Introduction to Computer Networks

COSC 4377

Lecture 17

Spring 2012

March 26, 2012

Announcements

- HW8 due this week
- HW9 is out
- Student presentations

\$ dig uh.edu

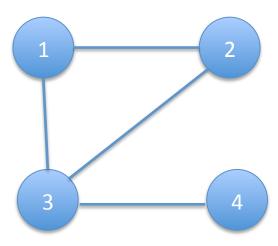
- ; <<>> DiG 9.7.3-P3 <<>> uh.edu
- ;; global options: +cmd
- ;; Got answer:
- ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44950
- ;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 4
- ;; QUESTION SECTION:
- ;uh.edu. IN A
- ;; ANSWER SECTION:

uh.edu. 16306 IN A 129.7.97.54

;; AUTHORITY SECTION:

uh.edu. 90 IN NS mesquite.cc.uh.edu.

uh.edu. 90 IN NS ns2.uh.edu.
uh.edu. 90 IN NS ns1.uh.edu.
uh.edu. 90 IN NS ncc.uky.edu.

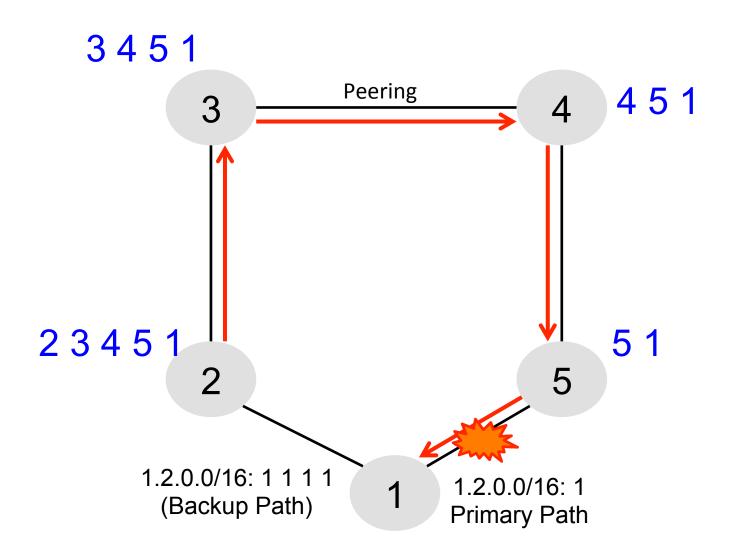

;; ADDITIONAL SECTION:

ncc.uky.edu. 80512 IN 128.163.1.6 Α ns2.uh.edu. 22524 IN 129.7.1.6 Α ns1.uh.edu. 27472 IN Α 129.7.1.1 mesquite.cc.uh.edu. 27584 IN Α 66.140.111.1

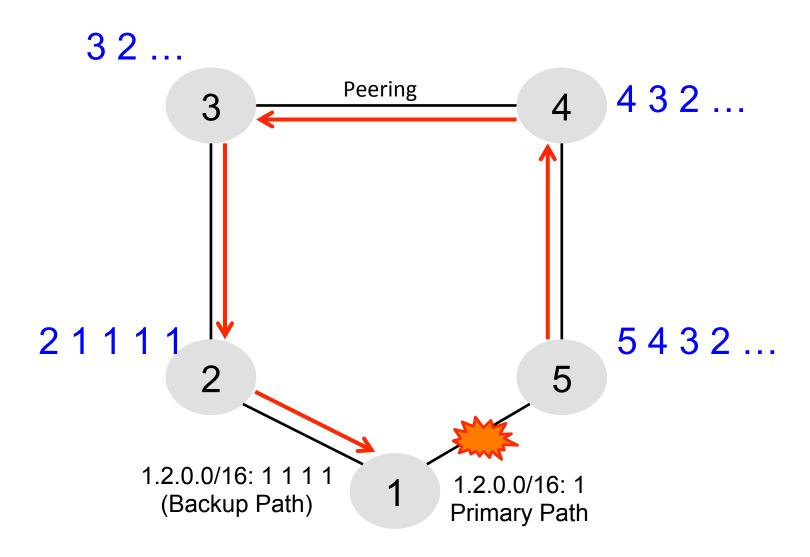
- ;; Query time: 0 msec
- ;; SERVER: 129.7.240.1#53(129.7.240.1)
- ;; WHEN: Mon Mar 26 12:00:34 2012
- ;; MSG SIZE rcvd: 188

HW8

- Distance Vector Routing
- Count-to-infinity
- Split-horizon

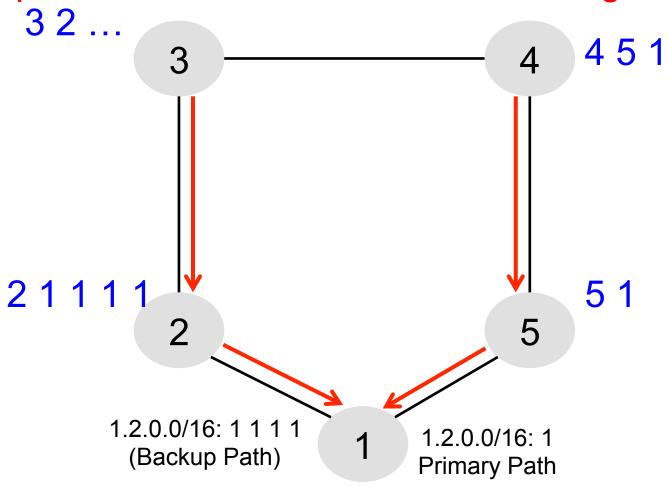

Today's Topics

- BGP Wedgies
- IP
- NAT
- Student presentations


Multiple Stable Configurations BGP Wedgies [RFC 4264]

- Typical policy:
 - Prefer routes from customers
 - Then prefer shortest paths

BGP Wedgies



BGP Wedgies

BGP Wedgies

3 prefers customer route: stable configuration!

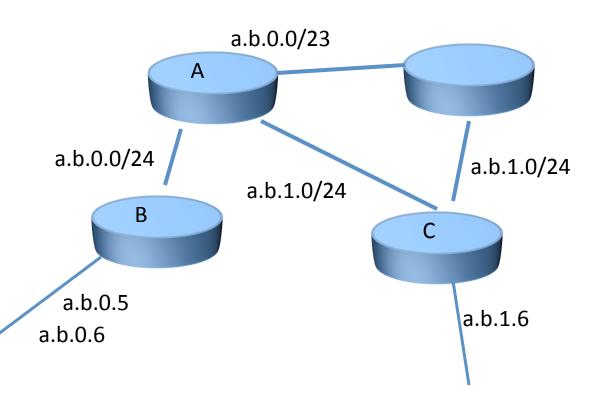
BGP Security Goals

- Confidential message exchange between neighbors
- Validity of routing information
 - Origin, Path, Policy
- Correspondence to the data path

Proposed Solution: S-BGP

- Based on a public key infrastructure
- Address attestations
 - Claims the right to originate a prefix
 - Signed and distributed out of band
 - Checked through delegation chain from ICANN
- Route attestations
 - Attribute in BGP update message
 - Signed by each AS as route along path
- S-BGP can avoid
 - Prefix hijacking
 - Addition, removal, or reordering of intermediate
 ASes

S-BGP Deployment


- Very challenging
 - PKI
 - Accurate address registries
 - Need to perform cryptographic operations on all path operations
 - Flag day almost impossible
 - Incremental deployment offers little incentive
- But there is hope! [Goldberg et al, 2011]
 - Road to incremental deployment
 - Change rules to break ties for secure paths
 - If a few top Tier-1 ISPs
 - Plus their respective stub clients deploy simplified version (just sign, not validate)
 - Gains in traffic => \$ => adoption!

Data Plane Attacks

- Routers/ASes can advertise one route, but not necessarily follow it!
- May drop packets
 - Or a fraction of packets
 - What if you just slow down some traffic?
- Can send packets in a different direction
 - Impersonation attack
 - Snooping attack
- How to detect?
 - Congestion or an attack?
 - Can let ping/traceroute packets go through
 - End-to-end checks?
- Harder to pull off, as you need control of a router

Forwarding with CIDR

Longest Prefix Match

Prefix	Nexthop
a.b.0.0/23	Α
a.b.1.0/24	С

Where to forward these packets?

- dst: a.b.0.5

- dst: a.b.1.6

IP Protocol

- Provides addressing and forwarding
 - Addressing is a set of conventions for naming nodes in an IP network
 - Forwarding is a local action by a router: passing a packet from input to output port
- IP forwarding finds output port based on destination address
 - Also defines certain conventions on how to handle packets (e.g., fragmentation, time to live)
- Contrast with routing
 - Routing is the process of determining how to map packets to output ports (topic of next two lectures)

Service Model

- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets may be lost
 - packets may be delivered out of order
 - duplicate copies of packets may be delivered
 - packets may be delayed for a long time
- It's the lowest common denominator
 - A network that delivers no packets fits the bill!
 - All these can be dealt with above IP (if probability of delivery is non-zero...)

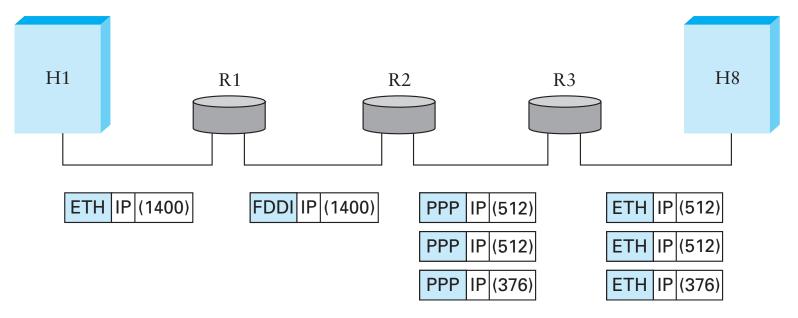
IP v4 packet format

 $\begin{smallmatrix} 0 & & & 1 & & 2 & & 3 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 \\ \end{smallmatrix}$

vers	hdr len	TOS		Total I	Length
Identification			Frag	ment offset	
T	TTL Protocol hdr checksum		ecksum		
Source IP address					
Destination IP address					
Options			Padding		
Data					

IP header details

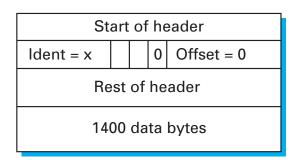
- Forwarding based on destination address
- TTL (time-to-live) decremented at each hop
 - Originally was in seconds (no longer)
 - Mostly prevents forwarding loops
 - Other cool uses...
- Fragmentation possible for large packets
 - Fragmented in network if crossing link w/ small frame
 - MF: more fragments for this IP packet
 - DF: don't fragment (returns error to sender)
- Following IP header is "payload" data
 - Typically beginning with TCP or UDP header


Other fields

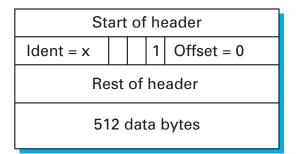
- Version: 4 (IPv4) for most packets, there's also 6
- Header length: in 32-bit units (>5 implies options)
- Type of service (won't go into this)
- Protocol identifier (TCP: 6, UDP: 17, ICMP: 1, ...)
- Checksum over the header

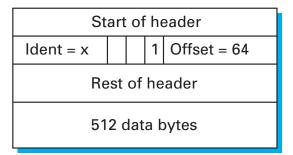
Fragmentation & Reassembly

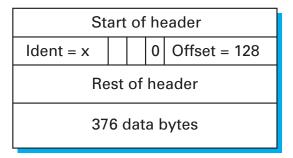
- Each network has maximum transmission unit (MTU)
- Strategy
 - Fragment when necessary (MTU < size of datagram)
 - Source tries to avoid fragmentation (why?)
 - Re-fragmentation is possible
 - Fragments are self-contained datagrams
 - Delay reassembly until destination host
 - No recovery of lost fragments


Fragmentation Example

- Ethernet MTU is 1,500 bytes
- PPP MTU is 576 bytes
 - R2 must fragment IP packets to forward them


Fragmentation Example (cont)


- IP addresses plus ident field identify fragments of same packet
- MF (more fragments bit) is 1 in all but last fragment
- Fragment offset multiple of 8 bytes
 - Multiply offset by 8 for fragment position original packet



(a)

(b)

Internet Control Message Protocol (ICMP)

- Echo (ping)
- Redirect
- Destination unreachable (protocol, port, or host)
- TTL exceeded
- Checksum failed
- Reassembly failed
- Can't fragment
- Many ICMP messages include part of packet that triggered them
- See
 http://www.iana.org/assignments/icmp-parameters

ICMP message format

 $\begin{smallmatrix} 0 & & & 1 & & 2 & & 3 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 \end{smallmatrix}$

20-byte IP header (protocol = 1—ICMP)

Type Code Checksum

depends on type/code

Example: Time Exceeded

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

01234307090123430709012343070901			
20-byte IP header (protocol = 1—ICMP)			
Type = 11	Code	Checksum	
unused			
IP header + first 8 payload bytes of packet that caused ICMP to be generated			

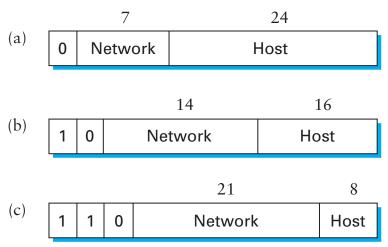
Student presentation: traceroute

Translating IP to lower level addresses

- Map IP addresses into physical addresses
 - E.g., Ethernet address of destination host
 - or Ethernet address of next hop router
- Techniques
 - Encode physical address in host part of IP address (IPv6)
 - Each network node maintains lookup table (IP->phys)

ARP – address resolution protocol

- Dynamically builds table of IP to physical address bindings
- Broadcast request if IP address not in table
- All learn IP address of requesting node (broadcast)
- Target machine responds with its physical address
- Table entries are discarded if not refreshed


ARP Ethernet frame format

0 8 16 31

Hardware type = 1		ProtocolType = 0x0800	
HLen = 48	PLen = 32	Operation	
SourceHardware <i>A</i>		Addr (bytes 0–3)	
SourceHardwareAddr (bytes 4–5)		SourceProtocolAddr (bytes 0–1)	
SourceProtocolAddr (bytes 2–3)		TargetHardwareAddr (bytes 0–1)	
TargetHardwareAddr (bytes 2–5)			
TargetProtocolAddr (bytes 0–3)			

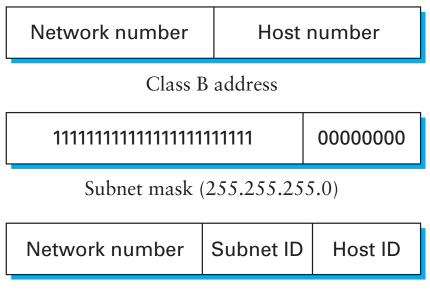
Format of IP addresses

- Globally unique (or made seem that way)
 - 32-bit integers, read in groups of 8-bits:128.148.32.110
- Hierarchical: network + host
- Originally, routing prefix embedded in address

- Class A (8-bit prefix), B (16-bit), C (24-bit)
- Routers need only know route for each network

Forwarding Tables

 Exploit hierarchical structure of addresses: need to know how to reach networks, not hosts

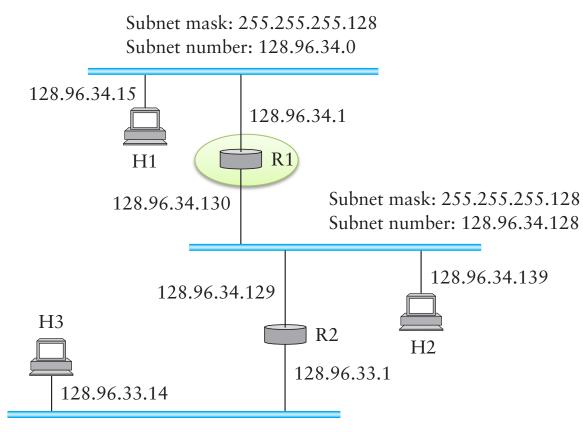

Network	Next Address
212.31.32.*	0.0.0.0
18.*.*.*	212.31.32.5
128.148.*.*	212.31.32.4
Default	212.31.32.1

- Keyed by network portion, not entire address
- Next address should be local

Classed Addresses

- Hierarchical: network + host
 - Saves memory in backbone routers (no default routes)
 - Originally, routing prefix embedded in address
 - Routers in same network must share network part
- Inefficient use of address space
 - Class C with 2 hosts (2/255 = 0.78%) efficient
 - Class B with 256 hosts (256/65535 = 0.39% efficient)
 - Shortage of IP addresses
 - Makes address authorities reluctant to give out class B's
- Still too many networks
 - Routing tables do not scale
- Routing protocols do not scale

Subnetting


Subnetted address

- Add another level to address/routing hierarchy
- Subnet mask defines variable portion of host part
- Subnets visible only within site
- Better use of address space

R1's Forwarding Table

	Network	Subfict Mask	Next Address
	128.96.34.0	255.255.255.128	128.96.34.1
	128.96.34.128	255.255.255.128	128.96.34.130
	128.96.33.0	255.255.255.0	128.96.34.129
,			

Subnet Mask Next Address

Network

Subnet mask: 255.255.255.0 Subnet number: 128.96.33.0

Supernetting

- Assign blocks of contiguous networks to nearby networks
- Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair
 - (first network address, count)
- Restrict block sizes to powers of 2
- Use a bit mask (CIDR mask) to identify block size
- Address aggregation: reduce routing tables

CIDR Forwarding Table

Network	Next Address
212.31.32/24	0.0.0.0
18/8	212.31.32.5
128.148/16	212.31.32.4
128.148.128/17	212.31.32.8
0/0	212.31.32.1

Obtaining IP Addresses

- Blocks of IP addresses allocated hierarchically
 - ISP obtains an address block, may subdivide

ISP: 128.35.16/20 10000000 00100011 0001 0000 00000000

Client 1: 128.35.16/22 10000000 00100011 00010000 00000000

Client 2: 128.35.20/22 10000000 00100011 00010100 00000000

Client 3: 128.35.24/21 10000000 00100011 00011000 00000000

- Global allocation: ICANN, /8's (ran out!)
- Regional registries: ARIN, RIPE, APNIC, LACNIC, AFRINIC