Introduction to Computer Networks

COSC 4377

Lecture 3



Announcements

Four HWO still missing

HW1 due this week

Start working on HW2 and HW3

Re-assess if you found HWO/HW1 challenging
Lecture recording posted online



HW Discussion Summary

Give an overview of the most important issues
raised and their resolution

Two slides
No more than 5 minutes

Send your (ppt) slides by noon of your
assigned day



Network Applications

Server

Client-Server Hybrid Peer-to-peer

m m

http://en.wikipedia.org/wiki/Peer-to-peer



Server




Using TCP/IP

* How can applications use the network?

 Sockets API.

— Originally from BSD, widely implemented (*BSD,
Linux, Mac OS X, Windows, ...)

— Higher-level APIs build on them
» After basic setup, much like files



Today’s Topic

HTTP and the Web



Precursors

e 1945, Vannevar Bush, Memex:

— “a device in which an individual stores all his books,
records, and communications, and which is
mechanized so that it may be consulted with
exceeding speed and flexibility”

* Precursors to hypertext

— “The human mind [...] operates by association. With
one item in its grasp, it snaps instantly to the next
that is suggested by the association of thoughts, in
accordance with some intricate web of trails carried
by the cells of the brain”

* Read his 1945 essay, “As we may think”

— http://www.theatlantic.com/magazine/archive/
1945/07/as-we-may-think/3881/




Tim Berners-Lee

* Physicist at CERN, trying to solve real problem
— Distributed access to data

« WWW: distributed database of pages linked
through the Hypertext Transfer Protocol
— First HTTP implementation: 1990
— HTTP/0.9 — 1991

e Simple GET commant

— HTTP/1.0 — 1992

 Client/server information, simple caching

— HTTP/1.1 - 1996

* Extensive caching support
* Host identification
* Pipelined, persistent connections, ...



Components

Content

— Objects (may be static or dynamically generated)
Clients

— Send requests / Receive responses

Servers
— Receive requests / Send responses
— Store or generate content

Proxies
— Placed between clients and servers

— Provide extra functions

e Caching, anonymization, logging, transcoding, filtering
access

— Explicit or transparent



Ingredients

e HTTP
— Hypertext Transfer Protocol

* HTML

— Language for description of content

* Names (mostly URLs)



URLs

protocol://[name@ ]hostname[:port]/directory/
resource?kl=v1&k2=v2#tag

 Name is for possible client identification

* Hostname could be an IP address

* Port defaults to protocol default (e.g., 80)
* Directory is a path to the resource

e Resource is the name of the object

* ?parameters are passed to the server for
execution

e Htag allows jumps to named tags within
document



Examples of URL

e http://www?2.cs.uh.edu/~gnawali/courses/
cosc4377-s12/schedule.html

e http://en.wikipedia.org/wiki/
Domain name#Top-level domains

* http://www.uh.edu/search/?g=computer
+science&x=0&y=0

You will need to parse URLs like this for HW3



HTTP

Important properties

— Client-server protocol

— Protocol (but not data) in ASCII
— Stateless

— Extensible (header fields)

Server typically listens on port 80

Server sends response, may close connection
(client may ask it to say open)

Currently version 1.1



Steps in HTTP Request

Open TCP connection to server
Send request

Receive response

TCP connection terminates

— How many RTTs for a single request?

You may also need to do a DNS lookup first!



Telnet demo
Header inspection



HTTP Request

request |
header field name value l
headers z Y/
header field name value |l
blank line [!
body
e Method:

— GET: current value of resource, run program

— HEAD: return metadata associated with a resource

— POST: update a resource, provide input for a program
 Headers: useful info for proxies or the server

— E.g., desired language



Sample Browser Request

GET / HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (Macinto ...

Accept: text/xml,application/xm ...
Accept-Language: en-us,en;qg=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;9=0.7
(empty Line)



Sample HTTP Response

HTTP/1.0 200 OK

Date: Wed, 25 Jan 2012 08:11:09 GMT
Expires: -1

Cache-Control: private, max-age=0
Content-Type: text/html; charset=I150-8859-1
Set-Cookie: PREF=ID...

P3P: CP="This is not a P3P policy! See http://
WWW.google.com/support/accounts/bin/answer.py?
hl=en&answer=151657 for more info."

Server: gws
X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

<!doctype html><html><head><meta http-equiv="content-type
content="text/html; charset=I50-8859-1"><meta..



HTTP Response

status l

header field name value l

headers /.

header field name value |H!

blank line !

body

e Status Codes:
— 1xx: Information e.g, 100 Continue
— 2XX: Success e.g., 200 OK
— 3xx: Redirection e.g., 302 Found (elsewhere)
— 4xx: Client Error e.g., 404 Not Found
— 5xx: Server Error e.g, 503 Service Unavailable



HTTP is Stateless

Each request/response treated
independently

Servers not required to maintain state
This is good!

— Improves server scalability

This is also bad...

— Some applications need persistent state

— Need to uniquely identify user to customize
content

— E.g., shopping cart, web-mail, usage tracking,
(most sites today!)



HTTP Cookies

* Client-side state maintenance

— Client stores small state on behalf of server

— Sends request in future requests to the server

— Cookie value is meaningful to the server (e.g., session id)
* Can provide authentication
* http://en.wikipedia.org/wiki/HTTP cookie

Request

Request
Cookie: XYZ



Where to find official HTTP specification?

WWW.W3.0rg



Anatomy of a Web Page

 HTML content
e A number of additional resources

— Images
— Scripts
— Frames
* Browser makes one HTTP request for each
object
— Course web page: 4 objects
— My facebook page this morning: 100 objects



What about AJAX?

* Asynchronous Javascript and XML

 Based on XMLHttpRequest object in
browsers, which allow code in the page to:

— Issue a new, non-blocking request to the server,
without leaving the current page

— Receive the content
— Process the content

* Used to add interactivity to web pages

— XML not always used, HTML fragments, JSON,
and plain text also popular



HTTP Performance

 What matters for performance?

 Depends on type of request
— Lots of small requests (objects in a page)
— Some big requests (large download or video)



Small Requests

Latency matters
RTT dominates

Two major causes:
— Opening a TCP connection

— Actually sending the request and receiving
response

— And a third one: DNS lookup!
Mitigate the first one with persistent

connections (HTTP/1.1)

— Which also means you don’t have to “open” the
connection each time




Browser Request

GET / HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (Macinto

Accept: text/xml,application/xm ...
Accept-Language: en-us,en;qg=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;9=0.7
Keep-Alive: 300

Connection: keep-alive



Small Requests (cont)

* Second problem is that requests are
serialized

— Similar to stop-and-wait protocols!

 Two solutions
— Pipelined requests (similar to sliding windows)

— Parallel Connections

 HTTP standard says no more than 2 concurrent
connections per host name

* Most browsers use more (up to 8 per host, ~35 total)
— How are these two approaches different?
— http://en.wikipedia.org/wiki/HTTP_pipelining



Larger Objects

* Problem is throughput in bottleneck link
e Solution: HTTP Proxy Caching

— Also improves latency, and reduces server
load

clients
proxy

cache
@ @
server



31



