Introduction to Computer Networks

COSC 4377

Lecture 10

Announcements

* HWS5 due this week
* HW deadlines
* Exam1 practice problems later today

Today’s Topics

e HWS5 discussions

* Transport Protocol
— TCP Friendliness
— Getting help from the network

Packet Sequence Number (KB)

70

50

40

20

10

Slow Start

Figure 3: Startup behavior of TCP without Slow-start

Figure 4: Startup behavior of TCP with Slow-start

Al | —

e,
a—

*E ettt

i

A
e st
-\
e
120 140
T T

T —

Pacxet Sequence Number (KB)
40
I

1 1

4
Serd Time (sec)

6 B 10 o lets

From [Jacobson88]

Send Time (sec)

8

12

10

RTT (sec.)

Tahoe RTT Estimation

80 90 100

110

50 60 70

20 30 40
Packet

10

Fast Recovery and Fast Retransmit

cwnd

Al/MD

Slow Start <|/|/

Fast retransmit

Time

TCP Friendliness

e Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming
app using UDP, how to do congestion
control?

—

1 UDP Flow at 10MBps
31 TCP Flows
Sharing a 10MBps link

Throughput(Mbps)
O =~ NN WO b O OO N 00 © O

\\ﬁ\\\\\\\\\\\\\\\\\\\\\

1 4 7 10 13 16 19 22 25 28 31
Flow Number

TCP Friendliness

e Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming app
using UDP, how to do congestion control?

* Equation-based Congestion Control

— Instead of implementing TCP’s CC, estimate the
rate at which TCP would send. Function of what?

— RTT, MSS, Loss
e Measure RTT, Loss, send at that rate!

TCP Throughput

Assume a TCP connection of window W, round-trip
time of RTT, segment size MSS

— Sending Rate S= W x MSS / RTT (1)

Drop: W = W/2

— grows by MSS W/2 RTTs, until another drop at W = W
Average window then 0.75xS

— From (1), S=0.75 W MSS / RTT (2)

Loss rate is 1 in number of packets between losses:

—Loss=1/(1+(W/2+W/241+W/2+2 +..+ W)
=1/(3/8 W?) (3)

TCP Throughput (cont)

— Loss = 8/(3W?2) : (4)
=W =

3- Loss
— Substituting (4) in (2), S=0.75 W MSS / RTT,

MSS

RTT- A/ Loss

Throughput = 1 22 «

« Equation-based rate control can be TCP friendly and have
better properties, e.g., small jitter, fast ramp-up...

8
W= 3 (1)

Substitute W into the bandwidth equation below:

data per cycle =~ MSS 22 ~ MSS/p

ti le LA
1me per cycle RTT * 3 RTT 32_p
(2)
Collect the constants in one term, C = 1/3/2, then we
arrive at:
MSS C

BW = +0r 75 (3)

BW =

[Mathis et al. 97]

What Happens When Link is Lossy?

* Throughput =1/ sqrt(Loss)

0 -

1 26 51 76 101126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

:Z [I I LA A)
o N
. //////////,//////
jz e e l“ul ,‘AL,A,AI
L A AL

©
Il
o

Pp=1%

p=10%

What can we do about it?

* Two types of losses: congestion and
corruption

* One option: mask corruption losses from TCP
— Retransmissions at the link layer

— E.g. Snoop TCP: intercept duplicate

acknowledgments, retransmit locally, filter them
from the sender

* Another option:

— Tell the sender about the cause for the drop
— Requires modification to the TCP endpoints

Congestion Avoidance

* TCP creates congestion to then back off

— Queues at bottleneck link are often full: increased
delay

— Sawtooth pattern: jitter

* Alternative strategy
— Predict when congestion is about to happen
— Reduce rate early

* Two approaches

— Host centric: TCP Vegas
— Router-centric: RED, DECBIt

TCP Vegas

* |dea: source watches for sign that router’s queue is building up
(e.g., sending rate flattens)

KB

|

T T T T T T T | | | T T T T |
0.5 1.0 1.5 2.0 2.5 3.0 3.5 40 45 50 55 60 65 70 7.5 8.0 8.5
Time (seconds)

1100

2900
M 700
g 5004
300 -
100 -

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Time (seconds)

W et

05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Time (seconds)

Sending

Queue size in router

TCP Vegas

 Compare Actual Rate (A) with Expected Rate (E)
— |If E-A > B, decrease cwnd linearly : A isn’t responding
— If E-A < q, increase cwnd linearly : Room for A to grow

70 = LT W FEEEEEEEEEEEEEEEEEEEE PR A DR FEERCE RO FERUEE DR FEROEECOVERE FRRUE PO DUORD FEERUOTEROEEEIROLE TOOUEEECOTEREE ORI CNRRNE OO OO0 O POURUTEEOEEREERE TEPEE RO TR CPRREREER DO v
60
50
40
30
20 -
10

KB

T T T T T T T T T T T T T T T
0.5 10 1.5 20 25 30 35 40 45 50 55 60 65 70 7.5 8.0

Time (seconds)

240 -
200
2160
%120
80 ~
40 -

T T T T T T T T T T T T T T T 1
0.5 10 1.5 2.0 25 3.0 35 40 45 50 55 60 65 70 7.5 8.0
Time (seconds)

Vegas

e Shorter router queues
* Lower jitter

* Problem:
— Doesn’t compete well with Reno. Why?

— Reacts earlier, Reno is more aggressive, ends up
with higher bandwidth...

Help from the network

 What if routers could tell TCP that congestion
is happening?

— Congestion causes queues to grow: rate
mismatch

 TCP responds to drops
* |dea: Random Early Drop (RED)

— Rather than wait for queue to become full, drop
packet with some probability that increases with
gueue length

— TCP will react by reducing cwnd
— Could also mark instead of dropping: ECN

RED Details
 Compute average queue length (EWMA)

— Don’t want to react to very quick fluctuations

Queue length
A

Instantaneous

\

\\

Average

Time
-

RED Drop Probability

 Define two thresholds: MinThresh, MaxThresh
* Drop probability:

P(drop)
A

1.0 -

MaxP
/ AvglLen
' >

MinThresh MaxThresh

* Improvements to spread drops (see
book)

RED Advantages

Probability of dropping a packet of a
particular flow is roughly proportional to the
share of the bandwidth that flow is currently
getting

Higher network utilization with low delays

Average queue length small, but can absorb
bursts

ECN

— Similar to RED, but router sets bit in the packet
— Must be supported by both ends

— Avoids retransmissions optionally dropped
packets

More help from the network

* Problem: still vulnerable to malicious flows!

— RED will drop packets from large flows
preferentially, but they don’t have to respond
appropriately

* |dea: Multiple Queues (one per flow)
— Serve queues in Round-Robin
— Nagle (1987)
— Good: protects against misbehaving flows

— Disadvantage?
— Flows with larger packets get higher bandwidth

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow
system

Packet
system

Example

2 3 4
> time
4 5
> time
2 3 4
3 4 > time
3 213 4 4
> time

