Introduction to Computer Networks

COSC 4377

Lecture 19

Spring 2012

April 2, 2012

Announcements

- HW9 due this week
- HW10 out
- HW11 and HW12 coming soon!
- Student presentations

HW9

- Capture packets using Wireshark
- Plot CDF

Today's Topics

- Link Layer
 - Media Access
 - Switching

Wired Media Access

Link Layer

- Single-hop addressing
- Media Access
- Single-hop reliability

Media Access Control

- Control access to shared physical medium
 - E.g., who can talk when?
 - If everyone talks at once, no one hears anything
 - Job of the Link Layer
- Two conflicting goals
 - Maximize utilization when one node sending
 - Approach 1/N allocation when N nodes sending

Different Approaches

- Partitioned Access
 - Time Division Multiple Access (TDMA)
 - Frequency Division Multiple Access (FDMA)
 - Code Division Multiple Access (CDMA)
- Random Access
 - ALOHA/ Slotted ALOHA
 - Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
 - Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)
 - RTS/CTS (Request to Send/Clear to Send)
 - Token-based

Collision Detection

 Without minimum frame length, might not detect collision

Case Study: Ethernet (802.3)

- Dominant wired LAN technology
- Both Physical and Link Layer specification
- CSMA/CD
 - Carrier Sense / Multiple Access / Collision
 Detection
- Frame Format (Manchester Encoding):

Ethernet MAC

- Problem: shared medium
 - 10Mbps: 2500m, with 4 repeaters at 500m
- Transmit algorithm
 - If line is idle, transmit immediately
 - Upper bound message size of 1500 bytes
 - Must wait 9.6µs between back to back frames
 - If line is busy: wait until idle and transmit immediately

Handling Collisions

- Collision detection (10Base2 Ethernet)
 - Uses Manchester encoding
 - Constant average voltage unless multiple transmitters
- If collision
 - Jam for 32 bits, then stop transmitting frame
- Collision detection constrains protocol
 - Imposes min. packet size (64 bytes or 512 bits)
 - Imposes maximum network diameter (2500m)
 - Ensure transmission time ≥ 2x propagation delay (why?)

When to transmit again?

- Delay and try again: exponential backoff
- *n*th time: $k \times 51.2 \mu s$, for $k = U\{0..2^{\min(n,10)}-1\}$
 - -1^{st} time: 0 or 51.2µs
 - 2nd time: 0, 51.2, 102.4, or 153.6μs
- Give up after several times (usually 16)

Capture Effect

- Exponential backoff leads to self-adaptive use of channel
- A and B are trying to transmit, and collide
- Both will back off either 0 or 51.2μs
- Say A wins.
- Next time, collide again.
 - A will wait between 0 or 1 slots
 - B will wait between 0, 1, 2, or 3 slots

• ...

Ethernet Addressing

- Globally unique, 48-bit unicast address per adapter
 - Example: 00:1c:43:00:3d:09 (Samsung adapter)
 - 24 msb: organization
 - http://standards.ieee.org/develop/regauth/oui/ oui.txt
- Broadcast address: all 1s
- Multicast address: first bit 1
- Adapter can work in promiscuous mode

Ethernet Efficiency

• Efficiency =
$$\frac{1}{1 + \frac{5d_{prop}}{d_{trans}}}$$

Wired Media Access

Scaling the Network

- Problem: all the nodes on the same wire
 - Collision
 - Capacity
- Solution
 - Group the nodes into separate networks connected by hubs or switches
 - Consequences?
- Very little Ethernet today is shared

Switching

- Switches must be able to, given a packet, determine the outgoing port
- 3 ways to do this:
 - Datagram Switching
 - Virtual Circuit Switching
 - Source Routing

Datagram Switching

Switch 2	
Add	Port
r	
Α	3
В	0
С	3
D	3
Ε	2
F	1
G	0
Н	0

- Each packet carries destination address
- Switches maintain address-based tables
 - Maps [destination address]:[out-port]
- Also called connectionless model

Datagram Switching

- No delay for connection setup
- Source can't know if network can deliver a packet
- Possible to route around failures
- Higher overhead per-packet
- Potentially larger tables at switches

Learning Bridges

- Idea: don't forward a packet where it isn't needed
 - If you know recipient is not on that port
- Learn hosts' locations based on source addresses
 - Build a table as you receive packets
- Table says when not to forward a packet
 - Doesn't need to be complete for correctness

Dealing with Loops

- Problem: people may create loops in LAN!
 - Accidentally, or to provide redundancy
 - Don't want to forward packets indefinitely

Spanning Tree

- Need to disable ports, so that no loops in network
- Like creating a spanning tree in a graph
 - View switches and networks as nodes, ports as edges