Introduction to Computer Networks

COSC 4377

Lecture 9



Announcements

HW4 due today
Start working on HW5
In-class student presentations

TA office hours this week
— TR 1030a — 100p



Today’s Topics

e HW4 and HWS5 discussions

* Transport Protocols
— Flow Control
— Congestion Control



HW4 and HW5

* Web Server Concurrency
— Fork vs Thread vs Select

e Use large file for testing



Flow Control

e Goal: not send more data than the receiver
can handle

 Sliding window protocol

e Receiver uses window header field to tell
sender how much space it has



Congestion Control

* Goal: do not send more data than the network
can take
e 3 Key Challenges
— Determining the available capacity
— Adjusting to changes in the available capacity
— Sharing capacity between flows



Packet Sequence Number (KB)

70

50

40

20

10

Slow Start

Figure 3: Startup behavior of TCP without Slow-start

Figure 4: Startup behavior of TCP with Slow-start

Al | —

e,
a—

*E ettt

i

A
e st
-\
e
120 140
T T

T —

Pacxet Sequence Number (KB)
40
I

1 1

4
Serd Time (sec)

6 B 10 o lets

From [Jacobson88]

Send Time (sec)

8



Slow start implementation

* Let w be the size of the window in bytes
— We have w/MSS segments per RTT

* We are doubling w after each RTT
— We receive w/MSS ACKs each RTT
— So we can set w = w + MSS on every ack

* At some point we hit the network limit.
— Experience loss
— We are at most one window size above the
limit
— Remember this: ssthresh and reduce window



Slow Start

* We double cwnd every
round trip

 We are still sending min
(cwnd,rcvwnd) pkts

 Continue until ssthresh
estimate or pkt drop

http://en.wikipedia.org/wiki/Slow-start

pkt

ack

bidd L !

Sender

Receiver



Dealing with Congestion

* Assume losses are due to congestion
e After aloss, reduce congestion window

— How much to reduce?

* |dea: conservation of packets at equilibrium

— Want to keep roughly the same number of packets
network

— Analogy with water in fixed-size pipe

— Put new packet into network when one exits



How much to reduce window?

 What happens under congestion?
— Exponential increase in congestion

* Sources must decrease offered rate
exponentially

— i.e, multiplicative decrease in window size
— TCP chooses to cut window in half



How to use extra capacity?

* Network signals congestion, but says nothing
of underutilization

— Senders constantly try to send faster, see if it
works

— So, increase window if no losses... By how much?

 Multiplicative increase?
— Easier to saturate the network than to recover
— Too fast, will lead to saturation, wild fluctuations

e Additive increase?
— Won’t saturate the network



Chiu Jain Phase Plots

Fair: A=B

Goal: fair and efficient!

Flow Rate B

Efficient: A+B =C
>

Flow Rate A



Chiu Jain Phase Plots

Fair: A=B

Flow Rate B

Efficient: A+B =C
>

Flow Rate A



Chiu Jain Phase Plots

Fair: A=B

Flow Rate B

Efficient: A+B =C
>

Flow Rate A



Chiu Jain Phase Plots

Fair: A=B
AIMD

Flow Rate B

Efficient: A+B =C
>

Flow Rate A



AIMD Implementation

* |n practice, send MSS-sized segments
— Let window size in bytes be w (a multiple of MSS)

* |ncrease:

— After w bytes ACKed, could set w = w + MSS

— Smoother to increment on each ACK
e wW=w+ MSS * MSS/w

* (receive w/MSS ACKs per RTT, increase by MSS/(w/MSS) for
each)

* Decrease:
— After a packet loss, w = w/2
— But don’t want w < MSS
— So react differently to multiple consecutive losses

— Back off exponentially (pause with no packets in
flight)



AIMD Trace

* AIMD produces sawtooth pattern of
window size

— Always probing available bandwidth

70
60 —
50 -
on 40
30 4
20
10

T T T T T T T T T
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)



Putting it together

TCP has two states: Slow Start (SS) and Congestion
Avoidance (CA)

A window size threshold governs the state
transition

— Window <= threshold: SS
— Window > threshold: congestion avoidance

States differ in how they respond to ACKs
— Slow start: w = w + MSS
— Congestion Avoidance: w = w + MSS?/w (1 MSS per RTT)

On loss event: set w = 1, slow start



How to Detect Loss

* Timeout
* Any other way?

— Gap in sequence numbers at receiver

— Receiver uses cumulative ACKs: drops => duplicate
ACKs

* 3 Duplicate ACKs considered loss



Putting it all together

A
cwnd

Timeout

Timeout
AIMD

j ssthresh —» /

Slow Slow Slow Time
Start Start Start



RTT

We want an estimate of RTT so we can know a
packet was likely lost, and not just delayed

Key for correct operation

Challenge: RTT can be highly variable

— Both at long and short time scales!

Both average and variance increase a lot with load

Solution

— Use exponentially weighted moving average (EWMA)
— Estimate deviation as well as expected value

— Assume packet is lost when time is well beyond
reasonable deviation



Originally

EStRTT = (1 — a) x EstRTT + a x SampleRTT
Timeout = 2 x EStRTT

Problem 1:

— in case of retransmission, ack corresponds to which
send?

— Solution: only sample for segments with no
retransmission
Problem 2:

— does not take variance into account: too aggressive
when there is more load!



Jacobson/Karels Algorithm (Tahoe)

e EsStRTT=(1-a) x EstRTT + a x SampleRTT

— Recommended a is 0.125
e DevRTT=(1-B)xDevRTT + B | SampleRTT — EstRTT |

— Recommended B is 0.25
* Timeout = EStRTT + 4 DevRTT

* For successive retransmissions: use exponential
backoff



12

10

RTT (sec.)

Old RTT Estimation

| l :

70

110

10

40 50 €0

30
Packet



12

10

RTT (sec.)

Tahoe RTT Estimation

80 90 100

110

50 60 70

20 30 40
Packet

10



Slow start every time?!

* Losses have large effect on throughput

* Fast Recovery (TCP Reno)
— Same as TCP Tahoe on Timeout: w = 1, slow start
— On triple duplicate ACKs: w = w/2
— Retransmit missing segment (fast retransmit)
— Stay in Congestion Avoidance mode



Fast Recovery and Fast Retransmit

cwnd

Al/MD

Slow Start <|/|/

Fast retransmit

Time



3 Challenges Revisited

Determining the available capacity in the first
place

— Exponential increase in congestion window
Adjusting to changes in the available capacity
— Slow probing, AIMD

Sharing capacity between flows

— AIMD

Detecting Congestion

— Timeout based on RTT
— Triple duplicate acknowledgments

Fast retransmit/Fast recovery
— Reduces slow starts, timeouts



