Introduction to Computer Networks

COSC 4377

Lecture 8

Announcements

HW4 due this week
Start working on HW5
In-class student presentations

TA office hours this week
— TR 1030a — 100p

Today’s Topics

e HW4 discussions

* Transport Protocols
— Flow Control
— Congestion Control

HW4

Multiple clients connect to a single server
— Limit the level of concurrency

Keep track of unique IP and clients

Testing easy if you have a way to create
“slow” clients

— Can use --limit-rate flag in wget

Basic HTTP server code required

Transport Layer

- Ay - Ay
HTTP TFTP

M L/
N

|P

NET, NET, ~~~ NET,

* Transport protocols sit on top of network
layer and provide

— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.

Establishing a Connection

Active participant Passive participant
(client) (server)

YN, s .
Connect eQUenCeNUm) Listen,
— Accept...

Accept

nt<3
Three-way handshake T returns

— Two sides agree on respective initial sequence
nums

f no one is listening on port: server sends
RST

f server is overloaded: ignore SYN
f no SYN-ACK: retry, timeout

Connection Termination

* FIN bit says no more data to send
— Caused by close or shutdown
— Both sides must send FIN to close a connection

* Typical close

Close £
FIN_WAIT 1 IN
ACK CLOSE_WAIT

FIN_WAIT 2
Close

PN LAST ACK
TIME_WAIT
ACk

CLOSED

2MSL

CLOSED

Summary of TCP States

-—

CLOSED
Unsynchronized 1 Active open/SYN
Passive open Close
Synchronized v
LISTEN
SYN/SYN + ACK Send/SYN
SYN/SYN + ACK
SYN_RCVD |= s SYN_SENT
ACK SYN + ACK/ACK
CloselFIN ESTABLISHED
Y Close/FIN CFIN/ACK
\ | FIN_WAIT_1 g || CLOSE_WAIT
Active close: ! FIN/ACK i i
. . ! ACK : i Close/FIN
Can still receive ! v | | v
.| FIN_WAIT_2 CLOSING | ! ; LAST_ACK
' ACK Timeout ai_‘teir_two ACK
! Y ségment lifetimes \
: FIN/ACK | :
a ~ TIME_WAIT - —={ CLOSED

__

~,
-

AY
)\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
!

e e e e e e e e o
[]

Connection Establishment

Passive close:
Can still send!

EWMA

* Estimate RTT
e RTT(t) = aa X RTT(t-1) + (1-a) X newEst

a=0.8
| Time| RTT| newEst|
0 - 10

1 8.0 12
2 6.4+2.4=8.6 10
3 6.9+2=8.9

First Goal

We should not send more data than the
receiver can take: flow control

Data is sent in MSS-sized segments
— Chosen to avoid fragmentation

Sender can delay sends to get larger
segments

When to send data”?
How much data to send?

Flow Control

Part of TCP specification (even before 1988)

Goal: not send more data than the receiver
can handle

Sliding window protocol

Receiver uses window header field to tell
sender how much space it has

Flow Control

Sending application

\

TCP
LastByteWritten
i

¢
;

LastByteAcked

e Receiver: AdvertisedWindow

d
A

LastByteSent

Receiving application

/ TCP
LastByteRead

;

:
:

roo

NextByteExpected LastByteRcvd

(b)

= MaxRcvBuffer — ((NextByteExpected-1) —

LastByteRead)

* Sender: LastByteSent — LastByteAcked <= AdvertisedWindow
EffectiveWindow = AdvertisedWindow — (BytesInFlight)
LastByteWritten — LastByteAcked <= MaxSendBuffer

Flow Control

Sending application

\

TCP
LastByteWritten
i

¢
:

LastByteAcked

d
A

LastByteSent

Receiving application

7

/ TCP
LastByteRead

Y

;

A

NextByteExpected

 Advertised window can fall to 0 ®

— How?

:
:

LastByteRcvd

— Sender eventually stops sending, blocks application

* Sender keeps sending 1-byte segments until

window comes back >0

* 50 students have ssh window open to bayou
and are typing 1 character per second

* How many packets are read and written by
bayou per second?

— Consider minimum frame size

When to Transmit?

* Nagle’s algorithm
* Goal: reduce the overhead of small packets
If available data and window >= MSS
Send a MSS segment
else
If there is unAcked data in flight
buffer the new data until ACK arrives
else
send all the new data now

e Receiver should avoid advertising a window <= MSS
after advertising a window of O

http://tools.ietf.org/html/rfc896

Delayed Acknowledgments

* Goal: Piggy-back ACKs on data
— Delay ACK for 200ms in case application sends data

— If more data received, immediately ACK second
segment

— Note: never delay duplicate ACKs (if missing a
segment)

 Warning: can interact very badly with Nagle
— Temporary deadlock
— Can disable Nagle with TCP_NODELAY
— Application can also avoid many small writes

http://en.wikipedia.org/wiki/TCP_delayed acknowledgment
http://developers.slashdot.org/comments.pl?sid=174457&cid=14515105

Turning Nagle’s Algorithm Off

“In general, since Nagle's algorithm is only a defense against
careless applications, it will not benefit a carefully written
application that takes proper care of buffering; the algorithm has
either no effect, or negative effect on the application.”

* Who wants to turn the algorithm off?

— Search on Google and find out.
http://en.wikipedia.org/wiki/Nagle's_algorithm

Limitations of Flow Control

Network may be the bottleneck
Signal from receiver not enough!

Sending too fast will cause queue overflows,
heavy packet loss

Flow control provides correctness

Need more for performance: congestion
control

A Short History of TCP

1974: 3-way handshake

1978: IP and TCP split

1983: January 1°t, ARPAnet switches to TCP/IP
1984: Nagle predicts congestion collapses

1986: Internet begins to suffer congestion collapses
— LBL to Berkeley drops from 32Kbps to 40bps

1987/8: Van Jacobson fixes TCP, publishes seminal
paper: (TCP Tahoe)

1990: Fast transmit and fast recovery added (TCP
Reno)

Second goal

 We should not send more data than the
network can take: congestion control

TCP Congestion Control

* 3 Key Challenges

— Determining the available capacity in the first
place

— Adjusting to changes in the available capacity
— Sharing capacity between flows

* |dea

— Each source determines network capacity for
itself

— Rate is determined by window size
— Uses implicit feedback (drops, delay)
— ACKs pace transmission (self-clocking)

+ TCP

Dealing with Congestion

keeps congestion and flow control

windows

— Max packets in flight is lesser of two
* Sending rate: “Window/RTT

* The

cey here is how to set the congestion

WInNo

ow to respond to congestion signals

Starting Up

e Before TCP Tahoe

— On connection, nodes send full (rcv)window of
packets

— Retransmit packet immediately after its timer
expires

e Result: window-sized bursts of packets in
network

Packet Sequence Number (KB)

70

60

50

40

30

20

10

Bursts of Packets

Send Time (sec)

Graph from Van Jacobson and Karels, 1988

10

Determining Initial Capacity

* Question: how do we set w initially?
— Should start at 1MSS (to avoid overloading the network)
— Could increase additively until we hit congestion
— May be too slow on fast network

e Start by doubling w each RTT
— Then will dump at most one extra window into network
— This is called slow start

e Slow start, this sounds quite fast!

— In contrast to initial algorithm: sender would dump
entire flow control window at once

(KB)

Number

Packet Sequence

~—

140

120

100

80

60

40

20

Startup behavior with S

ow Start

8 10

