figuration term trivially. Note that I can easily get a term
{5, I, e, qfinal, C1, C2}→k0

A
, which is not a configuration

term (I is inside, not B), when A plays the role Sfinal

(introduced later) and A talks with I . Note that I cannot
construct a configuration term since I does not know k0

A.
The only configuration term that I can trivially obtain is
the starting configuration term {5, B, e, q0, z, z}→

k0
A

, which
is generated by a role instance of R0 and corresponds to
(q0, 0, 0). I has to do a run to simulate a computation of
M in order to get the non-trivial configuration terms which
include the final configuration terms.

A connection term has the form of {7, B,C1, C2}→k0
A

,

where {A,B} ⊂ AN , A �= B, A �= I , B �= I . Connec-
tion terms are used to build the encoding of a counter value
(described later). The encryptions containing constant 5 are
distinguished from, and cannot be unified with, the encryp-
tions containing constant 7. A secret term is a term NB gen-
erated by a role instance of Rfinal (introduced later) which
is executed by a regular agent B, B �= I , where B tries to

send NB to agent A, A �= I . The secret term is declared
exactly in the same way as the PKNS protocol [16].

A protocol Pro is constructed according to M . Pro re-
quires the initial knowledge pattern of agents as follows.

∀P,P ∈ AN : P.init = AN ∪ {k1
B |B ∈ AN} ∪ Q

∪{e, z, 1, 2, 3, 5, 7, k0
P }

The set of roles of Pro is the follows.
{S0, R0} ∪ { S1, R1, · · · , Sn, Rn}∪

{Scopy1, Rcopy1, Scopy2, Rcopy2, Sfinal, Rfinal}
Note that there are n transition rules in δ.

For each run of Pro, we consider I is an insider, so
I ∈ run.AN and that D is the same as the above initial
knowledge pattern for other agents (instantiate P with I).

We describe a matching pair of roles Si and Ri, i ∈
{0, 1, · · ·n, final} by the CS between them. The action
steps of two matching roles can be straightforwardly parsed
from the CS between them. We choose different variable
names in different matching pairs of roles so there is no
confusion when the CSes of these pairs of roles are con-
catenated to form the CS of the whole protocol. Actually
any interleaving of the CSes of the pairs of roles will be a
corresponding CS of the protocol.

Two roles S0 and R0 are designed to generate the initial
configuration term. S0 and R0 are executed by A0 and B0

respectively. The CS between them is the follows.
1. (A0 ⇒ B0) : A0, B0, {5, B0, e, q0, z, z}→

k0
A0

The two roles Scopy1 and Rcopy1 are used to rewrite a
configuration term, they are executed by agents P1 and G1
respectively. The CS between them is the follows.

1. #P1(N1P1, N2P1, N3P1)
(P1 ⇒ G1) : P1, G1, {5, G1, N1P1, N2P1, N3P1}→k0

P1

2. (G1 ⇒ P1) : G1, P1, {5, P1, N1P1, N2P1, N3P1}→k0
G1

Call the two messages appearing in the above CS
as Msg1 and Msg2. As an example of roles parsed
from a CS, the two roles can be represented as follows.
Scopy1 Rcopy1

1. #P1(N1P1, N2P1, N3P1) 1. −(P1 ⇒ G1) : Msg1
+ (P1 ⇒ G1) : Msg1

2. −(G1 ⇒ P1) : Msg2 2. +(G1 ⇒ P1) : Msg2
The two roles Scopy2 and Rcopy2 are used to rewrite a

connection term, they are executed by agents P2 and G2
respectively. The CS between them is the follows.

1. #P2(N1P2, N2P2)
(P2 ⇒ G2) : P2, G2, {7, G2, N1P2, N2P2}→k0

P2

2. (G2 ⇒ P2) : G2, P2, {7, P2, N1P2, N2P2}→k0
G2

The two roles Sfinal and Rfinal carry out an adjusted
version of the PKNS protocol, executed by agents A and B
respectively. The CS between A and B is the follows.

1. #A(NA, C1final, C2final) (A ⇒ B) :
{1, NA, A, {5, B, e, qfinal, C1final, C2final}→k0

A
}→

k1
B

2. #B(NB) (B ⇒ A) : {2, NA, NB}→
k1

A

3. (A ⇒ B) : {3, NB}→
k1

B

107110711071

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

For each Tf ∈ δ, for some f , 1 ≤ f ≤ n, suppose
Tf = [q, i1, i2] → [q′, j1, j2]. Tf corresponds to two roles
Sf and Rf (starter and responder), executed by agents
Af and Bf respectively. The general template of the
CS between Sf and Rf is the following. The exact CS
between Af and Bf will be formed after a set of rewrite
rules (described later) are applied to this general template.

1. #Af
(C1f , C2f , C1−1

f , C2−1
f , Nf) (Af ⇒ Bf) :

Af , Bf , {5, Bf , Nf , q, C1f , C2f}→k0
Af

,

{7, Bf , C1−1
f , C1f}→k0

Af

, {7, Bf , C2−1
f , C2f}→k0

Af

2. #Bf
(C1+1

f , C2+1
f) (Bf ⇒ Af) :

Bf , Af , {5, Af , Nf , q′, C1′f , C2′f}→k0
Bf

,

{7, Af , C1f , C1+1
f }→

k0
Bf

, {7, Af , C2f , C2+1
f }→

k0
Bf

In the first message Af will choose Bf as the interlocu-
tor, Bf ∈ AN and Bf �= Af . Note that Bf will carry the
nonce Nf received in the first message to the second mes-
sage. The variables Ch′

f , h ∈ {1, 2}, will not appear in the
actual CS between Sf and Rf since they will be replaced
by Chf or Ch−1

f or Ch+1
f , after applying the rewrite rules.

For h ∈ {1, 2}, the following rewrite rules, each is de-
scribed as “condition �⇒ effects”, will be applied as much
as possible to the general template between Sf and Rf , ac-
cording to the conditions satisfied by the transition rule Tf

of M , 1 ≤ f ≤ n. W � V means to replace W with V
in the above template. W � ε means to remove W . An
implicit rule is that any term that is not removed or changed
will still appear in the CS between Sf and Rf . Especially,
if every term in terms of an action of #agentName(terms)
is removed, then this whole fresh term generation action is
removed. Note that when a rule is applied, the term remov-
ing tasks in RHS are arranged following the order from left
to right, so that the smaller terms are removed later and the
bigger terms containing the smaller terms are removed ear-
lier, to avoid possible confusion.
1. ih = 0 �⇒ Chf � z; {7, Bf , Ch−1

f , Chf}→k0
Af

� ε

2. ih = 1 �⇒ {7, Bf , Ch−1
f , Chf}→k0

Af

∈ Msg1

3. jh = +1 �⇒ Ch′
f � Ch+1

f

4. jh = 0 �⇒ Ch′
f � Chf ;

{7, Af , Chf , Ch+1
f }→

k0
Bf

� ε; Ch+1
f � ε

5. jh = −1 �⇒ Ch′
f � Ch−1

f ;
{7, Af , Chf , Ch+1

f }→
k0

Bf

� ε; Ch+1
f � ε

The counter value 0 must be represented by z. When
a counter h should be positive, the term {7, Bf , Ch−1

f ,

Chf}→k0
Af

is needed in Msg1, which shows that Ch−1
f en-

codes a number one less than the number encoded by Chf .
Verbose explanations of the rewrite rules are in [15].

If M can reach a final configuration (qfinal, ,) start-
ing from (q0, 0, 0) by some finite computation Comp, then

Comp can be represented as a finite sequence of configura-
tions connected by applicable rules in δ, as follows.

(q0, 0, 0) −→t1 (Q1, V 1
1 , V 1

2) · · ·
(Qu−1, V u−1

1 , V u−1
2) −→tu (Qu, V u

1 , V u
2)

Here u > 0, t1, · · · , tu ∈ δ.
A special representation {7, A/B, z,X}→

k0
A/B

can rep-

resent either the term {7, A, z,X}→
k0

B
or {7, B, z,X}→

k0
A

,

A �= B. Similarly {5, A/B, e,X, Y }→
k0

A/B

can represent

either {5, A, e, X, Y }→
k0

B
or {5, B, e,X, Y }→

k0
A

.

After running a sequence of action steps E in a run of
Pro, we say a term X is the encoding of a positive integer
N , if and only if there is a sequence of terms :

{7, A/B, z,X1}→k0
A/B

, {7, A/B,X1,X2}→k0
A/B

, · · · ,

{7, A/B,XN−2,XN−1}→k0
A/B

, {7, A/B,XN−1,X}→
k0

A/B

such that (A and B are two different regular agent names)
{A,B} ⊂ run.AN , A �= B, A �= I , B �= I , and
the attacker knows each element T of this sequence (T ∈
knowI(E)). Note that in this sequence the connection
terms can have different encryption keys, some are en-
crypted by k0

A and B appears in the encrypted text, while
some are encrypted by k0

B and A appears in the encrypted
text. Here X and Xj , for some integer j, 1 ≤ j ≤ N − 1,
are different variables that can represent any terms (could
be composite terms). We call N the i value of X (i stands
for integer), or X is the encoding of N , or X encodes N ,
denoted as N = X . The above term sequence is called the
encoding sequence of X . The encoding sequence of z is z.

Since all the agents (including I) are symmetric, i.e.,
they have the same initial knowledge pattern, it is ob-
vious that if there is a run where a secret nd is leaked
which is generated by d for c, then there is a run where
a secret nb is leaked where nb is generated by b for a.
Without loss of generalization, we consider only the se-
cret term nb between two agents b and a. For this reason,
the rest of the proof only considers configuration terms of
the form {5, a/b, e,X, Y }→

k0
a/b

and connection terms of the

form {7, a/b,X, Y }→
k0

a/b

.

The encoding of 0 is the constant z. So 0 = z. If a term
{7, B,X, Y }→

k0
A

appears in an encoding sequence, it means
that X = Y − 1.

Direction 1: Suppose there is a computation Comp of
M with u transition steps, 1 ≤ u, such that after Comp, M
can reach a final configuration (qfinal, ,) from the initial
configuration, we prove that there exists a run, such that
run ∈ RunsD:Pro where D is the initial knowledge pattern
of the insider attacker described earlier in this proof, and
some secret term is included in knowI(run.E).

We prove this direction by constructing a run simulat-
ing Comp. Pro is the protocol just described. run.AN =
[I, a, b]. Only three agents are enough here to instantiate
the sender and receiver variables in each role instance. run

107210721072

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

starts with a role instance of S0 executed by a, to generate
the initial configuration term {5, b, e, q0, z, z}→k0

a
. Then for

each transition step of Comp, assume it applies a transition
rule t, a role instance, say r, of the corresponding role Rf

which is translated from t, is executed. r receives a config-
uration term encoding the previous configuration, and pro-
duce a configuration term encoding the next configuration
of Comp. In addition, some role instances of Rcopy1 and
Rcopy2 are executed to swap the positions of a and b in the
newly generated configuration term and number connection
terms, in order to maintain the encoding scheme. A lemma
can be proved by induction on each step of Comp to show
that the attacker can always obtain the message needed for
the next step of the attack. Finally, when the final config-
uration term is generated, the attacker uses it to carry out
an attack between Sfinal and Rfinal, which is the same as
the well-known attack to the PKNS protocol. Details are
presented in [15].

Direction 2: We have to show that for any run, run ∈
RunsD:Pro, if there is a secret term nb such that nb ∈
knowI(run.E), then the 2-counter machine M can reach
a final configuration (qfinal, ,).

The proof design is the follows. The only way the at-
tacker can know nb is by executing a PKNS attack. The
only way for I to execute such an attack is to know a term
{5, b, e, qfinal, C1, C2}→k0

a
. And the only way to know this

term is to carry out a run of Pro which simulates a compu-
tation of M reaching a final configuration.

We can observe that in a run every term can encode at
most one number, and 0 can only be encoded by z. We
can prove a stronger lemma to show that every configura-
tion term generated in a run of Pro encodes a configuration
reachable to M . It is obvious that the secret term is leaked
if and only if the attacker can obtain a final configuration
term. Detailed proof of Direction 2 are presented in [15].

Since in a run we can consider message size (the num-
ber of atomic in a message) is bounded by 19, which is the
maximum size of a message of a role Rf , 1 ≤ f ≤ n,
when every nonce variable is instantiated by a true nonce
(an atomic term). Theorem 1 is proved.

3.1. Undecidability of Authentication

Formal definition of authentication goals for security
protocols have been discussed by by several papers. The
most clarified and widely used definitions of authentication
goals are presented by Lowe in [17] as the correspondence
between role instances with shared data. The authentication
goal of the PKNS protocol is discussed in [17] as follows.

The atomic terms in a role are the parameters of the
role. According to the protocol as a communication se-
quence, some atomic terms should appear in both roles, and
these atomic terms are considered the parameters shared

by both roles. For PKNS protocol, the role of A can be
represented by a schema of four parameters: RoleA(A,B,
NA, NB). Similarly, role of B can be represented as
RoleB(A,B,NA, NB). The two roles share all of the pa-
rameters. In every role instance of RoleA or RoleB , the
parameters are instantiated by some specific values. Re-
centness is another requirement to define a strict authenti-
cation goal, which means for a role instance r finished in a
run there can only be a unique corresponding role instance
r′ appeared in the run. r′ is only required to finish a prefix
up to the last message that is supposed to be sent from r′

and received by r. Note that for a goal of Role1 to authenti-
cate Role2, both the agent who executes Role2 should be a
regular agent, otherwise the goal is not defined, since the ac-
tions of the attacker cannot be organized into role instances,
based on the attacker’s intention, which is unclear.

Definition 2. Given a protocol Pro as a communication se-
quence, and two roles Role1 and Role2 parsed from Pro.
Suppose S is a set of parameters shared by Role1 and
Role2 according to Pro. Assume S always include the two
agent names who execute Role1 and Role2. Let M be the
last message that is sent by Role2 and received by Role1

according to Pro. The authentication goal of Role1 to au-
thenticate Role2, denoted as Role1 → Role2, means that
for a role instance r of Role1 in a run, there is one and only
one role instance r′ of Role2 in the run which has been ex-
ecuted up to M , and each variable in S is instantiated by
the same value in r as in r′.

Theorem 2. Authentication checking of matching RO pro-
tocols is undecidable while considering an insider attacker,
and runs of protocols with bounded message size.

Proof. The well-known attack to the PKNS protocol [16]
is also an authentication attack, since the goal RoleB →
RoleA is violated. The attacker can impersonate A when
B believes the interlocutor is A. The attacker I can carry
out the authentication attack if and only if I can obtain NB .
By the same reason, for the protocol designed in the proof of
Theorem 1, the authentication goal Rfinal → Sfinal can be
violated if and only if I can obtain NB , and by the proof of
Theorem 1, if and only if the 2-counter machine can reach
a final configuration.

We did not notice any existing proof of undecidability of
authentication. An authentication goal can only be defined
based on a CS. Since the existing proofs undecidability of
secrecy are based on (non-matching) roles, not on a CS, they
cannot be adapted to show the undecidability of authentica-
tion, which could explain why the proof is missing.

107310731073

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

4. Summary

We directly address the secrecy and authentication goals
of the PKNS protocol and prove the undecidability of
checking secrecy and authentication. To our best knowl-
edge these undecidability results are the first that can be di-
rectly applied to protocols common in literature (matching
RO protocols) while considering the attacker as an insider.
This research solves the two open problems posted by [9].

Our experiences show that to prove the undecidability of
a new problem of checking cryptographic protocols, there
are reusable proof patterns. The modeling of protocols and
protocol runs could be the same. The two-directional proof
could be very similar, including the lemmas and observa-
tions, and could be executed as routines. The design of en-
coding and protocols in the reduction can follow some com-
mon high-level ideas, such as using a “chain” of encrypted
terms to encode a natural number. The encoding design can
be very flexible, which is a source of the power of this ap-
proach, as long as the high-level ideas can be implemented.
For example, a number could be encoded by a composite
term, not necessarily by an atomic nonce. Also in an en-
coding sequence different encryption keys can be used, not
necessarily only one encryption key is allowed.

By the above observations, for the purpose of improving
techniques for proving undecidability of checking crypto-
graphic protocols and similar reductions, we consider that
the techniques of artificial intelligence and automatic the-
orem proving which utilize reusable solution patterns and
experiences of cases are potentially very helpful.

References

[1] R. M. Amadio, D. Lugiez, and V. Vanackère. On the sym-
bolic reduction of processes with cryptographic functions.
Theor. Comput. Sci., 290(1):695–740, 2003.

[2] J. Clark and J. Jacob. A survey of authentication protocol lit-
erature: Version 1.0. Technical report, Department of Com-
puter Science, University of York, UK, 1997.

[3] H. Comon and V. Cortier. Tree automata with one
memory, set constraints and cryptographic proto-
cols. Technical Report LSV-01-13, Laboratoire
Spécification et Vérification, ENS Cachan, France,
http://www.lsv.ens-cachan.fr/Publis/
RAPPORTS_LSV/PS/rr-lsv-2001-13.rr.ps,
December 2001. 98 pages.

[4] D. Dolev and A. C.-C. Yao. On the security of public
key protocols. IEEE Transactions on Information Theory,
29(2):198–207, 1983.

[5] N. A. Durgin. Logical Analysis and Complexity of Security
Protocols. PhD thesis, Computer Science Department, Stan-
ford University, March 2003.

[6] N. A. Durgin, P. Lincoln, and J. C. Mitchell. Multiset rewrit-
ing and the complexity of bounded security protocols. Jour-
nal of Computer Security, 12(2):247–311, 2004.

[7] S. Even and O. Goldreich. On the security of multi-party
ping-pong protocols. In IEEE Symposium on Foundations
of Computer Science, pages 34–39, 1983.

[8] Ferucio L. Tiplea and C. Enea and C. V. Birjoveanu. De-
cidability and complexity results for security protocols. In
Verification of Infinite-State Systems with Applications to Se-
curity, pages 185–211. IOS Press, 2006.

[9] S. Froschle. The insecurity problem: Tackling unbounded
data. In IEEE Computer Security Foundations Symposium
2007, pages 370–384. IEEE Computer Society, 2007.

[10] D. Gollmann. Insider fraud (position paper). In B. Chris-
tianson, B. Crispo, W. S. Harbison, and M. Roe, editors, Se-
curity Protocols Workshop, volume 1550 of Lecture Notes
in Computer Science, pages 213–219. Springer, 1998.

[11] J. D. Guttman, F. J. Thayer, and J. C. Herzog. Strand spaces:
Why is a security protocol correct? In 1998 IEEE Sympo-
sium on Security and Privacy, pages 160–171, May 1998.

[12] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-
duction to Automata Theory, Languages and Computabil-
ity. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[13] Z. Liang and R. M. Verma. Secrecy Checking of Pro-
tocols: Solution of an Open Problem. Technical re-
port, Computer Science Department, University of Houston,
Texas, USA, http://www.cs.uh.edu/preprint,
April 2007. UH-CS-07-04.

[14] Z. Liang and R. M. Verma. Secrecy Checking of Protocols:
Solution of an Open Problem. In Automated Reasoning for
Security Protocol Analysis (ARSPA 07), pages 95–112, July
2007.

[15] Z. Liang and R. M. Verma. Improving Techniques for Prov-
ing Undecidability of Checking Cryptographic Protocols.
Technical report, Computer Science Department, University
of Houston, Texas, USA, http://www.cs.uh.edu/
preprint or http://www.cs.uh.edu/˜zliang,
January 2008.

[16] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. In TACAS, pages 147–166,
1996.

[17] G. Lowe. A hierarchy of authentication specifications. In
CSFW ’97: Proceedings of the 10th Computer Security
Foundations Workshop (CSFW ’97), page 31, Washington,
DC, USA, 1997. IEEE Computer Society.

[18] J. K. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In ACM
Conference on Computer and Communications Security,
pages 166–175, 2001.

[19] R. M. Needham and M. D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Commun.
ACM, 21(12):993–999, 1978.

[20] L. C. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6(1-2):85–
128, 1998.

[21] R. Ramanujam and S. P. Suresh. Undecidability of secrecy
for security protocols. Manuscript, July 2003.

[22] M. Rusinowitch and M. Turuani. Protocol insecurity with
a finite number of sessions, composed keys is NP-complete.
Theor. Comput. Sci., 1-3(299):451–475, 2003.

107410741074

Authorized licensed use limited to: University of Houston. Downloaded on January 14, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

