Introduction to Computer Networks

COSC 4377

Lecture 14

Spring 2012

March 7, 2012

Announcements

- HW6 due this week
- HW7 due 3/21

HW7 Preview

- RIP (Routing Information Protocol)
- Components
 - Forwarding
 - Routing
- Driver, libraries, etc. provided so the focus is on networking code
- Port assignments

Today's Topics

- Distance Vector Routing
- Link State Routing
- Inter-AS Routing

Network as a graph

- Nodes are routers
- Assign cost to each edge
 - Can be based on latency, b/w, queue length, ...
- Problem: find lowest-cost path between nodes
 - Each node individually computes routes

Basic Algorithms

- Two classes of intra-domain routing algorithms
- Distance Vector
 - Requires only local state
 - Harder to debug
 - Can suffer from loops
- Link State
 - Each node has global view of the network
 - Simpler to debug
 - Requires global state

Distance Vector

- Local routing algorithm
- Each node maintains a set of triples
 - <Destination, Cost, NextHop>
- Exchange updates with neighbors
 - Periodically (seconds to minutes)
 - Whenever table changes (triggered update)
- Each update is a list of pairs
 - <Destination, Cost>
- Update local table if receive a "better" route
 - Smaller cost
- Refresh existing routes, delete if time out

Shortest Path Example

E's table

Adapting to Failures

- F-G fails
- F sets distance to G to infinity, propagates
- A sets distance to G to infinity
- A receives periodic update from C with 2-hop path to G
- A sets distance to G to 3 and propagates
- F sets distance to G to 4, through A

Count-to-Infinity

- Link from A to E fails
- A advertises distance of infinity to E
- B and C advertise a distance of 2 to E
- B decides it can reach E in 3 hops through C
- A decides it can reach E in 4 hops through B
- C decides it can reach E in 5 hops through A, ...
- When does this stop?

Good news travels fast

- A decrease in link cost has to be fresh information
- Network converges at most in O(diameter) steps

Bad news travels slowly

- An increase in cost may cause confusion with old information
- May form loops

How to avoid loops

- IP TTL field prevents a packet from living forever
 - Does not repair a loop
- Simple approach: consider a small cost n (e.g., 16) to be infinity
 - After n rounds decide node is unavailable
 - But rounds can be long, this takes time

Better loop avoidance

- Split Horizon
 - When sending updates to node A, don't include routes you learned from A
 - Prevents B and C from sending cost 2 to A
- Split Horizon with Poison Reverse
 - Rather than not advertising routes learned from
 A, explicitly include cost of ∞.
 - Faster to break out of loops, but increases advertisement sizes

Warning

- Split horizon/split horizon with poison reverse only help between two nodes
 - Can still get loop with three nodes involved
 - Might need to delay advertising routes after changes, but affects convergence time

Link State Routing

- Strategy
 - send to all nodes information about directly connected neighbors
- Link State Packet (LSP)
 - ID of the node that created the LSP
 - Cost of link to each directly connected neighbor
 - Sequence number (SEQNO)
 - -TTL

Reliable Flooding

- Store most recent LSP from each node
 - Ignore earlier versions of the same LSP
- Forward LSP to all nodes but the one that sent it
- Generate new LSP periodically
 - Increment SEQNO
- Start at SEQNO=0 when reboot
 - If you hear your own packet with SEQNO=n, set your next SEQNO to n+1
- Decrement TTL of each stored LSP
 - Discard when TTL=0

Calculating best path

- Djikstra's single-source shortest path algorithm
 - Each node computes shortest paths from itself
- Let:
 - N denote set of nodes in the graph
 - l(i,j) denote the non-negative link between i,j
 - ∞ if there is no direct link between i and j
 - C(n) denote the cost of path from s to n
 - s denotes yourself (node computing paths)
- Initialize variables
 - M = {s} (set of nodes incorporated thus far)
 - For each n in N- $\{s\}$, C(n) = I(s,n)
 - R(n) = n if l(s,n) < ∞, otherwise

Djikstra's Algorithm

- While N≠M
 - Let $w \in (N-M)$ be the node with lowest C(w)
 - $-M=M\cup\{w\}$
 - Foreach $n \in (N-M)$, if C(w) + I(w,n) < C(n)
 - then C(n) = C(w) + I(w,n), R(n) = R(w)
- Example: D: (D,0,-) (C,2,C) (B,5,C) (A,10,C)

Distance Vector vs. Link State

- # of messages (per node)
 - DV: O(d), where d is degree of node
 - LS: O(nd) for n nodes in system
- Computation
 - DV: convergence time varies (e.g., count-to-infinity)
 - LS: O(n²) with O(nd) messages
- Robustness: what happens with malfunctioning router?
 - DV: Nodes can advertise incorrect path cost
 - DV: Others can use the cost, propagates through network
 - LS: Nodes can advertise incorrect link cost

Examples

- RIPv2
 - Fairly simple implementation of DV
 - RFC 2453 (38 pages)
- OSPF (Open Shortest Path First)
 - More complex link-state protocol
 - Adds notion of areas for scalability
 - RFC 2328 (244 pages)

RIPv2

- Runs on UDP port 520
- Link cost = 1
- Periodic updates every 30s, plus triggered updates
- Relies on count-to-infinity to resolve loops
 - Maximum diameter 15 (∞ = 16)
 - Supports split horizon, poison reverse

Packet format

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 5 3 4 5 6 7 8 9 0 1 1 2 3
```

RIPv2 Entry

0	1 2 3	•
0	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	1
1	-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	
T .	IP address (4)	
	Subnet Mask (4)	
	Next Hop (4)	
+ ·	Metric (4)	+

Next Hop field

- Allows one router to advertise routes for multiple routers on the same subnet
- Suppose only XR1 talks RIPv2:

OSPFv2

- Link state protocol
- Runs directly over IP (protocol 89)
 - Has to provide its own reliability
- All exchanges are authenticated
- Adds notion of areas for scalability

OSPF Areas

Inter-domain Routing

Why Inter vs. Intra

- Why not just use OSPF everywhere?
 - E.g., hierarchies of OSPF areas?
 - Hint: scaling is not the only limitation
- BGP is a policy control and information hiding protocol
 - intra == trusted, inter == untrusted
 - Different policies by different ASs
 - Different costs by different ASs