Introduction to Computer Networks

COSC 4377

Lecture 6

Announcements

HW3 due this week

Start working on HW4

In-class student presentations
No TA office hours this week

— Makeup hours next week

Fast HTTP transfer competition

Student presentations

Topic | Date

FTP vs HTTP 2/8/2012
www.webpagetest.org 2/13/2012
DHCP 2/15/2012
Dynamic DNS 2/20/2012
SPDY 2/22/2012

What problem does it solve?
How does it work?
What are its limitations?

Today’s Topics

* Peer to Peer (P2P) Networks
* Transport Layer

Structured P2P systems

e Distributed Hash Table (DHT)

— Efficient Key, value storage
— Approach: map the id to a host

* Challenges

— Scale to millions of nodes
— Churn
— Heterogeneity

DHTs

IDs from a flat namespace
— Contrast with hierarchical IP, DNS

Metaphor: hash table, but distributed
Interface
— Get(key)
— Put(key, value)
How?
— Every node supports a single operation:
Given a key, route messages to node holding key

Consistent Hashing

Map keys to nodes
nodeid = hash(node ip)

sssssssss (6)=0

K mapped to successor(k)

Successor(k) = node equal to
or follows K

Consistent Hashing Properties

* Designed for node join/leave with minimal
churn in key mapping

successor(1) =1

successor(6) =0

* K/N keys per node)
* K/N keys change hands during join/leave

successor(2) =3

ldentifier to Node I\/Iappmg Example

Node 8 maps [5,8]
Node 15 maps [9,15]
Node 20 maps [16, 20]

Node 4 maps [59, 4]

Each node maintains a
pointer to its successor

Example from lon Stoica

e Each node maintains its
successor

* Route packet (ID, data) to
the node responsible for ID
using successor pointers

Joining Operation

succ=4 ___
pred=44 (=

= Node with id=50 joins
the ring

= Node 50 needs to
know at least one

node already in the

system
- Assume known nOE{&:nil
is 15 pred=nil
50
succ=58

pred=35

Joining Operation

Node 50: send join(50) N =
to node 15 pred=44 \ll
Node 44: returns node

58

Node 50 updates its
successor to 58

succ=hd
pred=nil

succ=58 |
pred=35

Joining Operation

Node 50: send
stabilize() to node

58

Node 58:

- update
predecessor to

50
succ=58
- send notify() pred=nil
back

succ=58 |
pred=35

Joining Operatlon (cont’ d)

= Node 44 sends a stabilize
message to its successor, node
58

= Node 58 reply with a notify
message

= Node 44 updates its successor %

to 50 succ=58
pred=nil

stabilize()

50

succ=58 |
pred=35

Joining Operation (cont’d

succ=4
Node 44 sends a stabilize pred=50 g
message to its new successor, Il
node 50

Node 50 sets its predecessor to
node 44

Stabilize()

50

succ=50 §=
pred=35

= This completes the joining

Joining Operation (cont’d)

operation!

Succ=

SUcc=

Network Applications

* Centralized and Peer-to-peer architectures
* How to design and write network applications

e Case Studies
— HTTP
— DNS

— P2P applications

The applications we discussed need

a reliable method

to send information

across the network.

Transport Layer provides that service.

Transport Layer

- Ay - Ay
HTTP TFTP

M L/
N

|P

NET, NET, ~~~ NET,

* Transport protocols sit on top of network
layer and provide

— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.

Error Detection

* |dea: add redundant information to catch
errors in packet
* Three examples:
— Parity
— Internet Checksum
— CRC

Parity Bit

* Parity
— Can detect odd number of bit errors
— No correction

Data: 1101101
Even Parity: 1
Transmit;: 11011011

http://en.wikipedia.org/wiki/Parity bit

2-D Parity

Parity
bits
Y 10101001 |1

1101001

10{1)10

Data

0110100

0
1
0001110 |1
1
0

y | 1011111

Parity

1111011 | O
byte

* Add 1 parity bit for each 7 bits

* Add 1 parity bit for each bit position across
the frame)
— Can correct single-bit errors
— Can detect 2- and 3-bit errors, most 4-bit errors

Checksum

* Algorithm
— Set Checksum field to O

— Sum all 16-bit words, adding any carry bits to
the LSB (one’s complement sum)

— Flip bits to get checksum (one’s complement)
* Transmit: Data + Checksum

* To check: sum whole packet, including
sum, should get Oxffff

http://www.ietf.org/rfc/rfc1071.txt

How good is it?

* 16 bits not very long
— Probability 1-bit error not detected?

* Checksum does catch any 1-bit error
* But not any 2-bit error

— E.g., increment word ending in 0, decrement
one ending in 1

CRC — Error Detection with

Polynomials

* Consider message to be a polynomial in Z,[x]
— Each bit is one coefficient
— E.g., message 10101001 -> m(x) = x’+ x>+ x3+1
* Can reduce one polynomial modulo another
— Let n(x) = m(x)x3. Let C(x) =x3+x? + 1
— Find q(x) and r(x) s.t. n(x) = g(x)C(x) + r(x) and
degree of r(x) < degree of C(x)
— Analogous to taking 11 mod 5=1

http://en.wikipedia.org/wiki/Cyclic_redundancy check

Polynomial Division Example

 Just long division, but addition/subtraction is XOR

11111001

Generator —» 1101)10011010000 <— Message
1101*

1001
1101

1000

1101v
1011

1101v
1100

1101VVV

1000
1101

101 <«— Remainder

CRC

e Select a divisor polynomial C(x), degree k

— C(x) should be irreducible — not expressible as a
product of two lower-degree polynomials in Z,[x]

* Add k bits to message
— Let n(x) = m(x)x* (add k 0’s to m)
— Compute r(x) = n(x) mod C(x)
— Compute n(x) = n(x) — r(x) (will be divisible by C(x))
(subtraction is XOR, just set k lowest bits to r(x)!)
* Checking CRC is easy

— Reduce message by C(x), make sure remainder is O

Why is this good?

e Suppose you send m(x), recipient gets m’(x)
— E(x) = m’(x) — m(x) (all the incorrect bits)
— |f CRC passes, C(x) divides m’(x)
— Therefore, C(x) must divide E(x)

* Choose C(x) that doesn’t divide any common
errors!

— All single-bit errors caught if x, x° coefficients in C(x)
are 1

— All 2-bit errors caught if at least 3 terms in C(x)
— Any odd number of errors if last two terms (x + 1)
— Any error burst less than length k caught

Common CRC Polynomials

CRC-8:x®+x2+x1+1

CRC-16: x16 + x> + x? + x!

CRC-32: x32 + x5 + x23 + x22 4+ x16 + x12 + x11 4+ x10
+x8+x +x+x+x2+xt+1

CRC easily computable in hardware

Reliable Delivery

* Error detection can discard bad packets
* Problem: if bad packets are lost, how can we
ensure reliable delivery?

— Exactly-once semantics = at least once + at most
once

At Least Once Semantics

* How can the sender know packet arrived
at least once?

— Acknowledgments + Timeout

* Stop and Wait Protocol
— S: Send packet, wait
— R: Receive packet, send ACK
— S: Receive ACK, send next packet
— S: No ACK, timeout and retransmit

Time

Timeout

Timeout

Timeout

Sender

ACK

Sender

%

%\

Receiver

Receiver

Sender Receiver
_ K
5
3
= CcK
= A
- Fra,ne
=t
:
= ACK
(c)
Sender Receiver
5
S}
(D]
£
=
=t
3
E
I_‘

Stop and Wait Problems

Duplicate data

Duplicate acks

Can’t fill pipe

Difficult to set the timeout value

At Most Once Semantics

* How to avoid duplicates?
— Uniquely identify each packet
— Have receiver and sender remember

e Stop and Wait: add 1 bit to the header
— Why is it enough?

Time

Sender Receiver

Sliding Window Protocol

* Still have the problem of keeping pipe full
— Generalize approach with > 1-bit counter
— Allow multiple outstanding (unACKed) frames
— Upper bound on unACKed frames, called window

Sender Receiver

—

Time

Sliding Window Sender

Assign sequence number (SeqNum) to each frame

Maintain three state variables

— send window size (SWS)
— last acknowledgment received (LAR)

— last frame send (LFS) _sws
[

W g ...
! i

LAR LFS

Maintain invariant: LFS — LAR £ SWS
Advance LAR when ACK arrives
Buffer up to SWS frames

Sliding Window Receiver

Maintain three state variables:
— receive window size (RWS)
— largest acceptable frame (LAF)

— last frame received (LFR)
<RWS

- § g ..
} }

LFR LAF

Maintain invariant: LAF — LFR £ RWS

Frame SegNum arrives:
— if LFR < SegNum < LAF, accept
— if SeqNum < LFR or SeqNum > LAF, discard

Send cumulative ACKs

