Introduction to Computer Networks

COSC 4377

Lecture 2

Announcements

Several HWO missing
HW1 due this week

HW?2 released
Re-assess if you found HWO/HW1 challenging

HWO

“You should submit a single file, the source code. No need to
submit the binary. Please submit your source code through
Blackboard. Please include a few lines of comments at the top of
your file describing how to compile your file and if there is
anything unusual about your implementation (e.g., it does not
work with certain inputs)”

Other observations
* |nput sizes
* File/directory assumptions

Protocol Timing Diagram

t0 re
Propagation Delay .{ W}
t1

Processing Delay

t4 ©
t5

<€
\%\
<€
7
w
o -
0 o
o >
< Wn
3
n
4
o
=

Bandwidth and Delay

* How much data can we send during one RTT?
* E.g.,send request, receive file

* For small transfers, latency more important,
for bulk, throughput more important

message M
segment H| M
datagram |H,| H,| M
frame |H/|H,| H/| M

destination

M application

Hi| M transport

H,| Hi| M network

Hi|H,| H| ™

link

Encapsulation

link

physical

M network

M link

switch

physical

Today’s Topics

* Platform and Tools for HWs
 Network Applications
* Socket Programming

Platform and Tools for HWs

* We will compile/test HWs on bayou
— Linux
— C language unless other specified

* Two options

— Scp back and forth between your machine and
bayou

— Do all the development on bayou

Network Applications

Server

Client-Server Hybrid Peer-to-peer

m m

http://en.wikipedia.org/wiki/Peer-to-peer

Inter-Application Communication

Need a way to send and
receive messages

Inter-process communication
Need naming, routing, transport

Transport using TCP and UDP
— OntopofIP

Application Protocols

* Messages between processes, typically
encapsulated within TCP or UDP

* Need agreement between
— Sending process
— Recelving process

The Facebook Graph API presents a simple, consistent view of the Facebook social graph, uniformly representing objects in
the graph (e.g., people, photos, events, and fan pages) and the connections between them (e.g., friend relationships, shared

content, and photo tags).

You can access the Graph API by passing the Graph Path to the request method. For example, to access information about
the logged in user, call:

// get information about the currently logged in user
mAsyncRunner.request("me", new meRequestListener());

// get the posts made by the "platform" page
mAsyncRunner.request("platform/posts”, new pageRequestListener()):;

// get the logged-in user's friends
mAsyncRunner.request("me/friends", new friendsRequestListener());

The second paramater is an object of subclass extending the com.facebook.android.RequestListener class and overrides:

//called on successful completion of the Request
public void onComplete(final String response, final Object state){}

// called if there is an error
public void onFacebookError(FacebookError error){}

From: http://developers.facebook.com/docs/mobile/android/build/

Network Time Service

Client-server or peer-to-peer?

>

=

Atomic clock
facility

<€

1.

Protocol Timing Diagram

: t0
Propagation Delay -{

t4
t5

v

%}
tl

Processing Delay

t2
J/M <t3\ Transmission
/ Delay
o)
£
|_
v

Cloud-based File Backup Application

Client-server or peer-to-peer?

W
W
W

nere do the applications run?
no/how to run these applications?

nat messages are exchanged?

Server

The Facebook Graph API presents a simple, consistent view of the Facebook social graph, uniformly representing objects in
the graph (e.g., people, photos, events, and fan pages) and the connections between them (e.g., friend relationships, shared

content, and photo tags).

You can access the Graph API by passing the Graph Path to the request method. For example, to access information about
the logged in user, call:

// get information about the currently logged in user
mAsyncRunner.request("me", new meRequestListener());

// get the posts made by the "platform" page
mAsyncRunner.request("platform/posts”, new pageRequestListener()):;

// get the logged-in user's friends
mAsyncRunner.request("me/friends", new friendsRequestListener());

The second paramater is an object of subclass extending the com.facebook.android.RequestListener class and overrides:

//called on successful completion of the Request
public void onComplete(final String response, final Object state){}

// called if there is an error
public void onFacebookError(FacebookError error){}

From: http://developers.facebook.com/docs/mobile/android/build/

Using TCP/IP

* How can applications use the network?

 Sockets API.

— Originally from BSD, widely implemented (*BSD,
Linux, Mac OS X, Windows, ...)

— Higher-level APIs build on them
» After basic setup, much like files

One could test network protocols
with r/w on a file

/

System Calls

* Problem: how to access resources other then CPU
— Disk, network, terminal, other processes
— CPU prohibits instructions that would access devices
— Only privileged OS kernel can access devices

* Kernel supplies well-defined system call interface
— Applications request |/O operations through syscalls
— Set up syscall arguments and trap to kernel
— Kernel performs operation and returns results

* Higher-level functions built on syscall interface
— printf, scanf, gets, all user-level code

File Descriptors

* Most I/O in Unix done through file descriptors
— Integer handles to per-process table in kernel

* int open(char *path, int flags, ...);

* Returns file descriptor, used for all 1/0 to file

http://en.wikipedia.org/wiki/File _descriptor

Error Returns

 What if open fails? Returns -1 (invalid fd)
* Most system calls return -1 on failure

— Specific type of error in global int errno

+ #include <sys/errno.h> for possible values
— 2 = ENOENT “No such file or directory”
— 13 = EACCES “Permission denied”

Some operations on File Descriptors

* ssize t read (int fd, void *buf, int
nbytes);

— Returns number of bytes read
— Returns 0 bytes at end of file, or -1 on error

* ssize t write (int fd, void* buf, int
nbytes);

— Returns number of bytes written, -1 on error

* off t 1lseek (int fd, off t offset, int
whence) ;

— whence: SEEK SET, SEEK_CUR, SEEK_END

— returns new offset, or -1 on error

* int close (int £d);

Sockets: Communication Between

Machines
 Network sockets are file descriptors too

 Datagram sockets: unreliable message delivery
— With IP, gives you UDP
— Send atomic messages, which may be reordered or lost
— Special system calls to read/write: send/recv

e Stream sockets: bi-directional pipes
— With IP, gives you TCP
— Bytes written on one end read on another

— Reads may not return full amount requested, must re-
read

System calls for using TCP

Client Server
socket — make socket
bind — assign address, port
listen — listen for clients

socket — make socket
bind* — assigh address
connect — connect to listening socket
accept — accept connection

e This call to bind is optional, connect can choose address & port.

Socket Naming

* Naming of TCP & UDP communication endpoints
— |IP address specifies host (129.7.240.18)
— 16-bit port number demultiplexes within host

— Well-known services listen on standard ports (e.g. ssh —
22, http — 80, see /etc/services for list)

— Clients connect from arbitrary ports to well known ports

* A connection is named by 5 components
— Protocol, local IP, local port, remote IP, remote port
— TCP requires connected sockets, but not UDP

Socket Address Structures
Socket interface supports multiple network types

Most calls take a generic sockaddr:

struct sockaddr {
uintlé t sa family; /* address family */
char sa data[l4]; /* protocol-specific addr */

}i
E.g. int connect(int s, struct sockaddr* srv,
socklen t addrlen);

Cast sockaddr * from protocol-specific struct, e.g.,

struct sockaddr in {

short sin family; /* = AF INET */

u short sin port; /* = htons (PORT) */
struct in addr sin addr; /*32-bit IPv4 addr */
chars in zero[8];

}i

Dealing with Address Types

e All values in network byte order (Big Endian)
— htonl(), htons(): host to network, 32 and 16 bits
— ntohl(), ntohs(): nhetwork to host, 32 and 16 bits
— Remember to always convert!

* All address types begin with family

—- sa_family in sockaddr tells you actual type

e Not all addresses are the same size

— e.g., struct sockaddr iné is typically 28 bytes,
yet generic struct sockaddr is only 16 bytes

— So most calls require passing around socket
length

— New sockaddr storage IS big enough

Client Skeleton (IPv4)

struct sockaddr_in {
short sin_family; /* = AF_INET x/
u_short sin_port; /* = htons (PORT) */
struct 1n_addr sin_addr;
char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)
write (1, buf, n);

Server Skeleton (IPv4)

int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY) ;

bind (s, (struct sockaddr *) &sin, sizeof (sin));
listen (s, 5);

for (5;) o
socklen_t len = sizeof (sin);
int cfd = accept (s, (struct sockaddr *) &sin, &len);
/* cfd is new connection; you never read/write s */
do_something_with (cfd);
close (cfd);

Looking up a socket address with
getaddrinfo

struct addrinfo hints, *ai;

int err;

memset (&hints, 0, sizeof (hints));

hints.ai family = AF UNSPEC; /* or AF_ INET or AF INET6 */
hints.ai socktype = SOCK STREAM;/* or SOCK DGRAM for UDP */

err = getaddrinfo ("www.brown.edu", "http", &hints, &ai);
if (err)
fprintf (stderr, "%$s\n", gia strerror (err));
else {
/* ai->ai family = address type (AF INET or AF INET6) */
/* ai->ai addr = actual address cast to (sockaddr *) */
/* ai->ai _addrlen = length of actual address */
freeaddrinfo (ai); /* must free when done! */

getaddrinfo() [RFC3493]

* Protocol-independent node name to address
translation

— Can specify port as a service name or number

— May return multiple addresses

— You must free the structure with freeaddrinfo
e Other useful functions to know about

— getnameinfo — Lookup hostname based on
address

— inet_ntop — Convert IPv4 or 6 address to
printable

— Inet_pton — Convert string to IPv4 or 6 address

EOF in more detail

* What happens at end of store?

— Server receives EOF, renames file, responds OK
— Client reads OK, after sending EOF: didn’t close fd

e int shutdown(int fd, int how);
— Shuts down a socket w/o closing file descriptor
— how: 0 =read, 1 = write, 2 = both

— Note: applies to socket, not descriptor, so copies
of descriptor (through fork or dup affected)

— Note 2: with TCP, can’t detect if other side shuts
for reading

Using UDP

* Call socket with SOCK_DGRAM, bind as before
* New calls for sending/receiving individual packets

— sendto(int s, const void *msg, int len, int flags,
const struct sockaddr *to, socklen t tolen);

— recvfrom(int s, void *buf, int len, int flags,
struct sockaddr *from, socklen t *fromlen);

— Must send/get peer address with each packet

e Can use UDP in connected mode (Why?)
— connect assigns remote address

— send/recv syscalls, like sendto/recvErom w/0 last two
arguments

Serving Multiple Clients

* A server may block when talking to a client

— Read or write of a socket connected to a slow
client can block

— Server may be busy with CPU
— Server might be blocked waiting for disk /O

e Concurrency through multiple processes

— Accept, fork, close in parent; child services
request

* Advantages of one process per client
— Don’t block on slow clients
— May use multiple cores

— Can keep disk queues full for disk-heavy
workloads

Threads

* One process per client has disadvantages:
— High overhead — fork + exit ~100usec
— Hard to share state across clients
— Maximum number of processes limited

* Can use threads for concurrency

— Data races and deadlocks make programming
tricky

— Must allocate one stack per request

— Many thread implementations block on some |I/O
or have heavy thread-switch overhead

Rough equivalents to fork(), waitpid(), exit(),
kill(), plus locking primitives.

Non-blocking |/O
* fcntl sets O_NONBLOCK flag on descriptor

int n;
if ((n = fcntl(s, F_GETFL)) >= 0)
fentl(s, F _SETFL, n|O NONBLOCK);

* Non-blocking semantics of system calls:

— read immediately returns -1 with errno EAGAIN if no
data

— write may not write all data, or may return EAGAIN

— connect may fail with EINPROGRESS (or may succeed, or
may fail with a real error like ECONNREFUSED)

— accept may fail with EAGAIN or EWOULDBLOCK if no
connections present to be accepted

How do you know when to read/

write?
struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

+;

int select (int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO (&fdset) ;

* Entire program runs in an event loop

Event-driven servers

* Quite different from processes/threads
— Race conditions, deadlocks rare
— Often more efficient

* But...
— Unusual programming model
— Sometimes difficult to avoid blocking
— Scaling to more CPUs is more complex

