Introduction to Computer Networks

COSC 4377

Lecture 21

Spring 2012

April 9, 2012

Announcements

- HW10 due this week
- Student presentations

HW10

- Latency measurements
- Plotting latency

Get your user id today

Today's Topics

Wireless Networks

Wireless

- Today: wireless networking truly ubiquitous
 - 802.11, 3G, (4G), WiMAX, Bluetooth, RFID, ...
 - Sensor networks, Internet of Things
 - Some new computers have no wired networking
- What's behind the scenes?

Wireless is different

- Signals sent by the sender don't always reach the receiver intact
 - Varies with space: attenuation, multipath
 - Varies with time: conditions change, interference, mobility
- *Distributed*: sender doesn't know what happens at receiver
- Wireless medium is inherently shared
 - No easy way out with switches

Implications

- Different mechanisms needed
- Physical layer
 - Different knobs: antennas, transmission power, encodings
- Link Layer
 - Distributed medium access protocols
 - Topology awareness
- Network, Transport Layers
 - Routing, forwarding
- Most advances do not abstract away the physical and link layers

Interference

- External sources
 - E.g., 2.4GHz unlicensed ISM band
 - -802.11
 - 802.15.4 (ZigBee), 802.15.1 (Bluetooth)
 - 2.4GHz phones
 - Microwave ovens
- Internal sources
 - Nodes in the same network/protocol can (and do) interfere
- Multipath
 - Self-interference (destructive)

Link Layer

- Medium Access Control
 - Should give 100% if one user
 - Should be efficient and fair if more users
- Ethernet uses CSMA/CD
 - Can we use CD here?
- No! Collision happens at the receiver
- Protocols try to avoid collision in the first place

Hidden Terminals

- A can hear B and C
- B and C can't hear each other
- They both interfere at A
- B is a hidden terminal to C, and vice-versa
- Carrier sense at sender is useless

Exposed Terminals

- A transmits to B
- C hears the transmission, backs off, even though D would hear C
- C is an exposed terminal to A's transmission

Key points

- No global view of collision
 - Different receivers hear different senders
 - Different senders reach different receivers
- Collisions happen at the receiver
- Goals of a MAC protocol
 - Detect if receiver can hear sender
 - Tell senders who might interfere with receiver to shut up

- Idea: transmitter can check availability of channel at receiver
- Before every transmission
 - Sender sends an RTS (Request-to-Send)
 - Contains length of data (in time units)
 - Receiver sends a CTS (Clear-to-Send)
 - Sender sends data
 - Receiver sends ACK after transmission
- If you don't hear a CTS, assume collision
- If you hear a CTS for someone else, shut up

Benefits of RTS/CTS

- Solves hidden terminal problem
- Does it?
 - Control frames can still collide
 - E.g., can cause CTS to be lost
 - In practice: reduces hidden terminal problem on data packets

Drawbacks of RTS/CTS

- Overhead is too large for small packets
 - 3 packets per packet: RTS/CTS/Data (4-22% for 802.11b)
- RTS still goes through CSMA: can be lost
- CTS loss causes lengthy retries
- 33% of IP packets are TCP ACKs
- In practice, WiFi doesn't use RTS/CTS

Other MAC Strategies

- Time Division Multiplexing (TDMA)
 - Central controller allocates a time slot for each sender
 - May be inefficient when not everyone sending
- Frequency Division
 - Multiplexing two networks on same space
 - Nodes with two radios (think graph coloring)
 - Different frequency for upload and download

ISM Band Channels

Network Layer

- What about the network topology?
- Almost everything you use is single hop!
 - 802.11 in infrastructure mode
 - Bluetooth
 - Cellular networks
 - WiMax (Some 4G networks)
- Why?
 - Really hard to make multihop wireless efficient

WiFi Distribution System

- 802.11 typically works in *infrastructure mode*
 - Access points fixed nodes on wired network
- Distribution system connects Aps
 - Typically connect to the same Ethernet, use learning bridge to route to nodes' MAC addresses
- Association
 - Node negotiates with AP to get access
 - Security negotiated as well (WEP, WPA, etc)
 - Passive or active

Wireless Multi-Hop Networks

- Some networks are multihop, though!
 - Ad-hoc networks for emergency areas
 - Vehicular Networks
 - Sensor Networks
 - E.g., infrastructure monitoring
 - Multihop networking to share Internet access

What can happen to signals?

Attenuation

 Signal power attenuates by ~r² factor for omnidirectional antennas in free-space

Exponent depends on type and placement of antennas

Interference

- External sources
 - E.g., 2.4GHz unlicensed ISM band
 - -802.11
 - 802.15.4 (ZigBee), 802.15.1 (Bluetooth)
 - 2.4GHz phones
 - Microwave ovens
- Internal sources
 - Nodes in the same network/protocol can (and do) interfere
- Multipath
 - Self-interference (destructive)

Multipath

May cause attenuation, destructive interference

Many Challenges

- Routing
 - Link estimation
- Multihop throughput dropoff

The Routing Problem

- Find a route from S to D
- Topology can be very dynamic

Routing

- Routing in ad-hoc networks has had a lot of research
 - General problem: any-to-any routing
 - Simplified versions: any-to-one (base station),
 one-to-any (dissemination)
- DV too brittle: inconsistencies can cause loops
- DSDV
 - Destination Sequenced Distance Vector

DSDV

- Charles Perkins (1994)
- Avoid loops by using sequence numbers
 - Each destination increments own sequence number
 - Only use EVEN numbers
 - A node selects a new parent if
 - Newer sequence number or
 - Same sequence number and better route
 - If disconnected, a node increments destination sequence number to next ODD number!
 - No loops (only transient loops)
 - Slow: on some changes, need to wait for root

Many Others

- DSR, AODV: on-demand
- Geographic routing: use nodes' physical location and do greedy routing
- Virtual coordinates: derive coordinates from topology, use greedy routing
- Tree-based routing with on-demand shortcuts

• ...