Introduction to Computer Networks

COSC 4377

Lecture 16

Spring 2012

March 21, 2012

Announcements

- HW8 and HW9 are out
- HW deadlines

HW8

- Distance Vector Routing
- Count-to-infinity
- Split-horizon

Today's Topics

• BGP

Forwarding with CIDR

Longest Prefix Match

Prefix	Nexthop
a.b.0.0/23	Α
a.b.1.0/24	С

Where to forward these packets?

- dst: a.b.0.5

- dst: a.b.1.6

BGP and Policy

- BGP provides capability for enforcing various policies
- Policies are not part of BGP: they are provided to BGP as configuration information
- BGP enforces policies by choosing paths from multiple alternatives and controlling advertisement to other AS's

BGP Path Selection

- Policies determined by path selection
- Information based on path attributes
- Attributes + external (policy) information

Customer/Provider AS relationships

- Customer pays for connectivity
 - E.g. University of Houston contracts with AboveNet and TW Telecom
 - Customer is stub, provider is a transit
- Many customers are multi-homed
 - E.g., AboveNet connects to Level3, Cogent,...
- Typical policies:
 - Provider tells all neighbors how to reach customer
 - Provider prefers routes from customers (\$\$)
 - Customer does not provide transit service

Peer Relationships

- ASs agree to exchange traffic for free
 - Penalties/Renegotiate if imbalance
- Tier 1 ISPs have no default route: all peer with each other
- You are Tier i + 1 if you have a default route to a Tier i
- Typical policies
 - AS only exports customer routes to peer
 - AS exports a peer's routes only to its customers
 - Goal: avoid being transit when no gain

Egypt Incident

Some BGP Challenges

- Convergence
- Traffic engineering
 - How to assure certain routes are selected
- Scaling (route reflectors)
- Security

Convergence

- Given a change, how long until the network re-stabilizes?
 - Depends on change: sometimes never
 - Open research problem: "tweak and pray"
 - Distributed setting is challenging
- Some reasons for change
 - Topology changes
 - BGP session failures
 - Changes in policy
 - Conflicts between policies can cause oscillation

Routing Change: Before and After

Routing Change: Path Exploration

- AS 1
 - Delete the route (1,0)
 - Switch to next route(1,2,0)
 - Send route (1,2,0) to AS
- AS 3
 - Sees (1,2,0) replace (1,0)
 - Compares to route (2,0)
 - Switches to using AS 2

Routing Change: Path Exploration

- Initial situation
 - Destination 0 is alive
 - All ASes use direct path
- When destination dies
 - All ASes lose direct path
 - All switch to longer paths
 - Eventually withdrawn
- E.g., AS 2
 - $-(2,0) \rightarrow (2,1,0)$
 - $-(2,1,0) \rightarrow (2,3,0)$
 - $-(2,3,0) \rightarrow (2,1,3,0)$
 - $-(2,1,3,0) \rightarrow \text{null}$
- Convergence may be slow!

Unstable Configurations

Due to policy conflicts

BGP Security Goals

- Confidential message exchange between neighbors
- Validity of routing information
 - Origin, Path, Policy
- Correspondence to the data path

Origin: IP Address Ownership and Hijacking

- IP address block assignment
 - Regional Internet Registries (ARIN, RIPE, APNIC)
 - Internet Service Providers
- Proper origination of a prefix into BGP
 - By the AS who owns the prefix
 - ... or, by its upstream provider(s) in its behalf
- However, what's to stop someone else?
 - Prefix hijacking: another AS originates the prefix
 - BGP does not verify that the AS is authorized
 - Registries of prefix ownership are inaccurate

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations

Hijacking is Hard to Debug

- Real origin AS doesn't see the problem
 - Picks its own route
 - Might not even learn the bogus route
- May not cause loss of connectivity
 - E.g., if the bogus AS snoops and redirects
 - may only cause performance degradation
- Or, loss of connectivity is isolated
 - E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
 - Analyzing updates from many vantage points
 - Launching traceroute from many vantage points

- Originating a more-specific prefix
 - Every AS picks the bogus route for that prefix
 - Traffic follows the longest matching prefix

How to Hijack a Prefix

- The hijacking AS has
 - Router with eBGP session(s)
 - Configured to originate the prefix
- Getting access to the router
 - Network operator makes configuration mistake
 - Disgruntled operator launches an attack
 - Outsider breaks in to the router and reconfigures
- Getting other ASes to believe bogus route
 - Neighbor ASes not filtering the routes
 - ... e.g., by allowing only expected prefixes
 - But, specifying filters on peering links is hard

Pakistan Youtube incident

- Youtube's has prefix 208.65.152.0/22
- Pakistan's government order Youtube blocked
- Pakistan Telecom (AS 17557) announces 208.65.153.0/24 in the wrong direction (outwards!)
- Longest prefix match caused worldwide outage
- http://www.youtube.com/watch?
 v=IzLPKuAOe50

Many other incidents

- Spammers steal unused IP space to hide
 - Announce very short prefixes (e.g., /8). Why?
 - For a short amount of time
- China incident, April 8th 2010
 - China Telecom's AS23724 generally announces
 40 prefixes
 - On April 8th, announced ~37,000 prefixes
 - About 10% leaked outside of China
 - Suddenly, going to <u>www.dell.com</u> might have you routing through AS23724!

Attacks on BGP Paths

- Remove an AS from the path
 - E.g., 701 3715 88 -> 701 88
- Why?
 - Attract sources that would normally avoid AS 3715
 - Make AS 88 look like it is closer to the core
 - Can fool loop detection!
- May be hard to tell whether this is a lie
 - 88 could indeed connect directly to 701!

Attacks on BGP Paths

- Adding ASes to the path
 - E.g., 701 88 -> 701 3715 88
- Why?
 - Trigger loop detection in AS 3715
 - This would block unwanted traffic from AS 3715!
 - Make your AS look more connected
- Who can tell this is a lie?
 - AS 3715 could, if it could see the route
 - AS 88 could, but would it really care?

Attacks on BGP Paths

- Adding ASes at the end of the path
 - E.g., 701 88 into 701 88 3
- Why?
 - Evade detection for a bogus route (if added AS is legitimate owner of a prefix)
- Hard to tell that the path is bogus!

