Introduction to Computer Networks

COSC 4377

Lecture 7

Announcements

HW3 due today

Start working on HW4

HWS5 posted

In-class student presentations

No TA office hours this week
— Makeup hours next week

Today’s Topics

* Transport Protocols
— UDP
—TCP
— EWMA

Transport Layer

- Ay - Ay
HTTP TFTP

M L/
N

|P

NET, NET, ~~~ NET,

* Transport protocols sit on top of network
layer and provide

— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.

Error Detection

* |dea: add redundant information to catch
errors in packet
* Three examples:
— Parity
— Internet Checksum
— CRC

Reliable Delivery

* Error detection can discard bad packets
* Problem: if bad packets are lost, how can we
ensure reliable delivery?

— Exactly-once semantics = at least once + at most
once

At Least Once Semantics

* How can the sender know packet arrived
at least once?

— Acknowledgments + Timeout

* Stop and Wait Protocol
— S: Send packet, wait
— R: Receive packet, send ACK
— S: Receive ACK, send next packet
— S: No ACK, timeout and retransmit

Time

Timeout

Timeout

Timeout

Sender

ACK

Sender

%

%\

Receiver

Receiver

Sender Receiver
_ K
5
3
= CcK
= A
- Fra,ne
=t
:
= ACK
(c)
Sender Receiver
5
S}
(D]
£
=
=t
3
E
I_‘

Stop and Wait Problems

Duplicate data

Duplicate acks

Can’t fill pipe

Difficult to set the timeout value

Sliding Window Protocol

* Still have the problem of keeping pipe full
— Generalize approach with > 1-bit counter
— Allow multiple outstanding (unACKed) frames
— Upper bound on unACKed frames, called window

Sender Receiver

—

Time

UDP — User Datagram Protocol

* Unreliable, unordered datagram service
* Adds multiplexing, checksum

* End points identified by ports
— Scope is an IP address (interface)

e Checksum aids in error detection

http://en.wikipedia.org/wiki/User_Datagram_Protocol

UDP Header

16

31

SrcPort

DstPort

Length

Checksum

UDP Checksum

* Uses the same algorithm as the IP checksum
— Set Checksum fieldto O

— Sum all 16-bit words, adding any carry bits to the
LSB

— Flip bits to get checksum (except Oxffff->0xffff)

— To check: sum whole packet, including sum,
should get Oxffff

* How many errors?
— Catches any 1-bit error
— Not all 2-bit errors

* Optional in IPv4: not checked if value is O

Pseudo Header

0 7 8 15 16 23 24 31
- +-—— - +-—— - - +
| source address |
e s +-—— - +-—— - +-—— - +
| destination address |
+-——————- +-——— - +-—— - +-—— - +
| zero |protocol| UDP length |
- e e - +

 UDP Checksum is computer over pseudo-header
prepended to the UDP header

— For IPv4: IP Source, IP Dest, Protocol (=17), plus UDP
length
 Benefits? Problem?

— |s UDP a layer on top of IP?
http://www.postel.org/pipermail/end2end-interest/2005-February/004616.html

Next Problem: Reliability

T

Dropped Packets

Duplicate Packets
Packets out of order

Keeping the pipe full

Acknowledgments + Timeout

Sequence Numbers
Receiver Window

Sliding Window (Pipelining)

Transport Layer Reliability

e Extra difficulties
— Multiple hosts
— Multiple hops
— Multiple potential paths
 Need for connection establishment, tear
down
— Analogy: dialing a number versus a direct line

* Varying RTTs
— Both across connections and during a connection
— Why do they vary? What do they influence?

Extra Difficulties (cont.)

* Out of order packets
— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not
get confused

e Unknown resources at other end

— Must be able to discover receiver buffer: flow
control

 Unknown resources in the network
— Should not overload the network
— But should use as much as safely possible
— Congestion Control (next class)

TCP — Transmission Control Protocol

Application process Application process

— 1=
[1 Write [1 Read
: bytes . Dbytes

v L]

TCP TCP
| Send buffer | | Receive buffer|
A
| Segment | | Segment |---| Segment |

Transmit segments

* Service model: “reliable, connection oriented, full duplex byte
stream”

— Endpoints: <IP Address, Port>
* Flow control

— If one end stops reading, writes at other eventually stop/fail
* Congestion control

— Keeps sender from overloading the network (next lecture)

TCP

Specification

— RFC 793 (1981), RFC 1222 (1989, some corrections),
RFC 5681 (2009, congestion control), ...

Was born coupled with IP, later factored out

— We talked about this, don’t always need everything!
End-to-end protocol

— Minimal assumptions on the network

— All mechanisms run on the end points

Alternative idea:

— Provide reliability, flow control, etc, link-by-link

— Does it work?

TCP Header

0 1 2 3
0123456789 012345678901234567389O01
fot—t -ttt -ttt -ttt —F—F—F—F—F—F—t—F—F—+—F+—+—+

Source Port | Destination Port |
+—-4+-4+-+-+-+-4+-+—-+-+-+-4+-+—-+-+-4+-4+—-+—-+—-+—-4+—-4+—-+—-+—-+—-F—-F—-+—-+—-+—+—+—+
Sequence Number |
+—+—-+—-+-F-F-F-+-+-+FF-+-+-+-+-+-+-F—-+—-+-+—-F+-"F—-"+-+-F-F-"F—-"F+—-+-F-F+-+—-+

| Acknowledgment Number |
tot—t—t -t —F—F -ttt -ttt —F—F -t —F—F -+t —F+—+
Data	UIA	PIR	IS	F]				
Offset	Reserved	R	ICI	IS	S	Y	TI	Window
	IGIKIH	ITIN	N]					

t—t—t—t—F—F—F—F =ttt -ttt -ttt -t -+ -+ -+ —f—F—F—F—F—F—F—F—F

| Checksum | Urgent |Pointer |

i e e e s st 2t e e e s c S R

data

[T T T T T R T R S R S N S H S H N T N T S T S T S T SR T R R A

Header Fields

* Ports: multiplexing
* Sequence number
— Correspond to bytes, not packets!

* Acknowledgment Number
— Next expected sequence number

 Window: willing to receive

— Lets receiver limit SWS (even to 0) for flow
control

e Data Offset: # of 4 byte header + option
oytes

* Flags, Checksum, Urgent Pointer

Header Flags

URG: whether there is urgent data
ACK: ack no. valid (all but first segment)

PSH: push data to the application
immediately

RST: reset connection
SYN: synchronize, establishes connection
FIN: close connection

Establishing a Connection

Active participant Passive participant
(client) (server)

YN, s .
Connect eQUenCeNUm) Listen,
— Accept...

Accept

nt<3
Three-way handshake T returns

— Two sides agree on respective initial sequence
nums

f no one is listening on port: server sends
RST

f server is overloaded: ignore SYN
f no SYN-ACK: retry, timeout

Connection Termination

* FIN bit says no more data to send
— Caused by close or shutdown
— Both sides must send FIN to close a connection

* Typical close

Close £
FIN_WAIT 1 IN
ACK CLOSE_WAIT

FIN_WAIT 2
Close

PN LAST ACK
TIME_WAIT
ACk

CLOSED

2MSL

CLOSED

Summary of TCP States

-—

CLOSED
Unsynchronized 1 Active open/SYN
Passive open Close
Synchronized v
LISTEN
SYN/SYN + ACK Send/SYN
SYN/SYN + ACK
SYN_RCVD |= s SYN_SENT
ACK SYN + ACK/ACK
CloselFIN ESTABLISHED
Y Close/FIN CFIN/ACK
\ | FIN_WAIT_1 g || CLOSE_WAIT
Active close: ! FIN/ACK i i
. . ! ACK : i Close/FIN
Can still receive ! v | | v
.| FIN_WAIT_2 CLOSING | ! ; LAST_ACK
' ACK Timeout ai_‘teir_two ACK
! Y ségment lifetimes \
: FIN/ACK | :
a ~ TIME_WAIT - —={ CLOSED

__

~,
-

AY
)\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
!

e e e e e e e e o
[]

Connection Establishment

Passive close:
Can still send!

TIME_WAIT

* Why do you have to wait for 2MSL in TIME_WAIT?

— What if last ack is severely delayed, AND
— Same port pair is immediately reused for a new
connection?
* Solution: active closer goes into TIME_WAIT
— Waits for 2MSL (Maximum Segment Lifetime)

* Can be problematic for active servers

— OS has too many sockets in TIME_WAIT, can accept less
connections

* Hack: send RST and delete socket, SO LINGER =0

— OS won’t let you re-start server because port in use
« SO _REUSEADDR lets you rebind

Reliable Delivery

* TCP retransmits if data corrupted or dropped
— Also retransmit if ACK lost

* When should TCP retransmit?
* Challenges in estimating RTT
— Dynamic
— No additional traffic

Smoothing RTT

RTT measurement can have large variation
Need to smooth the samples

— One RTT measurement = one sample

Some ways to smooth the sample

— Average of the whole sequence
— Windowed Mean

Problems?

EWMA

* EWMA: Exponentially Weighted Moving
Average

* Give greater weight to recent samples
— Why?

http://en.wikipedia.org/wiki/Moving _average

EWMA

* Estimate RTT
e RTT(t) = aa X RTT(t-1) + (1-a) X newEst

a=0.8
| Time| RTT| newEst|

0 - 10

