
Complexity of Checking Freshness of
Cryptographic Protocols ?

Zhiyao Liang Rakesh M Verma

Computer Science Department, University of Houston,
Houston TX 77204-3010, USA

Email: zliang@cs.uh.edu, rmverma@cs.uh.edu

Abstract. Freshness is a central security issue for cryptographic pro-
tocols and is the security goal violated by replay attacks. This paper
is the first to formally define freshness goal and its attacks based on
role instances and the attacker’s involvement, and is the first work to
investigate the complexity of checking freshness. We discuss and prove a
series of complexity results of checking freshness goals in several differ-
ent scenarios, where the attacker’s behavior is restricted differently, with
different bounds on the number of role instances in a run.

Key words: Cryptographic protocols, freshness, replay attack, chal-
lenge response, model checker, undecidability, NP-completeness, Athena.

1 Introduction

Security of communication protocols is critical in this age when computer com-
munication is ubiquitous. An important research direction in verifying commu-
nication protocols is checking attacks while assuming perfect cryptography and
a dominant attacker in the network, commonly referred as the Dolev and Yao
attacker model [1]. Many researchers follow Dolev and Yao attacker model. Much
research on the complexity of checking security goals has focused on checking
secrecy [2] [3] [4] [5] [6] [7] [8].

Freshness is a central and fundamental issue of communication protocols
[9]. The common ways to maintain freshness of terms of a protocol, without
arguing the exact definition of freshness, are by using timestamps or by challenge-
response [10]. Intuitively, in a protocol run a term may be considered as “fresh”
in two aspects: how the term is created, and how the term is received. When
a term is created we may say it is fresh, or it is new or not stale, if it is not
created before a certain time, while time can be measured by the timestamps
of terms. In [5] freshness means uniqueness, which means when a fresh term is
created it should not have appeared in the run before, and this approach may
also be categorized as emphasizing the freshness of a term on the creation aspect.
The freshness of terms on the reception aspect, if implemented by timestamps,
could mean that only terms with timestamps after a certain time points can be
? Research supported in part by NSF grants CCF 0306475 and CNS 0755500.



2 Zhiyao Liang and Rakesh Verma

received in a certain situation. When a regular agent A participates in a protocol
run, it is guaranteed that the A will create really fresh terms such as nonces if we
assume unbounded creation of fresh terms, but what can cause security failure
are the terms that are received by A, which could be not “fresh” when they
are supposed to be “fresh”. Therefore we think to define the freshness of terms
on the reception aspect is what really matters and deserves more attention.
Timestamps have the limitation of relying on a precise global clock. On the
contrary to timestamps, the challenge-response mechanism indirectly restricts
how a term can be received and accepted, i.e. a challenge must be passed in
order to let a term be accepted. Comparing the challenge-response approach
and the timestamp approach to implement and define freshness, we consider
the former has wider coverage of cryptographic protocols. Obviously the former
is more complicate to analyze. In this paper we address the freshness goal that
may be implemented by challenge-response. Further discussions on the challenge-
response mechanism and its relationship with freshness are provided in [11].

The contributions of this paper are as follows.
– We define freshness goal based on role instances, the terms that are supposed

to be fresh, and the attacker’s involvement.
– We address different scenarios where the attacker’s behavior in a run is

restricted differently. We define three kinds of replay attacks that violate
freshness goals, called direct, restricted and general replay attacks.

– We address three bounds on the number of role instances in a run (NRI),
including fixed, individually bounded, and unbounded. This paper is the first
to clarify the difference between the three bounds.

– We address and prove a series of the complexity results of checking freshness
for DRA, RRA, and GRA, when NRI is fixed, individually bounded, or
unbounded. These results are non-trivial to prove. For example, the proof of
Theorem 5, which shows the NP-completeness of checking RRA when NRI
is fixed, is quite delicate.

– We analyze the performance of the model checker Athena [12] [13]. We im-
prove the presentation, semantics, and efficiency of the algorithm of Athena.
To the best of our knowledge, the closest definition of a freshness goal that is

independently defined by other researchers appears in [14]. However our work is
significantly different from [14], and cannot be covered by [14] for the following
reasons. First, in [14] the authors demonstrate that the freshness goal can be
expressed using the constraint solving system, but there is no complexity investi-
gation. It is obvious that the freshness goal, which is defined later in this paper,
can be expressed in different systems, since its definition is simple and clear.
Second, the attacker’s involvement is not discussed in [14] for the definition of
the freshness goal. Third, the definition of a freshness goal in [14] is less generally
applicable than the one defined in this paper, which is discussed later. Fourth,
the discussion on freshness in [14] is sketchy and is not the focus of [14].

We do not need to follow the detailed behavior of challenge and response in
order to investigate the complexity of checking freshness. Therefore our approach
is rather different from, and cannot be covered by other papers that design rules



Complexity of Checking Freshness of Cryptographic Protocols 3

or logic to address the details of challenges and responses, such as [15] and [16],
and they do not address complexity issues.

One approach of studying the complexity of checking freshness is to reduce
the problem of checking freshness to the problem of checking freshness or the
other way, since there are published results of the complexity of checking secrecy
(but not much for authentication). But this approach requires that convincing
proofs of the corresponding complexity results of checking secrecy are available.

Based on our works in [7] and [8], which improves the work of [3], of prov-
ing undecidability results by direct reductions from the well-known reachability
problem of 2-counter machines, we think this direct approach is convenient to
prove the undecidability results of checking freshness and may be easier for
readers to verify, especially when the ideal proof of checking secrecy for the cor-
responding setting is not obvious or not easily available. Therefore the proof of
Theorem 1 is by this direct reduction.

Reduction from checking secrecy to checking freshness can be done, and
the idea is demonstrated in the proof of Theorem 2. Such a reduction may be
useful to show that checking freshness is undecidable when the number of role
instances (NRI) is unbounded, and NP-hard when NRI is fixed, since we believe
checking secrecy has the same complexity results correspondingly. We present
two different proofs for Theorem 2, one by a direct reduction from 2-counter
machine, and the other by a reduction from secrecy. Details of these proofs are
provided in [11]. The NP-hardness proof of checking secrecy we have noticed is
provided by [4], which is by reduction from 3-SAT. However that proof assumes
protocols as non-matching roles instead of communication sequences, and the
secret term is declared in a non-realistic way, which are unconvincing aspects as
discussed in [17] and [8]. Therefore in this paper we prove the NP-hardness of
checking freshness in Theorem 5 by a direct reduction from 3-SAT.

Reduction from freshness to secrecy can also be done, as demonstrated in
[11], although it may not be obvious. Such a reduction may show that checking
freshness is NP when NRI is fixed since we believe checking secrecy is NP with
fixed NRI, and this complexity result have been addressed in [4]. However, be-
sides the significant contributions made by [4], we think there is an error in the
proof of [4] to show checking secrecy is NP. More specifically the error is due to
an assumption in the proof of Theorem 1 in [4] that the DAG size of a substi-
tution of a term is no less than the DAG size of the term, which is incorrect.
More details of the error is described in [11]. Currently we are studying another
related paper [18]. Therefore we prove the NP result of checking freshness by
directly analyzing a model checker, not by reduction from secrecy.

For space limit most of the detailed proofs are in the technical report [11],
while in the paper we present the essential definitions and proving methods.

2 Notations and Modeling

[Notations] Notations are chosen in a style that is commonly used in the
literature. More details of notations and modeling can be found in [11]. A term



4 Zhiyao Liang and Rakesh Verma

is either an atomic term or a composite term. An atomic term is a variable
(represented by a symbol with at least one upper case letter), or constant (a
symbol without any upper case letter). The special constant I is the name of
the attacker. Asymmetric keys are atomic terms. The established public key and
private key of an agent A is k1

A and k0
A respectively. A composite term is a list,

or an asymmetric encryption, or a symmetric encryption. A list has the form
of [X,Y, · · · ], where X and Y are terms and the list contains finite number of
member terms. A list is a simpler representation of a sequence of nested pairs.
For example [W,X, Y, Z] is the same as [W, [X, [Y, Z]]]. When a message is a
list, the top level enclosing [ ] is omitted. A term constructed by encryption
algorithms is called an encryption. An asymmetric encryption has the form of
{T}→

ki
A
, i ∈ {0, 1}, where T is called the text, and ki

A, for i ∈ {0, 1}, is the

atomic encryption key, and it can be decrypted using the key k1−i
A . A symmetric

encryption has the form of {T}↔Y , where T is the text and Y is any term working
as the encryption key. When a list, say [X, Y, Z, · · · ] is encrypted symmetrically
or asymmetrically, the enclosing square brackets are removed within “{ }”. The
word ground means variable free.

The set of blocks of a term T , denoted as blocks(T ), is defined as follows:
– If T is an encryption or an atomic term, blocks(T ) = {T}.
– If T = [X, Y ], then blocks(T ) = blocks(X) ∪ blocks(Y ).

An action step can have one of the following three forms. A term sent or
received in an action step is called a message .
– If agent P generates a set of (at least one) fresh terms, and then sends a

message Msg to agent B, then the action step has the form
#P (T1, T2 · · · ) + (P ⇒ B) : Msg.

Here #P (T1, T2 · · · ) is the fresh term generation action of P to generate the
fresh terms T1, T2 etc. These fresh terms should appear as subterms in Msg.

– If agent P sends a message Msg to B without generating any fresh terms,
then the action step is denoted as +(P ⇒ B) : Msg.

– If P receives a message Msg, and by the context of the communication or
by analyzing Msg, P considers the supposed sender of Msg should be B,
then the action step has the form −(B ⇒ P ) : Msg.

A communication step can also have three possible forms, which are the
same as an action step, except the + and − signs are not used. A communication
step implies two corresponding action steps, one is the message sending, maybe
with nonce generation, by the sender, and the other is the message receiving
by the receiver. A communication sequence , or simply CS , is a sequence
of communication steps numbered sequentially starting from 1. A protocol is
commonly described as a CS accompanied with other information including the
initial knowledge patterns of agents.

[Model of protocol run] Here we present the essential model of protocol
run. A verbose model can be found in [11]. We assume the free term algebra,
which means that two different symbolic terms must represent two different bit-
strings of the real world. This assumption is commonly for the Dolev-Yao model.
We assume unbounded fresh nonce generation, which means that when a nonce



Complexity of Checking Freshness of Cryptographic Protocols 5

is generated, it is always different from other nonces and all the terms appeared
in the run before its generation or initially known to some agent.

A role is a sequence of action steps executed by the same agent A obtained
by parsing the CS of a protocol, which is called A’s role.

An event is a tuple 〈act, time〉. act is a ground action step, described earlier.
The time field of an event e is referred as e.time, which is a positive real number
representing when the event occurs after the start of the run.

A role instance r of role R, such that the action steps of the sequence of
events in r instantiate a prefix of the sequence of action steps, not necessarily all
of the action steps, of R, by a ground substitution. For two events ev and ev′ in
r, if their message numbers in the corresponding role R are n and n′ respectively,
and n < n′, then ev.time < ev′.time.

In a run the attacker is associated with a set of ground terms that are
initially known to I, denoted as I.init. The attacker can analyze and synthesize
terms and create nonces by following a set of standard rules, as discussed by
[19] and [4]. Given a certain set E of events that have occurred in a run, based
on I.init and the messages sent by E, knowI(E) represents the (infinite) set of
terms that can be derived following these standard rules.

A run is a tuple: 〈Pro, D, R, AN, E〉 Pro is the protocol. D is the initial
knowledge pattern of the attacker who is involved in the run. R is a set of role
instances that are executed honestly by regular agents. AN is the set of ground
names of the agents who participate in the assumed perfect initial knowledge
establishing stage of the run, including all of the regular agents and sometimes
the attacker. The agents in AN are insiders. E is a set of events that occur in
the run, including, nothing more and nothing less, all of the events of in the role
instances in R. The set of time points of run is defined as {t | t = η.time,
η ∈ run.E} ∪ {0}. Given a time point t, we define E<t as the set of events
{η | η.time < t, η ∈ run.E}. The following conditions should be satisfied: For
any event η in E, if η receives a message msg then msg ∈ knowI(E<η.time).
The set of all possible runs of a protocol Pro and with some specific initial
knowledge pattern D of the attacker, is denoted as RunsD:Pro. Note that we
allow two events to occur at the same time in a run, which is different from the
trace based models like [19] and [6], but agrees with the strand space model [20].

[Definition of Freshness and Its Attacks]

Definition 1: Given a certain pattern D of the attacker’s initial knowledge,
and a protocol Pro, where a role of A receives a term X which should be freshly
generated by B’s role such as a nonce variable, the freshness of X to A’s role
is that it is impossible to have a run, run ∈ RunsPro:D, where there are two
different role instances r and r′ of A’s role, such that the following two conditions
are satisfied:
– In r and r′, B is not instantiated by I, which is the attacker’s name.
– The same ground term, say c, instantiates X in both r and r′.

Note that in the above definition r and r′ do not need to be executed by the
same agent, i.e. A may be instantiated by different agents in r and r′, which is
more generally applicable than the freshness defined in [14]. We require that B



6 Zhiyao Liang and Rakesh Verma

is not instantiated by I, since if the nonce X is supposed to be generated by the
attacker, then the attacker can obviously send the same X to both r1 and r2.

Freshness, as defined above, is a necessary condition of authentication. Lowe
provided some well-known definitions of authentication goals in [21], and the
strongest definition is the follows. The protocol, which is a communication se-
quence, implies a set of variables that appear in both A’s role and B’s role, which
is called the set of shared data. The authentication goal of B’s role to A’s role,
for any two agent variables A and B, is that in every run of the protocol, when
a role instance r of B finishes execution, there is a one-to-one correspondence
between r and another role instance r′ of A’s role such that in r and r′ the
shared variables are instantiated by the same values. In order to implement the
one-to-one correspondence commonly a nonce NA is created by A and received
by B, and NA is shared by A’s role and B’s role. If the authentication goal of
B’s role to A’s role is satisfied then the freshness goal of NA to B’s role is obvi-
ously satisfied ([11] explains more). However the freshness goal is not sufficient
for the authentication goal. Even when all of the freshness goals to B’s role of
the nonce variables shared between A and B are satisfied, the authentication
goal of B’s role to A’s role may still not be satisfied, since it is possible that the
values of these shared variables in a role instance r of B’s role does not appear
together in a single role instance r′ of A’s role. The idea of authentication goal
is to describe a condition that should not be violated in the normal situation,
which is a one-to-one correspondence between two role instances. The freshness
goal defined above extends this idea to described s a one-to-one correspondence
between a role instance and a nonce that normally should be satisfied.

A unique location is assigned to each occurrence of a term in the messages
of a communication sequence of a protocol as follows.
– The message with message number i, 1 ≤ i, has location i.
– If an encryption {X}→Y or {X}↔Y has the location L, then X is located at

L.α, and Y is located at L.β.
– If term [X, Y, · · · ] has location L, then the members X, Y · · · have the

locations, respectively, L.1, L.2, · · · .
Since roles are parsed from a CS, the location of an occurrence of a term T in a
role is the location of the corresponding term occurrence in the CS.

Definition 2: We consider the following restrictions on the attacker’s behavior
in a protocol run.
1. In a run when a regular agent receives a block T in a message, T must have

appeared as a block in some message that has already been sent earlier by
some regular agent.

2. In any message Msg received in a regular role instance, if T is the block in
Msg with location L, then T must be a block with the same location L in
some message sent earlier by a regular role instance.

For an attack (a run of the protocol) that violates a freshness goal, if the at-
tacker’s behavior is restricted by
– both restrictions 1 and 2, the attack is called a direct replay attack (DRA).
– only restriction 1, the attack is called a restricted replay attack (RRA).



Complexity of Checking Freshness of Cryptographic Protocols 7

– no restrictions, the attack is called a general replay attack (GRA).
It is not obvious how to formally describe the three replay attacks defined

above using the taxonomy discussed in [22].

[Bounding the number of role instances in a run] We consider the
number of role instances in a run , call it NRI for short, for different
problem settings of checking freshness. Note that every run has a finite number
of role instances. NRI has been used to analyze the complexity of checking secrecy
in the literature [4] [2] [5] [3] [6] [7]. We clarify different notions of bounding NRI,
depending on different settings of the inputs to the algorithm, as follows.
– We say NRI is bounded by an individual number , or simply, is indi-

vidually bounded if the problem to be decided is a tuple 〈Pro, D,R, V, N〉
where Pro is the protocol, whose size is measured by the size of its CS,
and the freshness goal of variable V to the role R needs to be checked, and
N is a natural number representing the bound on NRI. Only the runs with
the number of role instances no more than N are considered. Note that for
different problem instances N could be different.

– We say NRI is bounded by a fixed number , or simply, is fixed , if the
problem to be decided is 〈Pro, D,R, V, n〉, for some fixed number n and all
of the instances of the problem shares the same n.

– We say NRI is unbounded , if the problem to be decided is just 〈Pro, D, R, V 〉,
where there is neither fixed nor individual bound considered on NRI, there
could be any finite number of role instances in a run.

The advantage of clarifying these different settings of bounds is to avoid possi-
ble confusion in understanding the terms for bounds including bounded, fixed,
unbounded, finite and infinite that appear in the literature. Note that to check
DRA or RRA, the intruder’s initial knowledge pattern D is irrelevant.

3 Complexity Results on Checking Freshness

[Undecidability results]

Theorem 1: Checking RRA for a freshness goal is undecidable when the num-
ber of role instances in a run (NRI) is unbounded.

Proof. We reduce the reachability problem of a deterministic 2-counter machine
to a problem of checking RRA for a freshness goal. We have used this approach
similarly in [8]. In the reduction the attacker cannot construct any blocks that
can be received by a regular agent since these blocks must be encrypted by a
symmetric key K which is unknown to the attacker. Reachable configuration of
a 2-counter machine M are encoded by special terms called configuration terms
in a protocol run. The reduction ensures that a certain freshness goal is violated
in a run if and only if a configuration term is known to I which encodes a final
configuration reachable to M . Detailed proof is in [11].

Theorem 2: Checking GRA for a freshness goal is undecidable when the num-
ber of role instances in a run (NRI) is unbounded.



8 Zhiyao Liang and Rakesh Verma

Proof. There are two ways to prove this theorem. First, we can do reduction
from the reachability problem of a deterministic 2-counter machine. The protocol
used in the reduction is the same as the one used in [8], which has been specially
designed so that the attacker I is an insider and I has to construct blocks in
order to commit an attack. The freshness goal chosen for the reduction is the
one of the term C1final or C2final to the role Rfinal executed by agent B.

Second, we can do reduction from secrecy to freshness, as sketched below.
Given a protocol Pro of the secrecy problem, we construct a protocol Pro′ for
the freshness problem by adding the following lines in some proper way into the
CS of Pro.
#A(N1) (A ⇒ B) : {m,A, B, N1, SECRET}→

k1
B

#B(N2) (B ⇒ A) : {m + 1, B, A,N1, N2}↔SECRET

(A ⇒ B) : {m + 2, A, B,N2}↔SECRET

Here N1 and N2 are fresh nonces created by A and B respectively. SECRET
is a term that is supposed to be shared between A and B. The three numbers
(constants) m, m + 1 and m + 2, for some integer m, are used to distinguish
the three messages from other encryptions appearing in the protocol to avoid
confusion. Then the freshness goal to be checked is the one of N1 to B’s role.

[Decidability results] We obtain several decidability results based on ana-
lyzing the performance of the model checker Athena [12] [13]. We introduce the
notions and algorithm of Athena first, which are adapted for the modeling of
this paper. We arrange the presentation and the proof of Athena differently for
simplicity and clarity.

A strand is a sequence of action steps formed by instantiating a role by some
substitution. There are two differences between a strand and a role instance. First
in a strand variables can appear, while in a role instance all terms are ground.
Second a role instance includes events, where action steps are associated with
time fields, but strand includes only action steps. During the reasoning of the
model checker a strand represents a role instance of a run.

Every strand is associated with a unique identifier in the reasoning. A node
of a strand is a pair 〈r, L〉 where r is the unique identifier of the strand, and L is
the location of a block in a message of the strand, which has been introduced in
Section 2. Each node can be used as a unique identifier of a block occurrence. The
term of node nd, for nd = 〈r, L〉, denoted as term(nd), means the term (the
block) appearing at location of L of the strand r. A node in a message received
in a strand is called a negative node , otherwise a node in a message sent in a
strand is called a positive node . A state is a tuple 〈strands, binding, counter〉,
where strands is a set of strands, binding is a binary relationship mapping
from one negative node in strands to a positive node in strands, and counter
is a natural number corresponding to the number of strands in a state. The
notation 〈r, L〉 ³ 〈r′, L′〉 means that the negative node 〈r, L〉, which is called
the goal , binds to the positive node 〈r′, L′〉, which is called the binder , where
r, r′ ∈ strands. counter is used to check if the bounds on NRI is satisfied in a
state or not. counter can also be used to name a new strand that is introduced
into a state and to name the variables of the new strand.



Complexity of Checking Freshness of Cryptographic Protocols 9

The causally precedence ., also called causally earlier relationship be-
tween two nodes nd = 〈r, L〉 and nd′ = 〈r′, L′〉 is defined as follows.
– if r == r′, i.e. they refer to the same strand, if nd appears in a message

with message number m, and nd′ appears in a message with number m′,
and m′ < m, then nd′ . nd.

– if nd ³ nd′ then nd′ . nd. Note that . is opposite to ³.
– if nd′ . nd′′ and nd′′ . nd, for some node nd′′, then nd′ . nd. This condition

means that . is transitive.
In [13] . is defined to be reflexive, but not in this paper since it is not necessary.
In a state, node nd′ is not causally earlier than node nd is denoted as nd′ � nd.

. is obviously extended for action steps of the strands in a state. For two
action steps stp and stp′ appearing in a state S, stp′ . stp if one of the following
conditions satisfies.
– If stp′ and stp appear in the same strand with message number m′ and m

respectively and m′ < m.
– If there is a node nd of stp and a node nd′ of stp′ such that nd′ . nd.
– If stp′ . stp′′ and stp′′ . stp, for some step stp′′ in S.

The strand space model [20] describes a run as a bundle of strands, where each
negative node is bound to a positive node. In [12] the author extended the strand
space model of [20] for the model checker Athena by introducing variables and
the unification mechanism and a set of new notions including semi-bundle and
goal binding. A semi-bundle, which may have goals unbound, is expanded and
updated during the computation of Athena and finally forms a bundle. We only
use a subset of the notions used in [12] [13] that are enough for this paper, and in
some aspects these notions are presented in a different perspective since we want
to clarify the relationship between the notions of strand space used by Athena
and our model of protocol run. The advantage of our presentation of Athena is
that the meaning and the correctness of the algorithm can be understood more
clearly. Based on the improved understanding, the algorithm is also simplified.
For example we directly introduce the goal binding relation ³ for the model
checker without using the → relationship, which is defined and used in Athena
[12] [13], since we consider → is unnecessary or its meaning is unclear.

The semantics of goal binding can be explained more intuitively in our model.
When checking RRA, note that the attacker’s behavior of constructing blocks
does not need to be considered due to the restriction, node nd1 binds to node
nd2 means the follows: Let ev1 and ev2 be the two events that nd1 and nd2

belong to respectively. Then term(nd1) is sent by ev2 as a block and term(nd1)
cannot be sent at any event with time point earlier than ev2.time in the run.
This semantics of goal binding can be extended for GRA, when the attacker’s
internal computation need to be described using term derivations.

The model checker has to ensure three properties, call them correctness
properties, of a reachable state S during the reasoning.
1. The . relationship of the action steps and nodes in S is acyclic.
2. All of the negative nodes with the same term in S must bind to the same

positive node in S.



10 Zhiyao Liang and Rakesh Verma

3. If a node nd′ is the binder of nd, i.e. nd ³ nd′ ∈ S.binding, then there is
no node nd′′, which is different from nd′ in S such that the term(nd′′) ==
term(nd′) == term(nd) and nd′′ . nd′.
The second correctness property is not introduced in [12] and [13], but we

consider it can reduce redundant state exploration significantly in some situation.
Even though there could be several nodes that possibly send the same term T at
the earliest time, only one of these possible binders for T needs to be considered
in a child state of S, and then let other children states of S to consider the
other nodes as binders. Property 3 means that a goal should only bind to the
(causally) earliest binder as described in [12] and [13].

In a state the variables are global across different strands, which means that
if a variable X will be instantiated by Y , then all X appearing in all strands in
the state will be replaced by Y . The function unifiable(T, T ′) returns true, if
T and T ′ are unifiable, otherwise false. Type information can be introduced for
unification. For example if according to the protocol in a certain role a variable
A is required to be some known agent name, then in a run A can only be unified
with an agent name, and A cannot be unified with a nonce generated in the run.
For two terms T and T ′, mgu(T, T ′) represents the most general unifier (MGU)
of T and T ′. For a substitution γ, γ(X) means to apply γ to X, where X could
be a term, a step, strand, or a state, in the obvious way.

RRA Checker(Pro, R, V, N), to check the freshness goal of a variable V
to role R in a protocol Pro, no more than N role instances in a run, N ≥ 2

1: Let r1 and r2 be two different strands of R formed as follows. r1 and r2 are
the same as R except for two aspects: First, for every variable X in R that is
not freshly generated in R, except V whose freshness needs to be checked, X
is renamed as X1 in r1, and as X2 in r2. The variable V remains unchanged
and appears in both r1 and r2. Second, for each variable Y if Y is freshly
generated in R, Y is renamed by a unique constant in r1, and by another
unique constant in r2.

2: Let state0 := 〈{r1, r2}, ∅, 2〉; Let STATES := {state0}.
3: while STATES 6= ∅ do
4: let S be an arbitrary state in STATES; STATES := STATES − S.
5: if for every negative node nd in S, there is some positive node nd′ in S

such that nd ³ nd′ ∈ S.binding then
6: print BAD: an attack found, the freshness goal of V for R is violated.
7: Quit the algorithm.
8: end if
9: Let nd be an arbitrarily chosen negative node in S such that nd ³ nd′ /∈

S.binding for any positive node nd′. It means nd has not been bound (to
any positive node) yet. Let T := term(nd).

10: for all positive node nd′ in S.strands such that nd′ � nd do
11: if unifiable( T, term(nd′) ) then
12: Let γ := mgu( T, term(nd′) ).
13: Let state S′ be a new state formed as



Complexity of Checking Freshness of Cryptographic Protocols 11

〈γ(S.strands), S.binding ∪ {nd ³ nd′}, S.counter〉.
14: if S′ satisfies the three correctness properties as described earlier in

this Section then
15: Let STATES := STATES +S′. { /* Insert S′ into STATES. */}
16: end if{ /* S spawns S′ */ }
17: end if
18: end for{/* Finish trying to bind nd to nodes of existing strands*/}
19: if S.counter < N then
20: for all blocks T ′ of the protocol, such that T ′ appears at location L′ in

a role R′ in a sent message numbered with m, and unifiable(T, T ′) do
21: Let n = S.counter + 1; Let rn be a new strand formed as follows. rn

is the same as the prefix of the action steps of R′ up to the message
numbered with m, denote this prefix as R′↑m, except that for each
variable X of R′↑m if X is not freshly generated in R′, X is renamed
with Xn in rn. Otherwise if X is freshly generated in R′↑m, then X is
replaced in rn by a unique constant that has not appeared in S yet.

22: Let T ′′ be the block located at L′ in rn; Let γ := mgu(T, T ′′); Let
nd′ be the node 〈rn, L′〉

23: let S′ be a new state formed as (note S does not change)
〈γ(S.strands ∪ {rn}), S.binding ∪ {nd ³ nd′}, n〉

24: if S′ satisfies the second correctness property, described earlier then
25: insert S′ into STATES. {/* S spawns S′ */}
26: end if{/* No need to consider the correctness properties 1 and 3 */}
27: end for{/* Finish trying to bind nd to nodes of new strands. */}
28: end if{/* Finish handling the state S */}
29: end while
30: print Good: the freshness goal of V for R is satisfied.

Lemma 1: When NRI is individually bounded, RRA Checker terminates in
2-EXPTIME, and when NRI is fixed, RRA Checker terminates in EXPTIME.

Proof. Terms appear as bit-strings to the actual algorithm. Note that a bit-string
here does not mean the data in physical network. The length of a bit-string Str is
the number of bits and is denoted as |Str|bit. The input of RRA Checker, which
is 〈Pro, R, V,N〉, can be considered as a bit-string and its size is measured as
ζ = |〈Pro, R, V,N〉|bit. We want to prove that when NRI is individually bounded
by N , or NRI is fixed to n (N is replaced by n), RRA Checker terminates
with time cost O(2(2P(ζ)

), or O(2P(ζ)), respectively, where P(ζ) is a polynomial
function of ζ. Time is measured by the number of instructions executed.

First we consider the case that NRI is individually bounded by N . The states
that can be reached in a computation of RRA Checker can be viewed as a tree.
The top state is s0. If a state S′ is created from a state S (by the line 15
or 25) then S′ is a child state of S. Let ψ = |Pro|bit × N . It is obvious that
N < 2|N+1|bit = 2O(|N |bit). The number of occurrences of subterms of a term T
is no more than |T |bit. Since each state can have at most N strands, and each
strand can have no more than |Pro|bit nodes, the total number of nodes in a



12 Zhiyao Liang and Rakesh Verma

state is at most |Pro|bit ×N = ψ. Each state has at most O(ψ) children states,
since for the single arbitrarily chosen negative node nd of S (see line 9), there
are at most ψ positive nodes in the existing strands or new strands that can be
the possible binders for nd. The depth from the top state s0 to the bottom of
the tree is at most ψ, since each child state has one more negative node bound
(to some positive node) than its parent state, and there are at most ψ negative
nodes in a state. So the tree of states is at most O(ψ) branching and at most
O(ψ) deep. So the number reachable states is at most O(ψψ).

For efficiency purpose of unification, all terms are represented as DAGs [4] in
the reasoning of RRA Checker. A DAG of a term T is a tree where each subterm
of T appears as a node of the tree exactly once. The subterms of T is defined in
the common way as in [4]. Note that encryption key is considered as a subterm
of an encryption. The DAG size of a term T is the number of subterms of T ,
denoted as |T |DAG. Obviously |T |DAG ≤ |T |bit. All messages sent or received in
the protocol Pro is translated into DAG representation, which can be done in
O(|Pro|bit) time. |Pro|DAG is defined accordingly. Let M be the number of all
distinct subterms appearing in all messages sent or received in all strands in a
state. Since for RRA a regular agent can only receive and accept a block that
is sent in a message by a regular agent, obviously only the messages sent in the
strands contributes to M. It is obvious to prove that for a strand r of role R, r
can contribute at most |R|DAG to M, and |R|DAG ≤ |Pro|DAG. Since there are
at most N strands, for any reachable state M≤ |Pro|DAG×N < ψ. So for any
message Msg in a strand of a state, |Msg|DAG < ψ.

The time cost to generate a new state is O(ψ3) for the following reasons: First,
for two terms T1 and T2, mgu(T1, T2) and unifiable(T1, T2) (Line 12 and 21)
have time cost O(|T1|DAG + |T2|DAG), and since |T1|DAG < ψ and |T2|DAG < ψ,
the time cost is O(ψ). Second, the cost of applying a substitution to the strands
in a state is O(ψ3) (line 23), since there are at most ψ action steps in a state,
and there are at most ψ variables in an action step, and for the instantiation
T of each variable |T |DAG = O(ψ). Third, with proper organization of the data
structure for the . relationship, the cost to check the correctness properties for
a state is also O(ψ), which is the maximum number of nodes in a state.

Therefore RRA Checker will terminate after
O(ψψ × ψ3) = O({2log2ψ}ψ × ψ3) = O(2log2ψ×ψ+log2ψ3

) = O(2ψ2
)

instructions. Since |Pro|bit is at most ζ and N is at most 2ζ ,
ψ = |Pro|bit ×N < ζ × 2ζ = 2log2ζ+ζ < 22ζ .

Therefore the algorithm terminates in no more than
O(2ψ2

) = O(2(22ζ)2) = O(224ζ

)
instructions, which is in 2-EXPTIME, since 4ζ is a polynomial function of ζ.

Now we analyze the other case. When NRI is a fixed number n, the input
size of RRA Checker is ζ, and |Pro|bit = O(ζ). Then ψ = |Pro|bit × n < nζ.
The time complexity is no more than O(2ψ2

) < O(2(nζ)2) = O(2n2ζ2
), which is

in EXPTIME, since n2ζ2 is a polynomial of ζ where n is a constant.

The soundness and completeness of Athena to check secrecy and authenti-
cation when NRI is bounded have been addressed in [13], and the soundness



Complexity of Checking Freshness of Cryptographic Protocols 13

and completeness of RRA Checker can be proved similarly. The soundness of
the RRA Checker is obvious: when RRA Checker reports an attack, then there
is an attack that violates the freshness goal. The completeness of RRA Checker
can be proved by induction on the iterations of the RRA Checker to show that
for any run of the protocol that violates the freshness goal, a subset of the role
instances in the run can always be mapped to the strands of a reachable state
during the computation of RRA Checker. In [11] further details of the correctness
of RRA Checker are provided. Therefore we can prove the following theorem.

Theorem 3: Checking RRA for a freshness goal is 2-EXPTIME when NRI is
individually bounded, and is EXPTIME when NRI is fixed.

When NRI is individually bounded or fixed, the complexity of checking DRA
is no more than checking RRA, and we have the following corollary.

Corollary 1: Checking DRA for a freshness goal is 2-EXPTIME when NRI is
individually bounded, and is EXPTIME when NRI is fixed.

Since DRA can be considered a special case of RRA, RRA Checker can be
adapted to check DRA. Then the goal binding mechanism is further restricted,
so that a node nd received at location L can only bind to a node nd′ sent at
location L, according to the protocol. Suppose r′ is the new strand introduced
to a state by the binding from nd to nd′, where nd′ appears in r′, and nd
appears in a strand r already included in the state. Let m and m′ be the largest
message number of a receiving action step in r and r′ respectively. Then it is
true that m′ < m. By this observation, it is not difficult to design a measure
which is strictly decreasing in any branch of the state tree of RRA Checker.
Since RRA Checker is finitely branching, its termination of checking DRA is
obvious, even when NRI is unbounded. The soundness and completeness of the
algorithm still hold for checking DRA. So we have the following theorem.

Theorem 4: Checking DRA for a freshness goal is decidable when the number
of role instances in a run (NRI) is unbounded.

Theorem 5: Checking RRA for a freshness goal is NP-complete when NRI is
fixed by a number n.

Proof. A non-deterministic algorithm can just guess a branch of the tree of states
of RRA Checker, which has at most ψ = |Pro|bit × n states. Since the cost to
generate a state is O(ψ3), and ψ < nζ, the total cost of a branch of RRA Checker
is O(ψ)×O(ψ3) = O(ψ4) = O(n4ζ4) = O(ζ4). Since ζ4 is a polynomial function
of ζ, checking RRA for a freshness goal is NP when NRI is fixed. To prove NP-
hardness we reduce the satisfaction problem of 3-SAT to a problem of checking
freshness with NRI bounded to 2 (n = 2). The same proof can be applied for
other cases where n > 2. Detailed proof is included in [11], which is delicate.

We have attempted to check DRA by a set of efficient reasoning rules that
take advantage of the restrictions for the attacker. It seems that checking DRA
is P (decidable in polynomial time) even NRI is unbounded. Adapting Athena



14 Zhiyao Liang and Rakesh Verma

to check DRA cannot get a polynomial time result since we have found some
protocols that require exponential time for Athena to check DRA.

To show the NP-completeness of checking GRA following the approach of this
paper will need to incorporate the attacker’s internal computation (the attacker
strands of Athena) into the model checker. Furthermore we have to prove that in
a non-deterministic branch of the computation of the model checker, the DAG
size of the substitution is polynomial to the DAG size of the protocol, as discussed
in [4]. Since we have some doubts on the existing proofs of NP-completeness for
checking secrecy [4] as mentioned earlier, we are trying to have a better approach
to show the NP-completeness of secrecy and authentication, which we believe
should cover the NP-completeness of checking GRA when NRI is fixed.

We summarize the complexity results of checking freshness in the following
table. The results surrounded by two question marks are by postulation and
have not been proved by this paper and are under investigation.

attack \ NRI unbounded individually bounded fixed
DRA Decidable, ?P? 2-EXPTIME, ?P? EXPTIME, ?P?
RRA Undecidable 2-EXPTIME NP-complete
GRA Undecidable ?2-EXPTIME? ?NP-complete?

4 Summary

In this paper we define freshness goal and its attacks and investigate the complex-
ity of checking freshness, which is the first research on this topic. The techniques
of modeling, reduction, and model checking have novel features and can be ap-
plied generally in this area. Currently we are investigating the polynomial time
algorithm to check DRA, and we use an approach that achieves efficiency by
tracing the mechanism of challenge-response, which is rather different from the
approach of using a model checker in this paper. We are also studying an im-
proved approach to prove NP-completeness of checking secrecy, which can also
be applied to authentication and checking GRA. We expect to extend the NP-
complete proof of this paper and to handle several demanding issues discussed
at the end of Section 3. These substantial works are proper to be addressed in
subsequent researches beyond the scope of this paper.

References

1. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983) 198–207

2. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting and the complexity of
bounded security protocols. Journal of Computer Security 12(2) (2004) 247–311

3. Ramanujam, R., Suresh, S.P.: Undecidability of secrecy for security protocols.
Manuscript (July 2003)

4. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theor. Comput. Sci. 1-3(299) (2003) 451–475



Complexity of Checking Freshness of Cryptographic Protocols 15

5. Ferucio L. Ţiplea and C. Enea and C. V. B̂ırjoveanu: Decidability and complexity
results for security protocols. Technical Report TR 05-02, “Al.I.Cuza” University
of Iaşi, Faculty of Computer Science (2005)

6. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: ACM Conference on Computer and Communications Secu-
rity. (2001) 166–175

7. Liang, Z., Verma, R.M.: Secrecy Checking of Protocols: Solution of an Open
Problem. In: Automated Reasoning for Security Protocol Analysis (ARSPA 07).
(July 2007) 95–112

8. Liang, Z., Verma, R.M.: Improving Techniques for Proving Undecidability of
Checking Cryptograhpic Protocols. In: The Third International Conference on
Availability, Security and Reliability, Barcelona, Spain, IEEE Computer Society
(March 2008) 1067–1074 Workshop on Privacy and Security by means of Artificial
Intelligence (PSAI).

9. Gong, L.: Variations on the themes of message freshness and replay—or the diffi-
culty of devising formal methods to analyze cryptographic protocols. In: Proceed-
ings of the Computer Security Foundations Workshop VI, IEEE Computer Society
Press (1993) 131–136

10. Lam, K.Y., Gollmann, D.: Freshness Assurance of Authentication Protocols. In:
ESORICS ’92: Proceedings of the Second European Symposium on Research in
Computer Security, London, UK, Springer-Verlag (1992) 261–272

11. Liang, Z., Verma, R.M.: Complexity of Checking Freshness of Cryptographic Pro-
tocols. Technical report, Computer Science Department, University of Houston,
Texas, USA, http://www.cs.uh.edu/preprint (September 2008) UH-CS-08-14.

12. Song, D.X.: Athena: A new efficient automatic checker for security protocol anal-
ysis. In: CSFW. (1999) 192–202

13. Song, D.X., Berezin, S., Perrig, A.: Athena: A novel approach to efficient automatic
security protocol analysis. Journal of Computer Security 9(1/2) (2001) 47–74

14. Corin, R., Etalle, S., Saptawijaya, A.: A logic for constraint-based security protocol
analysis. In: SP ’06: Proceedings of the 2006 IEEE Symposium on Security and
Privacy, Washington, DC, USA, IEEE Computer Society (2006) 155–168

15. Backes, M., Cortesi, A., Focardi, R., Maffei, M.: A Calculus of Challenges and
Responses. In: Proceedings of 5th ACM Workshop on Formal Methods in Security
Engineering (FMSE). (November 2007)

16. Guttman, J.D., Thayer, F.J.: Authentication tests. In: IEEE Symposium on Se-
curity and Privacy. (2000) 96–109

17. Froschle, S.: The insecurity problem: Tackling unbounded data. In: IEEE Com-
puter Security Foundations Symposium 2007, IEEE Computer Society (2007) 370–
384

18. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An np decision procedure
for protocol insecurity with xor. Theor. Comput. Sci. 338(1-3) (2005) 247–274

19. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2) (1998) 85–128

20. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. Journal of Computer Security 7(1) (1999)

21. Lowe, G.: A hierarchy of authentication specifications. In: CSFW ’97: Proceedings
of the 10th Computer Security Foundations Workshop (CSFW ’97), Washington,
DC, USA, IEEE Computer Society (1997) 31

22. Syverson, P.F.: A taxonomy of replay attacks. In: CSFW. (1994) 187–191


