Introduction to Computer Networks

COSC 4377

Lecture 20

Spring 2012

April 4, 2012

Announcements

- HW9 due this week
- HW10 out
- HW11 and HW12 coming soon!
- Student presentations

HW9

- Capture packets using Wireshark
- Plot CDF

Today's Topics

- Switching
- Physical Layer
 - Bandwidth
 - Modulation
 - Encoding
 - Framing

Wired Media Access

Learning Bridges

- Idea: don't forward a packet where it isn't needed
 - If you know recipient is not on that port
- Learn hosts' locations based on source addresses
 - Build a table as you receive packets
- Table says when not to forward a packet
 - Doesn't need to be complete for correctness

Dealing with Loops

- Problem: people may create loops in LAN!
 - Accidentally, or to provide redundancy
 - Don't want to forward packets indefinitely

Spanning Tree

In the mathematical field of graph theory, a spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G. Informally, a spanning tree of G is a selection of edges of G that form a tree spanning every vertex. That is, every vertex lies in the tree, but no cycles (or loops) are formed.

From: http://en.wikipedia.org/wiki/Spanning_tree

Spanning Tree

http://www.graph-magics.com/articles/min_spantree.php

Spanning Tree Algorithms

- Graph search algorithms
- Dijkstra's algorithm
- Minimum-spanning Tree Algorithms

Spanning Tree

- Need to disable ports, so that no loops in network
- Like creating a spanning tree in a graph
 - View switches and networks as nodes, ports as edges

Distributed Spanning Tree Algorithm

- Every bridge has a unique ID (Ethernet address)
- Goal:
 - Bridge with the smallest ID is the root
 - Each segment has one designated bridge, responsible for forwarding its packets towards the root
 - Bridge closest to root is designated bridge
 - If there is a tie, bridge with lowest ID wins

Spanning Tree Protocol

- Spanning Tree messages contain:
 - ID of bridge sending the message
 - ID sender believes to be the root
 - Distance (in hops) from sender to root
- Bridges remember best config msg on each port
- Send message when you think you are the root
- Otherwise, forward messages from best known root
 - Add one to distance before forwarding
 - Don't forward if you know you aren't dedicated bridge

Limitations of Bridges

Scaling

- Spanning tree algorithm doesn't scale
- Broadcast does not scale
- No way to route around congested links, even if path exists

May violate assumptions

- Could confuse some applications that assume single segment
- Much more likely to drop packets
- Makes latency between nodes non-uniform
- Beware of transparency

Local Area Network

Physical Layer

- Responsible for specifying the physical medium
 - Type of cable, fiber, wireless frequency
- Responsible for specifying the signal (modulation)
 - Transmitter varies something (amplitude, frequency, phase)
 - Receiver samples, recovers signal
- Responsible for specifying the bits (encoding)
 - Bits above physical layer -> chips

Specifying the signal

- Chips vs bits
 - Chips: data (in bits) at the physical layer
 - Bits: data above the physical layer
- - On-off keying (OOK): voltage of 0 is 0, +V is 1
 - PAM-5: 000 is 0, 001 is +1, 010 is -1, 011 is -2, 100 is +2
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)

Modulation

- Specifies mapping between digital signal and some variation in analog signal
- Why not just a square wave (1v=1; 0v=0)?
 - Not square when bandwidth limited
- Bandwidth frequencies that a channel propagates well
 - Signals consist of many frequency components
 - Attenuation and delay frequency-dependent

Use Carriers

- Idea: only use frequencies that transmit well
- Modulate the signal to encode bits

Use Carriers

- Idea: only use frequencies that transmit well
- Modulate the signal to encode bits

How Fast Can You Really Send?

- Depends on frequency and signal/noise ratio
- Shannon: $C = B \log_2(1 + S/N)$
 - C is the channel capacity in bits/second
 - B is the bandwidth of the channel in Hz
 - S and N are average signal and noise power
- Example: Telephone Line
 - -3KHz b/w, 30dB S/N = $10^{(30/10)}$ = 1000
 - C ≈ 30 Kbps

Encoding

- Now assume that we can somehow modulate a signal: receiver can decode our binary stream
- How do we encode binary data onto signals?
- One approach: Non-return to Zero (NRZ)
 - Transmit 0 as low, 1 as high!

Drawbacks of NRZ

- No signal could be interpreted as 0 (or viceversa)
- Consecutive 1s or 0s are problematic
- Baseline wander problem
 - How do you set the threshold?
 - Could compare to average, but average may drift
- Clock recovery problem
 - For long runs of no change, could miscount periods

Alternative Encodings

- Non-return to Zero Inverted (NRZI)
 - Encode 1 with transition from current signal
 - Encode 0 by staying at the same level
 - At least solve problem of consecutive 1s

Manchester

- Map $0 \rightarrow$ chips 01; $1 \rightarrow$ chips 10
 - Transmission rate now 1 bit per two clock cycles
- Solves clock recovery, baseline wander
- But cuts transmission rate in half

4B/5B

- Can we have a more efficient encoding?
- Every 4 bits encoded as 5 chips
- Need 16 5-bit codes:
 - selected to have no more than one leading 0 and no more than two trailing 0s
 - Never get more than 3 consecutive 0s
- Transmit chips using NRZI
- Other codes used for other purposes
 - E.g., 11111: line idle; 00100: halt
- Achieves 80% efficiency

Encoding Goals

- DC Balancing (same number of 0 and 1 chips)
- Clock synchronization
- Can recover some chip errors
- Constrain analog signal patterns to make signal more robust
- Want near channel capacity with negligible errors
 - Shannon says it's possible, doesn't tell us how
 - Codes can get computationally expensive
- In practice
 - More complex encoding: fewer bps, more robust
 - Less complex encoding: more bps, less robust

802.15.4

- Standard for low-power, low-rate wireless PANs
 - Must tolerate high chip error rates
- Uses a 4B/32B bit-to-chip encoding

Framing

- Given a stream of bits, how can we represent boundaries?
- Break sequence of bits into a frame
- Typically done by network adaptor

Representing Boundaries

- Sentinels
- Length counts
- Clock-based

Bit-Oriented Protocols

- View message as a stream of bits, not bytes
- Can use sentinel approach as well (e.g., HDLC)

- HDLC begin/end sequence 011111110
- Use bit stuffing to escape 01111110
 - Always append 0 after five consecutive 1s in data
 - After five 1s, receiver uses next two bits to decide if stuffed, end of frame, or error.

Length-based Framing

- Drawback of sentinel techniques
 - Length of frame depends on data
- Alternative: put length in header (e.g., DDCMP)

- Danger: Framing Errors
 - What if high bit of counter gets corrupted?
 - Adds 8K to length of frame, may lose many frames
 - CRC checksum helps detect error

Representing Boundaries

- Sentinels
- Length counts
- Clock-based

