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Abstract. Big data requirements have revolutionized database technol-
ogy, bringing many innovative and revamped DBMSs to process transac-
tional (OLTP) or demanding query workloads (cubes, exploration, pre-
processing). Parallel and main memory processing have become impor-
tant features to exploit new hardware and cope with data volume. With
such landscape in mind, we present a survey comparing modern row and
columnar DBMSs, contrasting their ability to write data (storage mecha-
nisms, transaction processing, batch loading, enforcing ACID) and their
ability to read data (query processing, physical operators, sequential
vs parallel). We provide a unifying view of alternative storage mecha-
nisms, database algorithms and query optimizations used across diverse
DBMSs. We contrast the architecture and processing of a parallel DBMS
with an HPC system. We cover the full spectrum of subsystems going
from storage to query processing. We consider parallel processing and the
impact of much larger RAM, which brings back main-memory databases.
We then discuss important parallel aspects including speedup, sequential
bottlenecks, data redistribution, high speed networks, main memory pro-
cessing with larger RAM and fault-tolerance at query processing time.
We outline an agenda for future research.

1 Introduction

Parallel processing is central in big data due to large data volume and the need
to process data faster. Parallel DBMSs [15, 13] and the Hadoop eco-system [30]
are currently two competing technologies to analyze big data, both based on au-
tomatic data-based parallelism on a shared-nothing architecture. On the other
hand, larger memory capacity has triggered rearchitecting systems to push more
processing to main memory. Nowadays the major DBMS storage technologies are
rows and columns. Rows are the most common storage mechanism, researched for
decades. They provide great performance for common OLTP queries, but can be
slow to process complex queries combining joins and aggregations. Yet during the
past decade columnar database systems (i.e. DBMSs using column-based stor-
age) [1, 18, 31] have become a major alternative to compute complex SQL queries
on large databases, providing at least an order of magnitude in performance im-
provement compared to row-based DBMSs [31, 33], and two orders of magnitude
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compared to the Hadoop ecosystem (MapReduce [9], Spark [36]). Unfortunately,
column storage requires rewriting many subsystems from the ground up. With
that motivation in mind, we present a survey on parallel DBMSs, covering the
state of the art and issues for future research. We consider the implications of
row and columnar storage, highlighting which processing tasks are easier or more
difficult on either storage mechanism. Since it is a major benchmarking effort to
compare all systems on loading speed, ACID compliance, query expressiveness
and query processing speed we do not include any experiments. Instead we aim
to identify main system architecture characteristics, storage mechanisms, and
time complexity of algorithms evaluating physical operators.

We provide a unifying view and classification of storage mechanisms, query
processing algorithms, novel optimizations and parallel processing across differ-
ent systems. We cover the full spectrum of subsystems going from storage to
analytic processing, contrasting columnar and row DBMSs. Based on the state
of the art, we outline a vision of research issues. Due to lack of space we omit
many references, especially commercial systems (e.g. white papers, web sites).

2 Preliminaries

Notation: To characterize time and space complexity, we use n to denote table
size (number of records), p as a variable for the number of columns (of diverse
data types) and P for the number of nodes/processors in a parallel system.
DBMS: We focus on parallel DBMSs, which we classify as row or columnar.
A DBMS has the following distinguishing features comparared to other large
software systems: storage is available only for structured data: relational tables
(most common), but also disk-based arrays (new trend); a table schema must
be defined before storing data (inserting new records or loading them in batch),
querying (in general with SQL, but also with alternative languages like Datalog
[2], or XML [13]) and maintaining ACID properties (atomic, consistent, isolated,
durable) to maintain data in a complete & consistent state [13].
Landscape: Row DBMSs represent a mature technology dating back several
decades [13], pioneered by IBM System R, then followed by Oracle, SQL Server
and Teradata. Columnar DBMSs came one decade ago to tackle complex SQL
queries. Influential columnar DBMSs include Sybase [24] (a pioneer in colum-
nar storage), MonetDB [18, 25] (industrialized as VectorWise) and C-store [1,
31] (rewritten and commercialized as Vertica [22, 34]). Other columnar DBMSs
worth mentioning are SAP Hana [12] (main memory columnas DBMS, integrated
with SAP), Virtuoso. Finally, columnar storage was grafted into older row-based
DBMSs like SQL Server (in the form of indexes), Teradata (as user-defined table
or precomputed join index) and Oracle (tables in main memory). There is a third
class of DBMS with innovative storage: arrays, enabling unlimited size multidi-
mensional arrays and matrices, fundamental in machine learning (SciDB [32],
Rasdaman [5]). Due to big data requirements and open-source trends, DBMSs
now feature automated schema requirements and enable fast data transfer with
Big Data systems. But at the same time “Big Data” Hadoop systems (working on



HDFS) have evolved to support SQL queries and more recently transactions with
varying ACID guarantees. That is, they have evolved, getting closer to relational
DBMSs. A major difference is that DBMSs are generally monolithic, whereas
open-source Hadoop systems tend to be modular allowing different subsystems
being assembled together (the so-called Hadoop stack). There exist alternative
Big Data database systems and subsystems with weaker OLTP features (weaker
no ACID properties), noSQL (alternative query languages), generally built on
top of the Hadoop distributed file system (HDFS). Figure 1 shows a taxonomy
of Big Data Analytics systems.
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Fig. 1. Classification of Parallel DBMSs and Big Data Systems based on storage.

3 Parallel System Architectures

There exist diverse parallel system architectures, going from a multicore CPU to
multiple CPUs interconnected with a high speed network. The common goal is to
exploit as many processing units as possible; such processing units can be mul-
tiple threads running on one CPU, several cores on multicore CPUs, many cores



in a GPU or a set of servers running on a cluster. Most DBMSs have a shared-
nothing parallel architecture with independent secondary storage, whereas HPC
systems allow more interconnectivity between processors and secondary storage.
Another major difference is the inter-unit communication: HPC systems favor
MPI, whereas parallel DBMSs prefer plain UDP sockets. The main reason is
intensive I/O on a shared disk (or disk array) or shared memory accessed by
multiple threads become a bottleneck. These days there is a divide in HPC be-
tween having one machine with many cores and large shared RAM or a cluster
with independent RAM and a fast node interconnect. In short, we assume a
shared-nothing parallel DBMS architecture with P processing nodes, each with
its own memory and disk [10, 30, 33]. A second major difference is main memory
access. In general, HPC systems load as much data as possible into main mem-
ory across the cluster in one phase, whereas parallel DBMSs use a buffer (a.k.a.
cache) with clever page eviction. Given larger RAM there is a renewed trend to
avoid I/O and perform most transaction and query processing in main memory.

4 Writing: Storage and Updating Database

We contrast row and columnar DBMSs, highlighting internal system changes.
We justify the need to define a schema. For each subsystem we will first present a
unifying view of current research, identifying common mechanisms, algorithms,
data structures and optimizations, emphasizing tradeoffs among them and point-
ing out optimizations not used in practice.

Table 1 provides a summary of popular parallel systems. It shows DBMSs
supporting SQL, HDFS systems and alternative systems that offer some DBMS
functionality. This table is by no means complete as it omits many smaller sys-
tems with more specific functionality, or tailored to specific analytic problems.

4.1 Storage mechanisms

Files: In a row DBMS running on one machine each table is generally stored on
one file, partitioned into blocks of rows (unless it is “sharded”). Thus reading a
row implies reading all columns. In contrast, with column-based storage queries
read only the few columns they need from a wide denormalized table [31]. At
the logical level columnar DBMSs exploit relational projections [23, 22, 18] of
the form πi,A1,A2,...,Ap

(T ) on table T , where i is an internal row identifier. In
general, such projections do not represent materialized views because they do
not involve joins and aggregations [18, 22, 24, 31]. The main optimization is to
process queries on such projections instead of T . A well chosen set of projections
can substitute T [31], although it is preferable to materialize T anyway [22].
At the physical level each projection is further partitioned into columns, where
values for each column Aj are stored in a separate file. An essential internal
reference mechanism is that the row id i is not stored, but it is an implicit array
subscript based on some value ordering [1]. Such approach has two fundamental
benefits: (1) it decreases storage space [1] and it reduces I/O cost [18]; (2) it



Table 1. DBMSs & Big Data systems: storage, query language, parallel architecture.

Storage Query Shared-nothing
Name Language P nodes
DataDepot Row SQL Y
DB2 Row SQL:2011 Y
Greenplum Row SQL:2008 Y
MemSQL Row SQL Y
MySQL Row SQL:1999 Y, sharding
Oracle Row SQL:2008 Y
SQL Server Row Transact SQL N, Y in PDW
PostgreSQL Row SQL:2008 N
SQLite Row SQL N
Teradata Row SQL:1999 and T-SQL Y
VoltDB Row SQL Y
InfiniDB Columnar SQL:92 Y
MonetDB Columnar SQL:2008, SciSQL N
SAP Hana Columnar SQL:92 Y
Vertica Columnar SQL:1999 Y
Accumulo HDFS Thrift Y
Hbase HDFS (J)Ruby’s IRB Y
Impala HDFS SQL:92 Y
Shark HDFS SQL
PostGIS Array/block SQL:2008 N
Rasdaman Array/raster RaSQL N
SciDB Array/chunk AQL Y

allows using i as an array subscript, bypassing indexing mechanisms [1, 18]. As a
consequence, the boundary between the logical and physical storage levels gets
blurred, in contrast to row DBMSs. In general, the row identifier i is derived from
the column value position inside a block. Column values are generally stored in
compressed form; in such case the system determines an offset by multiplying
the value position by the value frequency. Storing columns in separate files allows
multithreaded parallel reads and it yields high compression ratios [31, 18], but
it requires assembling rows (materialization) at the end of query processing.
Array DBMSs have many similarities with columnar DBMSs: they store each
attribute in separate storage units, they partition arrays by column, they feature
improved locality, larger blocks and compression. The main differences are that
multidimensional arrays have uniform content across their dimensions and they
need mathematical and physical operators incompatible with relational algebra.

I/O unit: In row DBMSs a block of rows remains the I/O standard. Compared to
row OLTP systems a larger I/O unit is more common in columnar systems. This
generally results in a big logical block: segment in a columnar DBMS [22]. The
rationale is that a larger block favors long scans and minimizes seeks for query
processing. Blocks may have non uniform size depending on value distributions
and compression. Grouping column values into blocks requires considering two
aspects [18, 22, 31]: improving locality of access and parallel processing. The
system improves access locality by maintaining values sorted. Fixed size BLOBs
(pure byte strings) enable direct loading and array access [18, 23, 37], but they
are not compatible with compression.

Hybrid storage mixing rows and columns: Can rows and columns coexist
in the same storage system? yes, but it is difficult because the physical operator
executor requires significant changes. Can we store row and columns on the



same block? There is not a clear answer. The net result: performance not good
enough compared to a pure column store [1]. Since full support for column
storage requires rewriting the storage manager from scratch, legacy row DBMSs
have opted for limited column optimizations [23]. Currently, the fastest columnar
DBMSs have two separate internal storage managers [12, 22], as we explain later.

4.2 Fast Access: Ordering Rows versus Indexes

Ordered value storage to avoid indexing: There are two major alterna-
tives to improve access time to a subset of rows based on a search key: adding
indexes to improve search time (row DBMS) or maintaining sorted projections
(columnar DBMS). In row DBMSs the most common data structures to index
column values are B-trees and hash tables with O(log(n)) and O(1), average
time respectively. In a columnar DBMS since query processing requires search-
ing values there are two major alternatives to decrease search time: maintaining
values sorted or using an auxiliary data structure to search values. If values are
sorted search takes time O(log(n)). But since an index is a projection of a ta-
ble most approaches favor maintaining values sorted, which can be done in an
efficient manner when insertions come in batches. Notice ordering is crucial for
time series, spatial data and streams: queries tend to access value ranges.

Compression: Both row DBMSs and columnar DBMSs exploit compression,
but they sharply differ on how they process queries. Two reasons motivate com-
pression: the existence of a few frequent column values and maintaining column
values physically sorted. We emphasize compression of columns with repeated
values is not a new idea, since compression is commonly applied on row DBMSs
and compression is a common mechanism to accelerate data transfer in net-
working. Moreover, efficiently storing long sequences of repeated symbols is well
known in text processing. Columnar storage provide much better compression
than row stores [1]. In fact, a subtle aspect that is not well known is that colum-
nar DBMSs actually provide higher compression rates than popular compressing
utilities [22] (e.g. gzip, winzip). Thus compression significantly reduces I/O cost
and network traffic in a parallel system. Yet the overhead to decompress values
at query time must be considered. Since storage is column based, the chosen
compression granularity is per column, which creates blocks of compressed data.
The two most common compression mechanisms in columnar DBMSs are run-
length encoding (RLE) and dictionary encoding (DE), with RLE being the most
popular. RLE can only be applied when values are sorted and then counted. In
an alternative manner, DE is preferred on row DBMSs and it is useful when
there are few frequent column values; this scheme is more effective if values
take many bytes (i.e. long strings). Hash tables and arrays are two common
mechanisms to program dictionaries with a code of a fixed bit length. There
exist other compression mechanisms like delta encoding, with less general ap-
plicability. Compression mechanisms that produce variable length codes or that
encrypt data are slower at query time. So LZW & Huffman codes or arithmetic
compression are a bad idea in a DBMS [1, 31]. In short, lightweight compres-



sion is preferable to enable faster decompression [22, 37] or working directly on
a compressed data representation [31, 22].
Indexing: In a row DBMS B-trees are preferred for point/range queries and
transaction processing; hashing is preferred to distribute rows for parallel pro-
cessing and accelerate join computation; bitmaps are preferred to accelerate
“count” aggregations. In contrast to row DBMSs, a columnar DBMS [22] does
not use row-level indexing; sparse indexes (trees on min/max values per com-
pressed block [31]) are eagerly created when the user defines projections [22]
or dynamically by the DBMS during query processing (database cracking [18]).
Some row DBMSs expose columnar projections as special indexes [23].

4.3 Inserting and Updating Database Records

We consider two major mechanisms to update the database: inserting/updating a
few records, most commonly done by transactions and loading a batch of records,
generally done in a data warehouse or analytical database. Such mechanisms
lead to two prominent concurrent processing scenarios: (1) OLTP: Updating
or deleting few records concurrently with multi-threaded processing in shared
memory or (2) OLAP/cubes: doing batch loading and processing complex queries
at the same time. We discuss each mechanism below.
Transactions: Transactions (small SQL programs updating the database) en-
able concurrent updates and provide fault tolerance. Row DBMSs remain the
best technology to process transactions, where locking (2PL, optimistic [13]) and
multi-version concurrency control (MVCC+timestamping) [13] remain the most
common mechanisms to enforce ACID properties (i.e. serializable and recover-
able schedules). It is generally agreed locking is slower but provides strongest
consistency guarantees, whereas MVCC is faster but creates multiple inconsis-
tent views of the database. Recently row DBMSs have started moving towards
lock-free approaches using timestamping [33] exploiting main memory process-
ing with single threaded processing (very fast, significantly simplifying OLTP
processing and recovery, defying old assumptions). A main reason behind such
acceleration is that they exploit servers with much larger RAM. When perform-
ing parallel processing in a cluster timestamping can be used on multiple nodes if
the transaction data records can be partitioned and routed for local processing.
For small and medium size OLTP databases (relative to large RAM) it is fea-
sible to maintain the database in main memory (e.g. VoltDB) across all servers
in the parallel cluster. On the other hand, transaction processing is considered
infeasible in a columnar DBMS, because to update a row columns should be de-
compressed, rows dinamically assembled and then compressed again and written
back. Moreover, updating values on multiple rows (especially non-key columns)
in a columnar DBMS is significantly slower than row DBMSs due to the need
to decompress and compress and potential data re-partitioning [31] (a.k.a. shuf-
fling). As explained below, a common solution is to cache recent updates in
batch in a data structure in RAM [12, 22]. In general, columnar DBMSs provide
minimal transaction processing features, but provide reasonable (but weaker)
ACID gurantees [12, 22]. On the other hand, to enable fast bulk insertions (no



updates or deletes) and concurrent querying most systems provide snapshot iso-
lation, internally managed with record versioning. That is, records are inserted
into blocks that cannot be accessed by the user until loading is complete.
Loading data: Loading data from row OLTP databases into a central row
database (data warehouse) is fast and in some systems (Teradata, MemSQL)
is done in near real time (e.g. active data warehousing). In a columnar DBMS,
loading data in batch is generally a bottleneck because row to column trans-
formation is required [18, 22], which in turn requires sorting each column. Thus
transforming row by row to columns is slow [22, 31] (akin to matrix transposi-
tion). A solution is having two internal storage managers with a batched tuple
mover between a write-optimized row store and a write-optimized column store.
In general, the write-optimized store works in RAM [12, 22], where refreshing
data with δ tuples is done as a background process to avoid query interruption
[22]. Sybase IQ [24] explicitly forces a tuple order, by time, to avoid sorts.

5 Reading: Query Processing

We first discuss how sequential processing happens on one machine or one thread.
Based on such foundation, we then discuss how sequential processing is general-
ized and extended to work in parallel.

5.1 Sequential Query Processing

Physical operators: In a row DBMS, there are scan (read all rows), join
(merge-sort, hash), sort and search (indexed or sequential) algorithms. On the
other hand, in a columnar DBMS, there are newer versions of scan, join, sort
and search algorithms acting at the column level [20]. A scan operator brings
blocks directly into RAM. These are the major scan variations: reading small
blocks that can fit in the CPU cache memory [18], reading medium blocks with
compressed column values [22], reading large blocks with uncompressed column
values. Scans on multiple columns are optimal when such columns are aligned
on the same order, enabling direct manipulation with arrays. There are two
preferred kinds of join algorithms: merge joins and hash joins [18, 22, 31], where
merge joins avoid the sort phase in the classical sort-merge join. In general, most
DBMSs avoid nested loop joins. In contrast to row DBMSs, merge joins are pre-
ferred over hash joins, when input tables have their projections already sorted
by the joining columns. Otherwise, DBMSs use hash joins as default, creating a
hash table on the (inner) smaller participating table [22]. When both tables are
compressed on the same key and merge join is feasible time complexity is O(k),
where k = |π(K)| for the join key K. Sorting is necessary when no projection
satisfies a join or aggregation GROUP BY required order or when the cardinality
of the column is large. Sorting (including external sort) generally uses the tra-
ditional merge sort algorithm in time O(nlog(n)) to create a sorted projection.
Sequential searches are avoided. Whenever there exists a projection physically
sorted by a key the default search algorithm is binary search, which can be as



efficient as O(log(k)) on a compressed column, or O(log(n)) otherwise. Other-
wise, time is O(n), but assumed a rare occurrence. In a row DBMS projection π
takes time O(pn), regardless of how many columns are projected. In contrast, in
a columnar DBMS projection takes time O(mk) for m projected columns and k
distinct values, and in most cases m � p and k � n.

Query executor: To evaluate each operator a row DBMS takes as input rows
from one or two tables (for unary and binary operators, perhaps pipelined) and
produces rows on one output table. A columnar DBMS is significantly different,
having these main steps: determine required columns, read column values by
block, search column blocks (exploiting some indexing data structure), transfer
blocks to buffer in RAM, process blocks in RAM with column physical operators,
and assemble the rows at some point. Processing algorithms across DBMSs vary
significantly depending on compression. If blocks are compressed it is preferable
to process them in compressed form, delaying decompression until results are
returned [1]. Dictionary encoding does not require decompressing in interme-
diate evaluation steps, whereas run-length encoding helps query evaluation, by
directly processing the repeated value and its frequency. Queries require even-
tually assembling rows from column values. There are two major approaches to
assemble rows: early materialization [18] and late materialization [22, 31], lead-
ing to significantly different query processing. Late materialization provides best
performance when compression is heavily used [1]. The level of integration of the
query processor with the hardware varies significantly going from a small query
optimizer/processor kernel, tightly integrated with the operating system [18] to
a fully fledged big optimizer [22], comparable to legacy DBMSs.

Query plan: Most DBMSs provide ANSI SQL compatibility. Most row DBMSs
represent the query plan in a similar manner, following IBM System R [13].
In contrast, columnar DBMSs differ significantly on how queries are internally
represented and optimized. If a traditional relational algebra approach is used,
relational query transformation rules and cost-based query optimization are ap-
plied together [22, 31]. On the other hand, other DBMSs define a simpler algebra
on narrow projections (e.g. binary association tables [18, 37]). to enable tight in-
tegration with the CPU and operating system and a smaller space for potential
query plans (operator commutativity is more limited). Query transformation fa-
vors pushing projection instead of pushing selection in SPJA queries [1, 22]. In
contrast to row DBMSs, when projections share ordering by the same key, join
operators are evaluated first since they act as a filter. In a query optimizer with
full place space exploration, like [22], query trees tend to be bushier [22] instead
of left deep [13]. Thus plan space exploration becomes harder with bushy trees
. Some DBMSs use traditional cost models combining CPU, disk I/O and net-
work transfer cost [22], with more upfront optimization, whereas other DBMSs
delay such optimization, combining query transformation with dynamic storage
re-organization and adaptive indexing [18, 37].

Non-relational operators and functions: It is no surprise there is work on
adapting DBMSs to analyze non-relational data [18]. The two most outstanding
novel data types are streams and arrays. Stream data records arrive row by



row [16]: they require a different query processor combining main memory and
secondary storage. Also, streams arrive (mostly) in time order which complicates
reorganizing storage when accessing and ordering by a different column. In order
to keep up with stream speed column stores require a fast incremental converter
of new rows. A common form of stream operator has a stream in RAM and a
table on disk (i.e. a join between a table and a stream). On the array angle,
unfortunately arrays and relational tables are incompatible with each other.
Therefore, it is necessary to develop new operators (sometimes extending SQL)
and new languages that can manipulate arrays.

5.2 Parallel Query Processing

Data partitioning: This is statically done at table loading or dynamically
during query processing [13, 6]. Sharding [30] creates subsets of tables and can
work across new servers. To provide 24/7 availability, it is a requirement to
add/remove hardware (including nodes), without disruption. Such dynamic hard-
ware expansion is particularly popular with MapReduce (MR) [9, 21], Spark [36]
and specialized systems on top of HDFS [3]), which exploit heartbeats, data
replication and daemon processes. Data redistribution (shuffling) happens when
required rows or values are not available on the same node, transferring data
to different nodes. There are two major approaches to partition tables across P
nodes: hashing or range-based, like row DBMSs [13, 22]. Parallel DBMSs pro-
vide three basic operators to send and receive data blocks [13, 22]: (1) broadcast
a block to all P nodes (scatter). (2) converge-cast from P nodes to 1 node
(gather). (3) node to node 1-1. There are two partitioning levels: inter-node
horizontal partitioning and intra-node partitioning (which extends horizontal
partitioning). Data redistribution happens after some physical operators and it
cannot be guaranteed results will remain on the same node. So load re-balancing
is required. Sharding [30] is another important partitioning technique, which hor-
izontally partitions tables into “focused” subsets to avoid full table scans when
analyzing data.
Parallel speedup: We compare merits and limitations of each approach with
respect to parallel processing theory [11]. Currently, there are two parallelism
dimensions: scale-up and scale-out. Scale-up is represented by multicore CPUs,
GPUs using multi-threaded processing on a single node [18], where main mem-
ory may be shared or partitioned. On the other hand, scale-out is represented
by multi-node parallel processing. Multi-core CPUs and GPUs keep growing the
number of cores, but their speed has reached a threshold. GPUs represent an
alternative with a much higher number of cores, but with separate main mem-
ory and different API. RAM keeps growing, but multiple CPUs compete for it
(i.e. contention for a shared resource). Network transfer remains slower than the
transfer from CPU to RAM, although fast CPU interconnections are changing
the landscape. Therefore, in general network communication is the bottleneck,
followed by RAM (i.e. the memory wall [18]). All systems aim to achieve linear
speedup, minimizing the sequential bottleneck (Amdhal’s law [11]) and commu-
nication overhead. The parallel cluster topology (seen as a graph connecting P



nodes) can be: complete graph (O(P 2) connections), tree (balanced binary tree
O(P ) connections), grid (connecting CPUs and disks). Most DBMSs assume a
complete graph to enable point-to-point data transfer, but synchronized transfer.
Network communication is commonly done with sockets (medium speed), with
MPI (slower, but with higher reliability, compatible with HPC applications) or
with high-speed interconnect hardware (e.g. Infiniband). MonetDB [18] (com-
mercially VectorWise) is the best DBMS exploiting hardware: multicore CPUs,
increasing cache hits; exploit locality of reference, exploiting faster seek on flash,
fast long scans on disk and flash.
Parallel physical operators: There are parallel versions of scan, join and sort
[18, 22, 31, 37]. Scan works by transferring compressed blocks to the requesting
node, decompressing at the end. The fastest join algorithms (highlight differ-
ences) include hash joins or merge joins. Nested loop joins are rare, but they are
used by replicating a small table at all the P nodes to be joined with a much
larger table. The default sorting algorithm is merge-sort. In general, sorting an
entire table happens only during query processing because insertion maintains
table columns sorted separately. Big blocks minimize network traffic as long as
all values are relevant (i.e. pre-filtered and with a useful value ordering).
Fault tolerance: Parallel processing at massive scale requires fault tolerance
to process long lasting queries and graph/ML analytics, to avoid restarting jobs
[22, 30]. Thus, this is similar to MapReduce and Spark. Some DBMSs provide
K-safety [31, 22] in which K + 1 copies must be maintained to tolerate up to K
node failures. To guarantee safe operation, at any time A, the number of active
nodes, must be A > P/2.

6 Conclusions: a Tentative Agenda for Future Research

Row DBMSs are best for transaction processing, very fast for batch loading
and provide good performance for complex queries, whereas columnar DBMSs
are bad for transaction processing, reasonably fast for batch loading and fastest
for complex queries. Even so there are many opportunities for future research.
Big Data Analytics is an emerging area, going beyond database systems. Here
we categorize important research problems into core database research, where
DBMS technology prevails and where problems are well established and big
data analytics systems, where the norm today is cloud computing and a weak
enforcement of a database schema. Due to space limitations, we omit discussion
on database modeling (ER model, process management), data pre-processing
(data cleaning, ETL) and database integration.

6.1 Core Database Systems Research

Storage: It is necessary to investigate the coexistence of two different storage
mechanisms: row and column: currently two internal DBMSs seem the most
efficient approach [12, 22]. More efficient row to column converters are needed to
process deltas on streams and high velocity OLTP transactions. Hardware can be



exploited, especially RAM and SSDs. For instance, Hana [12] can efficiently query
an entire database in RAM (say hundreds of GBs). So a given a query workload
a carefully chosen subset of the database could be processed completely in RAM,
like Shark [35]. Compressed blocks can be more efficiently read and written on
SSDs. Support for diverse and complex data types is not well understood yet:
fixed length storage helps address computation, whereas compression leads to
variable length storage. Text data with a large number of keywords across a
document collection represents a sparse data set with many opportunities for
optimization. BLOBs are used to enable arrays and exploiting cache memory
[18], but it is unclear if they can be combined with RLE compression. UDTs
mixing simple data types and text need careful storage layout optimization.

Updating database: Processing transactions is a bad fit for columnar DBMSs,
but they generally incorporate an internal row store in RAM to convert rows
to columns. Timestamping has proven more effective for fast multicore CPUs
[18, 22], leaving locking for legacy DBMSs. Given the speed of columnar DBMSs
and their storage flexibility it may be better to do ELT, instead of ETL to
integrate databases. Another potential improvement, enabled by new hardware,
is to provide transaction processing and ad-hoc querying on the same DBMS
when the database fits in RAM.

Indexing: Since ordering by every projection is infeasible some form of indexing
is needed to complement ordering. Sparse B-trees are a solution [31], but it is
unclear if they can benefit more general query processing. Hashing is used in
main memory processing [22], but not on disk. Adaptive indexing can accelerate
query processing as the workload varies, like database cracking.

Query processing: Row and column stores are competing and influencing each
other. So it is necessary to investigate guidelines to add row DBMS features to
columnar DBMSs and vice-versa. Bushy plans [22] versus shallow/simpler query
trees [18]. We need new algorithms for automated physical design to compete
with NoSQL systems. Fast long writes and faster seeks on SSDs can acceler-
ate scans and even hash-based joins. Streams need revisiting joins (band joins,
stream+table lookup join), and complex aggregations (especially approximate
histograms). We need to revisit well-known analytic query problems with hy-
brid row and columnar processing: cubes (iceberg queries [13], sparse cube stor-
age [29], horizontal aggregations [28]), recursive queries (transitive closure [4,
26]), skylines [16], and spatio-temporal data [13]. For ever-growing data sets
approximation and sampling are needed (sample for plan cost estimation [18],
view materialization, stream analysis over a window [37], dynamically reindex-
ing continuously changing data [19]), but sampling requires materializing rows.
Development of new database languages is needed: going beyond SQL, XML,
Datalog, although adoption is a practical problem.

Parallel processing: Parallel merge/hash joins and GROUP BY aggregations
remain challenging. New data partitioning and alignment algorithms are needed
to improve data balancing. It is necessary to study the tradeoffs between tra-
ditional partitioning versus sharding [30]. Query workload optimization will be-



come more important: query scheduling, like Hadoop/MR job scheduling [9].
Fault tolerance with massive parallelism for slow queries is needed [22].

6.2 Big Data Management and Machine Learning

Storage and Querying: The main characteristics of Big Data are the three
“Vs”: Volume, Velocity and Variety [7, 14, 30], although this is being expanded
with two additional Vs: veracity (many data sources, possibly with conflicting in-
formation) and value (usefulness). Volume is now represented by two data worlds:
data warehouses and search engines. Variety is the hardest challenge [7]: data
management issues are compounded by text (documents, files, web data, logs),
matrices (vectors, arrays) spatio-temporal data (location, historical) and graphs
(describing general relationships). Velocity is represented by streams: sensors
and user log data. Currently, columnar DBMSs are very fast for wide denormal-
ized tables [1, 22], slightly slower than row DBMSs for large narrow tables (i.e.
normalized tables) [1], reasonably fast for data coming periodically in batches
(data warehousing), OK for high velocity data (exploiting cache and multicore
CPUs [37]), fair, but better than row DBMSs, for “variety” data with complex
structure (graphs) or little or no structure (text, no schema). Since columnar
DBMSs have more flexible storage than row DBMSs, they can be adapted to
process text relaxing or automating the schema definition requirement using
key-value pairs like Hadoop systems, thereby allowing storage of columns with
varied text content. Further research is needed to query large graphs, especially
stored by edge [26], analyzing tradeoffs between dense (e.g. quadratic number of
edges, highly connected) and sparse graphs (e.g. linear number of edges, trees,
disconnected). Columnar DBMSs show promise to store variable length text data
with inconsistent information: innovative research is needed to automate schema
definition on text data.
Machine learning: Considering previous research on row DBMSs [8, 17, 27] and
popular Hadoop/MapReduce/Spark [8, 36], this is a categorization of problems
in descending importance order: (1) Processing alternatives: is it better to build
data mining tools working outside the DBMS realm? this approach affords flex-
ibility and overcomes DBMS limitations to develop fast algorithms, but it leads
to data management problems and I/O bottlenecks to transfer data [17, 27].
Therefore, it is necessary to determine a complexity/cost boundary of problems
that cannot be computed efficiently even inside a columnar DBMS. (2) Scalable
computation of statistical models with large data sets (hard) and high dimension-
ality (harder). The three major solutions are: internal integration with DBMS
source code via cursors UDFs, SQL queries.Given their speed, columnar DBMSs
look promising to compute models and graphs entirely with SQL queries, fol-
lowed by UDFs exploiting denormalization and fast joins/aggregations. However,
most algorithms require all columns, not a projection. Reducing the number of
passes over the data set and data summarization seem orthogonal to storage by
row or column: tradeoffs between both storage mechanisms need study. On the
other hand, sampling requires row materialization. (3) Pattern discovery: asso-
ciation rules, sequences, Such algorithms need traversing the dimensions lattice,



which generally requires pointers, but may be faster with columns than rows.
(4) Supporting broader mathematical processing, enabled by arrays: graph min-
ing, matrix operators, linear algebra and key numerical methods like gradient
descent. The integration of mathematical packages and libraries (e.g. R, Matlab,
BLAS/LAPACK) with the DBMS is difficult and time consuming. Is it hack-
ing? No, we believe there are indeed research issues: There is a programming
language impedance mismatch with SQL, efficient data transfer and conversion
in RAM are needed, memory and disk management is difficult when running on
the same hardware. (5) Text and web data analytics are a better fit for Hadoop
(MapReduce and Spark), but the following tasks need further study in modern
DBMSs when documents and databases are inter-related: text preprocessing,
ranking, ontologies, document classification and text summarization.
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