Introduction to Computer Networks

COSC 4377

Lecture 20

Announcements

HWO due this week

HW10 out

HW11 and HW12 coming soon!
Student presentations

HWS

e Capture packets using Wireshark
* Plot CDF

Today’s Topics

* Switching

* Physical Layer
— Bandwidth
— Modulation

— Encoding
— Framing

Wired Media Access

"
:

Learning Bridges

IJ Ll IJ Ll IJ Ll

| | |
-<«+— Port 1

Bridge

| -—— Port 2

I
IJ:|LI IJ:|LI IJ:|LI

X Y Z

* |dea: don’t forward a packet where it isn’t needed
— If you know recipient is not on that port

* Learn hosts’ locations based on source addresses
— Build a table as you receive packets

 Table says when not to forward a packet
— Doesn’t need to be complete for correctness

Dealing with Loops

* Problem: people may create loops in LAN!
— Accidentally, or to provide redundancy
— Don’t want to forward packets indefinitely

Spanning Tree

In the mathematical field of graph theory, a spanning tree T of a
connected, undirected graph G is a tree composed of all the vertices
and some (or perhaps all) of the edges of G. Informally, a spanning
tree of G is a selection of edges of G that form a tree spanning every
vertex. That is, every vertex lies in the tree, but no cycles (or

loops) are formed.

From: http://en.wikipedia.org/wiki/Spanning_tree

Spanning Tree

http://www.graph-magics.com/articles/min_spantree.php

Spanning Tree Algorithms

* Graph search algorithms
* Dijkstra’s algorithm
* Minimum-spanning Tree Algorithms

Spanning Tree

: g | o
GI

* Need to disable ports, so that no loops in network

* Like creating a spanning tree in a graph
— View switches and networks as nodes, ports as edges

H G
J

K

Distributed Spanning Tree Algorithm

* Every bridge has a unique ID (Ethernet address)

e Goal:

— Bridge with the smallest ID is the root

— Each segment has one designated bridge, responsible
for forwarding its packets towards the root
* Bridge closest to root is designated bridge
 If there is a tie, bridge with lowest ID wins

Spanning Tree Protocol

Spanning Tree messages contain:

— |ID of bridge sending the message

— |D sender believes to be the root

— Distance (in hops) from sender to root

Bridges remember best config msg on each port
Send message when you think you are the root

Otherwise, forward messages from best known
root

— Add one to distance before forwarding

— Don’t forward if you know you aren’t dedicated bridge

Limitations of Bridges

* Scaling
— Spanning tree algorithm doesn’t scale
— Broadcast does not scale

— No way to route around congested links, even if
path exists

* May violate assumptions

— Could confuse some applications that assume
single segment

— Much more likely to drop packets
— Makes latency between nodes non-uniform
— Beware of transparency

Local Area Network

C B
B
o

K

Physical Layer

* Responsible for specifying the physical medium
— Type of cable, fiber, wireless frequency

e Responsible for specifying the signal (modulation)

— Transmitter varies something (amplitude, frequency,
phase)

— Receiver samples, recovers signal

e Responsible for specifying the bits (encoding)
— Bits above physical layer -> chips

Specifying the signal

* Chips vs bits
— Chips: data (in bits) at the physical layer
— Bits: data above the physical layer

* Phy layer specifies Analog signal «= chip mapping
— On-off keying (OOK): voltage of 0is 0, +Vis 1
— PAM-5:0001is0,001is+1,0101is-1,011is-2, 100 is +2
— Frequency shift keying (FSK)
— Phase shift keying (PSK)

Modulation

* Specifies mapping between digital signal
and some variation in analog signal

 Why not just a square wave (1v=1; Ov=0)?
— Not square when bandwidth limited

 Bandwidth —frequencies that a channel
propagates well

— Signals consist of many frequency
components

— Attenuation and delay frequency-dependent

Use Carriers

* |dea: only use frequencies that transmit well
 Modulate the signal to encode bits

OOK: On-Off ASK: Amplitude Shift
Keying Keying
1 0 1 1 0 1

A \ | A \
\/\/1_\/\/ vV

Use Carriers

* |dea: only use frequencies that transmit well
 Modulate the signal to encode bits

FSK: F’e,%gf,-’,’,g” Shift PSK: Phase Shift Keying

1 0 1 1 0 1

N NAN N f\r\/\f\/\
\/uuuv \/v U\A/

How Fast Can You Really Send?

* Depends on frequency and signal/noise ratio

* Shannon: C =B log,(1 + S/N)
— Cis the channel capacity in bits/second
— B is the bandwidth of the channel in Hz

— S and N are average sighal and noise power

* Example: Telephone Line
— 3KHz b/w, 30dB S/N =107(30/10) = 1000
— C = 30 Kbps

Encoding

* Now assume that we can somehow modulate a
signal: receiver can decode our binary stream

* How do we encode binary data onto signals?
* One approach: Non-return to Zero (NRZ)

— Transmit 0 as low, 1 as high!
1 O 1 O 1 1 1 O 1 1 1 O 1 1 1 1 1 O 1

NRZ ! ! i ! .

(non-return to zero)

Clock

Drawbacks of NRZ

No signal could be interpreted as O (or vice-
versa)

Consecutive 1s or Os are problematic

Baseline wander problem

— How do you set the threshold?
— Could compare to average, but average may drift

Clock recovery problem
— For long runs of no change, could miscount periods

Alternative Encodings

 Non-return to Zero Inverted (NRZI)
— Encode 1 with transition from current signal
— Encode 0 by staying at the same level

— At least solve problem of consecutive 1s
.O -6 1 o0 1 0 1 1 0

NRZI ‘ ‘ ‘\

(non-return to zero
intverted) !

Clock

Manchester
* Map O = chips 01; 1 = chips 10

— Transmission rate now 1 bit per two clock cycles

* Solves clock recovery, baseline wander
e But cuts transmission rate in half

Manchester;

Clock

4B/5B

Can we have a more efficient encoding?
Every 4 bits encoded as 5 chips

Need 16 5-bit codes:

— selected to have no more than one leading 0 and
no more than two trailing Os

— Never get more than 3 consecutive Os
Transmit chips using NRZI

Other codes used for other purposes
— E.g., 11111: line idle; 00100: halt

Achieves 80% efficiency

Encoding Goals

DC Balancing (same number of 0 and 1 chips)
Clock synchronization
Can recover some chip errors

Constrain analog signal patterns to make signal
more robust

Want near channel capacity with negligible errors
— Shannon says it’s possible, doesn’t tell us how

— Codes can get computationally expensive

In practice
— More complex encoding: fewer bps, more robust
— Less complex encoding: more bps, less robust

802.15.4

e Standard for low-power, low-rate wireless
PANSs

— Must tolerate high chip error rates
* Uses a 4B/32B bit-to-chip encoding

Bits Chips
A~ — ~~

0N [0000}»{11011001110000110101001000101110
< 0001—»11101101100111000011010100100010
3,< 0010—»00101110110110011100001101010010
g 0011r—»00100010111011011001110000110101
)
_|[1111-»11001001011000000111011110111000

Framing

* Given a stream of bits, how can we
represent boundaries?

* Break sequence of bits into a frame
* Typically done by network adaptor

Ay Ay
V4 Bits y
Node A Adaptor Adaptor = Node B

Frames

Representing Boundaries

e Sentinels
* Length counts
 Clock-based

Bits

Adaptor '

Adaptor

Frames

Bit-Oriented Protocols

* View message as a stream of bits, not bytes

* Can use sentinel approach as well (e.g.,
HDLC)

8 16 16 8
Beginning Ending
sequence Header Body CRC sequence

— HDLC begin/end sequence 01111110

* Use bit stuffing to escape 01111110

— Always append 0 after five consecutive 1s in data

— After five 1s, receiver uses next two bits to
decide if stuffed, end of frame, or error.

Length-based Framing
* Drawback of sentinel techniques
— Length of frame depends on data

e Alternative: put length in header (e.g., DDCMP)

14 42 16

8§ 8

Z |

> | © | Count | Header Body CRC
n | n

* Danger: Framing Errors
— What if high bit of counter gets corrupted?
— Adds 8K to length of frame, may lose many frames

— CRC checksum helps detect error

YN | oo
C

Representing Boundaries

e Sentinels
* Length counts
 Clock-based

Bits

Adaptor '

Adaptor

Frames

