Introduction to Computer Networks

COSC 4377

Lecture 23

Announcements

e HW11 due this week
e Exam 2 next week

HW11

DNS Server
_.earn how to read an RFC

_.earn how to implement a server based on
RFC

Today’s Topics

* Security
— Encryption
— Integrity
— Authentication
— Certificate
— HTTPS
— Pharming

Confidentiality through Cryptography

Cryptography: communication over insecure
channel in the presence of adversaries

Central goal: how to encode information so that an
adversary can’t extract it ...but a friend can

General premise: a key is required for decoding
— Give it to friends, keep it away from attackers

Two different categories of encryption
— Symmetric: efficient, requires key distribution

— Asymmetric (Public Key): computationally
expensive, but no key distribution problem

Symmetric Key Encryption

Same key for encryption and decryption
— Both sender and receiver know key
— But adversary does not know key
For communication, problem is key distribution
— How do the parties (secretly) agree on the key?
What can you do with a huge key? One-time pad
— Huge key of random bits
To encrypt/decrypt: just XOR with the key!

— Provably secure! provided:
* You never reuse the key ... and it really is random/unpredictable

— Spies actually use these

Using Symmetric Keys

e Both the sender and the receiver use the
same secret keys

Plaintext Plaintext

Internet Decrypt with

secret key

Encrypt with
secret key

Ciphertext

Asymmetric Encryption (Public Key)

|dea: use two different keys, one to encrypt (e)
and one to decrypt (d)

— A key pair
Crucial property: knowing e does not give away d
Therefore e can be public: everyone knows it!

If Alice wants to send to Bob, she fetches Bob’s
public key (say from Bob’s home page) and
encrypts with it

— Alice can’t decrypt what she’s sending to Bob ...

— ... but then, neither can anyone else (except Bob)

Public Key / Asymmetric Encryption

* Sender uses receiver’s public key
— Advertised to everyone

* Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

A

Internet
Encrypt with erne

public key

Decrypt with
private key

Ciphertext ¥

Works in Reverse Direction Too!

* Sender uses his own private key

* Receiver uses complementary public key

* Allows sender to prove he knows private key

Plaintext

Decrypt with
public key

Internet

Ciphertext

Plaintext

Encrypt with
private key

Integrity: Cryptographic Hashes

Sender computes a digest of message m, i.e., H(m)
— H() is a publicly known hash function

Send m in any manner

Send digest d = H(m) to receiver in a secure way:

— Using another physical channel

— Using encryption (why does this help?)

Upon receiving m and d, receiver re-computes H(m)
to see whether result agrees with d

Operation of Hashing for Integrity

Plaintext corrupted msg Plaintext

Digest Internet
(MD5)

digest

Cryptographically Strong Hashes

e Hard to find collisions

— Adversary can’t find two inputs that produce same hash
— Someone cannot alter message without modifying digest

— Can succinctly refer to large objects

 Hard to invert
— Given hash, adversary can’t find input that produces it
— Can refer obliquely to private objects (e.g., passwords)
* Send hash of object rather than object itself

Effects of Cryptographic Hashing

Input Hash sum

Hash DFCD3454 BBEA788A

Fox i 751A696C 24D97009
CA992D17

The red fox Hash 52ED879E 70F71D92

FUns across . 6EB69570 O08EO3CE4

L funct

the ice Hnction CAG945D3

The red fox Hash 46042841 935C7FBO

walks across function 9158585A B94AE214
the ice 26EB3CEA

Public Key Authentication

* Each side need only to know
the other side’s public key

—No secret key need be shared

* A encrypts a nonce (random
number) x using B’s public
key

* B proves it can recover x

A can authenticate itself to B
in the same way

& Pubi Cs)

K

Digital Signatures

* Suppose Alice has published public key K¢

* |f she wishes to prove who she is, she can send
a message x encrypted with her private key K

— Therefore: anyone w/ public key K can recover x,
verify that Alice must have sent the message

— It provides a digital signature

— Alice can’t deny later deny it = non-repudiation

RSA Crypto & Signatures, con’t

Alice
| will Sign “h
pay $500 (Encrypt)
Alice's
* private key

DFCD3454

BBEA788A
Bob v
| will Verify /@_Lnr'
pay $500 (Decrypt) Alice's

public key

Public Key Infrastructure (PKl)

Public key crypto is very powerful ...

... but the realities of tying public keys to real
world identities turn out to be quite hard

PKIl: Trust distribution mechanism
— Authentication via Digital Certificates

Trust doesn’t mean someone is honest, just
that they are who they say they are...

Managing Trust

* The most solid level of trust is rooted in our direct
personal experience

— E.g., Alice’s trust that Bob is who they say they are
— Clearly doesn’t scale to a global network!

* |nits absence, we rely on delegation
— Alice trusts Bob’s identity because Charlie attests to it

— and Alice trusts Charlie

Managing Trust, con’t

* Trust is not particularly transitive
— Should Alice trust Bob because she trusts Charlie ...
— ... and Charlie vouches for Donna ...
— ... and Donna says Eve is trustworthy ...
— ... and Eve vouches for Bob’s identity?

 Two models of delegating trust
— Rely on your set of friends and their friends
 “Web of trust” --e.g., PGP

— Rely on trusted, well-known authorities (and their
minions)
 “Trusted root” -- e.g., HTTPS

PKI Conceptual Framework

Trusted-Root PKI:

— Basis: well-known public key serves as root of a hierarchy
— Managed by a Certificate Authority (CA)
To publish a public key, ask the CA to digitally sign a

statement indicating that they agree (“certify”) that it is
indeed your key

— This is a certificate for your key (certificate = bunch of bits)
* Includes both your public key and the signed statement

— Anyone can verify the signature
Delegation of trust to the CA
— They’d better not screw up (duped into signing bogus key)

— They’d better have procedures for dealing with stolen keys
— Note: can build up a hierarchy of signing

HTTPS

» Steps after clicking on https://www.amazon.com

* https = “Use HTTP over SSL/TLS”

— SSL = Secure Socket Layer
— TLS = Transport Layer Security

* Successor to SSL, and compatible with it

— RFC 4346

* Provides security layer (authentication,
encryption) on top of TCP

— Fairly transparent to the app

HTTPS Connection (SSL/TLS), con’t

* Browser (client) Browser Amazon
connects via TCP to
Amazon s HTTPS
server

* Client sends over list of
crypto protocols it
supports

e Server picks protocols
to use for this session

e Server sends over its

certificate
e (all of thisis in the clear)

Inside the Server’s Certificate

Name associated with cert (e.g., Amazon)
Amazon’s public key

A bunch of auxiliary info (physical address, type of
cert, expiration time)

URL to revocation center to check for revoked keys
Name of certificate’s signatory (who signed it)

A public-key signature of a hash (IMID5) of all this
— Constructed using the signatory’s private RSA key

Validating Amazon’s ldentity

Example: certificate of entity Amazon

Cert = E({Amazon, KAmazon .}, KCA i ace)
Browser retrieves cert belonging to the signatory
— These are hardwired into the browser

If it can’t find the cert, then warns the user that site has not
been verified

— And may ask whether to continue

— Note, can still proceed, just without authentication

Browser uses public key in signatory’s cert to decrypt
signature

— Compares with its own MD5 hash of Amazon’s cert
Assuming signature matches, now have high confidence it’s
indeed Amazon ...

— ... assuming signatory is trustworthy

HTTPS Connection (SSL/TLS), con’t

* Browser constructs a random
session key K

* Browser encrypts K using
Amazon’s public key

 Browser sends E(K, KA
server

* Browser displays @

e

* All subsequent communication
encrypted w/ symmetric cipher
using key K

— E.g., client can authenticate using a
password

public) to

Browser

~q (B of d

WM
) ala

| Eqc
(’ KApUblic)
. b

E(.Oass
Worg
N

K)

Amazon

Pharming

* How can we get web clients to redirect to
malicious sites?

* Name resolution
— Send a query to a DNS
— Trust the IP address returned by the DNS
— Other ways to go from name to IP?

