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Abstract. Machine learning requires scalable processing. An important
acceleration mechanism is data summarization, which is accurate for
many models and whose summary requires a small amount of RAM. In
this paper, we generalize a data summarization matrix to produce one
or multiple summaries, which benefits a broader class of models, com-
pared to previous work. Our solution works well in popular languages,
like R and Python, on a shared-nothing architecture, the standard in
big data analytics. We introduce an algorithm which computes machine
learning models in three phases: Phase 0 pre-processes and transfers the
data set to the parallel processing nodes; Phase 1 computes one or mul-
tiple data summaries in parallel and Phase 2 computes a model in one
machine based on such data set summaries. A key innovation is evaluat-
ing a demanding vector-vector outer product in C++ code, in a simple
function call from a high-level programming language. We show Phase
1 is fully parallel, requiring a simple barrier synchronization at the end.
Phase 2 is a sequential bottleneck, but contributes very little to overall
time. We present an experimental evaluation with a prototype in the R
language, with our summarization algorithm programmed in C++. We
first show R is faster and simpler than competing big data analytic sys-
tems computing the same models, including Spark (using MLIib, calling
Scala functions) and a parallel DBMS (computing data summaries with
SQL queries calling UDFs). We then show our parallel solution becomes
better than single-node processing as data set size grows.

1 Introduction

Machine learning is essential to big data analytics [1], [10], [20]. With higher
data volume and varied data types, many new machine learning models and
algorithms aiming at scalable applications [5], [6]. Popular big data systems
like parallel DBMS (e.g. Vertica, Teradata) and Hadoop systems (e.g. Spark,
HadoopDB, Cassandra) offer ample storage and parallel processing of popular
machine learning algorithms but the processing time can be slower. Besides,
they do not have efficient native support for matrix-form data and out-of-box
sophisticated mathematical computations. Nowadays, with the advancement of
cloud technology (e.g. AWS, Azure, Google Cloud), data can be stored in a
single machine or a large cluster. Analysts can distribute the data set in the
cloud and analyze it instead of avoiding the complex set up process of parallel
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systems. However, cloud systems are costly (costs vary depending on services),
and using the cloud for simple analysis may not be beneficial (i.e., may not be
cost-effective). On the other hand, mathematical systems like Python, R pro-
vide comprehensive libraries for machine learning and statistical computation.
Analysts can install them easily and analyze small data sets locally in their ma-
chine.But those systems are not designed to scale to large data sets and the
single machine is challenging to analyze the large data sets [10].

Within big data, data summarization has received much attention [15], [5],
[12] among the machine learning practitioners. Summarization in parallel DBMS
is losing ground as SQL queries are not a good choice for analytics and UDF's
are not portable. Hadoop systems like Spark [21], is a better choice but they are
slow for a few processing nodes, has scalability limitations, and even slower than
DBMS in case of summarization [15]. With these motivations in mind, here, we
present a data summarization algorithm that works in a parallel cluster, does not
require a complex set up of parallel systems (e.g. DBMS, Hadoop), is solvable
with popular analytic languages (e.g. Python, R) and is faster than the existing
popular parallel systems. Exploiting the summarization, we can compute a wide
variety of machine learning models and statistics on the data set either in a
single machine or in parallel [15] [5].

Our contributions include the following: (1) We present a new three-phase
generalized summarization algorithm that works in a parallel cluster (or a re-
mote cluster in the cloud). (2) We improve and optimize the summarization
algorithm for classification/clustering problems initially proposed in [5]. (3) We
improve and optimize the technique to read the data set from disks in blocks.
(4) We study the trade-offs to compute data summarization in a parallel clus-
ter and a single machine. Analysts can have a better understanding which is a
common problem nowadays. In our work, we used R as our choice of analytic
language combined with C++ to develop our algorithms, but it can be applied
to other analytic platforms like Python. With the dedicated physical memory, R
or Python itself cannot scale to deal with data sets larger than the proportion of
memory allocated and is forced to crash. Also, we used a local parallel cluster to
perform the experiments but our research applies to both local parallel cluster
and a remote cluster in the cloud. Experimental evaluation shows our gener-
alized summarization algorithm works efficiently in a parallel cluster, scalable
and much faster than Spark and a parallel DBMS. This article is a significant
extension and deeper study of [15], where the Gamma summarization matrix
was initially proposed.

This is the outline for the rest of the article. Section 2 introduces the def-
initions used throughout the paper. Section 3 presents our theoretical research
contributions where we present our new algorithm to compute summarization in
a parallel cluster. Section 4 presents an extensive experimental evaluation. We
discuss closely related work in Section 5. Conclusions and directions for future
work are discussed in Section 6.
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Table 1: Basic symbols and their description

Symbol|Description Symbol|Description

X Data set d Number of attributes/columns in X
Xr Partitioned data set I Gamma Summarization Matrix

X Augmented X with Y Ik k-Gamma Summarization Matrices
Y Dependent Variable G Machine learning model

Z Augmented X with 1s and Y ||p Number of processoring nodes

n Number of records/rows in X||b Blocks to read data

2 Definitions

2.1 Mathematical Definitions

We start by defining the input matrix X which is a set of n column vectors. All
the models take a d x n matrix X as input. Let the input data set be defined as
X ={x1,...,xz,} with n points, where each point x; is a vector in R Intuitively,
X is a wide rectangular matrix. X is augmented with a (d + 1)th dimension
containing an output variable Y, making X a (d + 1) x n matrix and we call it
X.Weusei=1...nand j =1...d as matrix subscripts. We augment X with
an extra row of n 1s and call that as matrix Z with a (d+42) x n dimension. Table
1 shows the basic symbols and their description used throughout the paper.

We use © to represent a machine learning model or a statistical property in
a general manner. Thus @ can be any model like: LR, PCA, NB, KM or any
statistical property like: Covariance or Correlation matrix. For each ML model
O can be defined as, © = {list of matrices/vectors}. For LR: © = j3, the vector
or regression coefficients; for PCA: © = U, D, where U are the eigen vectors and
D contains the squared eigenvalues obtained from SVD; for NB: ©= {W, C, R},
where W is the vector of k class priors, C is a set of kK mean vectors and R are k
diagonal matrices with standard deviations; and for KM: ©={W, C, R}, where
W is a vector of k (number of clusters) weights, C' is a set of k centroid vectors
and R is a set of k variance matrices.

2.2 Parallel Cluster Architecture

We are using p processing nodes in parallel. Each node has its CPU and memory
(shared-nothing architecture) and it cannot directly access another node storage.
Therefore, all processing nodes communicate with each other transferring data.
And, data is stored on disk, not in virtual memory;,.

3 Theory and Algorithm

First, we give an overview of the original summarization matrix introduced in
[15] for DBMS. Here, we make several improvements. We propose a new three-
phased generalized algorithm that computes summarization in a parallel cluster.



4 Sikder Tahsin Al-Amin, Carlos Ordonez

Also, we improve and optimize the k-summarization matrices algorithm which
was introduced in [5] (as Diagonal Gamma Matrix). Next, we discuss how we can
integrate the parallel algorithm into an analytic language. Finally, we analyze
the time and space complexity of our algorithm.

3.1 Gamma Summarization Matrix and ML Model Computation

Here, we review the Gamma summarization matrix (I") [5], [15] and computation
of several ML models (©) exploiting I". The main algorithm had two steps:

1. Phase 1: Compute summarization matrix: one matrix I" or k matrices I'*.
2. Phase 2: Compute model © based on Gamma matrix (matrices).

Phase 1: Matrix I" (Gamma), is a fundamental matrix that contains a complete,
accurate, and sufficient summary. If we consider X as the input data set, n
counts the total number of points in the dataset, L is the linear sum of x;, and
@ is the sum of vector outer products of x;, then from [15], the Gamma (I") is
defined below in Eq. 1. We first define n, L, Q as: n = |X|, L = > | z;, and
Q=XXT=35" =z -zl Now, the Gamma (I') matrix:

n LT 1T.Yy7T no Y al Yy
r=| L. @Q xYT |=|Ya Szl Sy (1)
Y 1YXTyy”T Sy Syl Sy?

X is defined as a d x n matrix, and Z is defined as a (d + 2) X n matrix as
mentioned in Section 2. From [15], we can easily understand that I" matrix can
be computed in the two ways: (1) matrix-matrix multiplication i.e., ZZT (2) sum
of vector outer products i.e., >, 2; - zI' So, in short, the Gamma computation
can be defined as: I' = ZZ7 =30 z;- 2]

Now, from [5], k-Gamma (I'*) is given in Eq. 2. The major difference between
the two forms of Gamma is, we do not require parameters off the diagonal in
I'* as in I'. So, we need only a few parameters out of the whole I', namely,
n,L, LT, Q. That is, we require only a few sub-matrices from I". Also, in I", the
Q is computed completely whereas in I'*, the @ is diagonal. So, we can also call
this a Diagonal-Gamma matrix.
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Phase 2: Both I" and I'* provide summarization for a different set of machine
learning models (©). For Linear Regression (LR) and Principal Component Anal-
ysis (PCA), we need one full I" assuming element off-diagonal is not zero. And for
Naive Bayes (NB) and k-means (KM), k-Gamma matrices are needed where k
is the number of classes/clusters. We briefly discuss how to compute each model
(@) below. The details of the model computation are discussed in [5].
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LR: We can get the column vector of regression coefficients (/3’), from the above
mentioned I', with: 3 = Q= 1(XYT)

PCA: There are two parameters, namely the set of orthogonal vectors U, and
the diagonal matrix (D?) which contains the squared eigen values. We compute
p, the correlation matrix as p = UD?UT = (UD?UT)T. Then we compute

PCA from the p by solving Singular Value Decomposition (SVD) on it. Also, we
(nQah*LaLb)
(V/1Qaa—L2\/nQyp—L3)

express p in terms of sufficient statistics as: pqp =

NB: Here, we need the k-Gamma matrix. We focus on k& = 2 classes for NB. We
compute Ng, Ly, Q4 as discussed in Phase 1 for each class. The output is three
model parameters: mean (C), variance (R), and the prior probabilities (). We
can compute these parameters from the I'¥ matrix for each class label with the
following statistical relations. Here, N, = | X,| and we take the diagonal of L- LT
and @, which can be manipulated as a 1-dimensional array instead of a 2D array.
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KM: Similar to NB, we introduce similar model parameters N;, L;, Q; (where
j =1,..,k) as the subset of X which belong to cluster k, the total number of
points per cluster (|X;|), the sum of points in a cluster (Ziner x;) and the
sum of squared points in each cluster (vai ex, x;zt) respectively. From these
statistics, we compute C;, R;, W; as similar to NB presented in Eq. 3. Then, the
algorithm iterates executing two steps starting from random initialization until
cluster centroids become stable. Step 1 determines the closest cluster for each
point (using Euclidean distance) and adds the point to it. And Step 2 updates
all the centroids C by computing the mean vector of points belonging to cluster
k. The cluster weights W}, and diagonal covariance matrices Ry are also updated
based on the new centroids.

3.2 Parallel Algorithm to Compute Multiple Data Summaries

Here, we present our main contributions. Our generalized computation of sum-
marization matrix in the parallel cluster using p processing nodes is shown in
Figure 1. We propose a new 3 phase algorithm to compute I (or I'%) in the
parallel cluster and how ML models (@) can be computed exploiting it.

1. Phase 0: Pre-process the data set. Transfer data to the processing nodes (p
nodes).

2. Phase 1: Compute summarization matrix in parallel across p nodes: I" or
I'*. This phase will return p partial (local) summarization matrices (I'7 or
¥, I=1,2,..p)

3. Phase 2: Add partial summarization matrices to get final I" or I'* on the
master node. Compute model © based on I" or I'*.
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Fig. 1: Computation of Gamma matrix in a parallel cluster.

Phase 0: Data set X is moved to the p processing nodes. Nowadays, data can
reside either in the parallel cluster, cloud (remote cluster), or in a large local
machine. Also, the number of processing nodes may vary. In any case, data
must be transferred into the processing nodes. We split the data set X into p
processing nodes. There are several partitioning strategies available but we used
the row-based partitioning (horizontal partitioning). As I' is a d x d matrix,
we need all the d columns in each node. If we choose column-based (vertical
partitioning) or block-based partitioning, it is possible that the I in different
nodes may end up having different sizes. A good way to select the data set size
in each partition (row-based) is n/p. So, each node in the parallel cluster has
the same number of rows except for the p-th node.

Phase 1: We compute I' on each node locally. We optimize the technique to
read data in blocks so that it can handle very large files. For each node, the
partitioned data set (X;) is read into b = 1...b blocks of same size (m) where
m < |Xj|. The block size depends on the number of records (ny) in Xj. As
discussed in [14], we define the block size as logn;. As logny < ny, even if
ny is very large, each block will easily fit in the main memory. Processing data
one block at a time has many benefits. It is the key to being able to scale the
computations without increasing memory requirements. External memory (or
out-of-core) algorithms do not require that all of the data be in RAM at one
time. Data is processed one block at a time, with intermediate results updated
for each block. When all the data is processed, we get the final result. Here,
we read each block (b) into the main memory and compute Gamma for that
block (I'(b)). This partial Gamma is added to the Gamma computed up to the
previous block (b — 1). We iterate this process until no blocks are left and get
the Gamma (I7) for that node. As each node has all the d columns, the size of
each I'7 will be d x d.

Optimization of k-Gamma Matrix: Similarly, for k-Gamma matrices
(I'*) we perform the same procedure as mentioned above. First, we partition
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the data set, then compute partial k-Gamma (I }“) in each node locally. We
study the algorithm further and made an improvement to compute I'* from [5].
As discussed previously, for k-Gamma, we only need n, L and diag(Q). Here
both L and diag(Q) can be represented as a single vector and we do not need
to store @ as a matrix. Hence, I'* can be represented as a single matrix of size
d x 2k where each Gamma is represented in two columns (L and Q). We still need
to store the value of n in a row, which makes the I'* as (d + 1) x 2k. Hence, we
are using minimal memory to store I'* even if the value of k is very large. This is
a major improvement from the previous version where one Gamma Matrix was
stored per class/cluster in the main memory. Also, we have to access only one
matrix which is faster than accessing from a list of matrices in any programming
language. Computing I’ on each node can be shown in Algorithm 1. Computing
I'¥ will be similar to Algorithm 1.

Data: Partitioned Data Set (X7, I =1,2..p) from Phase 0
Result: I
Read X7 into b = 1,2, ..., b blocks;
while next(b) do
read(b) ;
Iy = Gamma(b) ;
I'n=10,+1I7;
end

return /7
Algorithm 1: Sequential Gamma computation on each node (Phase 1)

Phase 2: After all the I'ys (I, I%,...,I,) are computed in each node locally,
we need to combine them and get the final I'. In Phase 2, at first, all the partial
I'ts are sent to a master node to perform the addition (sequential) or we can
perform it in a hierarchical binary tree manner. Hierarchical processing performs
the addition in multiple levels (bottom-up) until we get the final addition at the
top level. On the other hand, in sequential processing, all the partial I’y are
transferred to the main memory of the master node. The partial I';s are sent
in a compressed format. So, we decompress it on the master node. Now, to get
the final Gamma matrix (I"), we just need to perform a simple matrix-addition
operation of all the partial I'ys. That is, we compute I" = I'1 + 15 + ... + I},.
Similarly, the final I'* will be I'* = I'F + I'F + ... + I}f. Now, using this I" or
I'*, we compute the machine learning models (©) at the end of Phase 2. Model
(©) computations are discussed in Section 3.1.

3.3 Integrating the Parallel Algorithm into an Analytic Language

We will discuss how we integrated our algorithm, into the R language, using the
Repp [7] library. R, a dynamic language, provides a wide variety of statistical and
graphical techniques, and is highly extensible. However, our solution is applicable
to any other programming language which provides an API to call C++ code.
Specifically, our solution can easily work in Python, launching k¥ Python Gamma
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processes in parallel. On the other hand, SQL queries are slow, UDFs are not
portable, Spark not easy to debug and Java is slower than C++4. So, analytic
languages like Python and R are more popular among analysts nowadays.

Key insight: Phase 1 must work in C++ (or C). The sum of vector outer
products must be computed block by block in C++, not in the host language.
Computing z; * zI in a loop in R or any other analytic language is slow: usually
one-row-at-a-time. Computing Z * Z7 with traditional matrix multiplication is
slow due to ZT materialization, even in RAM. We used Rcpp, an R add-on
package that facilitates extending R with C+4++ functions to compute Phase 1.
Rcepp can be used to accelerate computation by replacing an R function with its
C++ equivalent function. In Repp, only the reference gets passed to the other
side but not the actual value when we pass the values. So, memory consumption
is very efficient and the run time is the same. In addition to Rcpp, we used the
RCurl [11] package to communicate over the network.

Model computation in Phase 2 can be efficiently done calling existing R
(or other analytic languages) functions. While Phase 1 is basically exploiting
C++, Phase 2 uses the analytic language ”as is”. It would be too difficult and
error-prone to reprogram all the ML models. Instead, our solution requires just
changing certain steps in each numerical method, rewriting their equations based
on the data summaries (1 or k). Our experiments will show model computation
takes less than one second in every case, even for high d models.

As an extra benefit, our solution gives flexibility to the analyst to compute
data summaries in a parallel cluster (local or cloud), but explore many statistics
matrices and models locally. That is, the analysts can enjoy analytics ”for free”
without the overhead and price to use the cloud. Moreover, our parallel solution
is simple, more general and we did not need any complicated library like ”Rev-
olution R” [17] that requires Windows operating system or "pbdR” [16] that
provides high-level interfaces to MPI requires a complex set up process.

3.4 Time and Space Complexity Analysis

For parallel computation in the cluster, let p be the number of processing nodes
under a shared-nothing architecture. We assume d < n and p < n. From [15],
the time complexity for computing the full Gamma in a single machine is O(d?n).
As we are computing I" in blocks per node, the time complexity is proportional
to block size. Let, m be the number of records in each block and b be the total
number of blocks per processing nodes and each block size is fixed. Then, for
each block time complexity of computing I" will be O(d?b). For a total of m
blocks, it will be O(md?b). When all the blocks are read, mb = n. In our case of
parallel computation, as each X;eX is hashed to p processing nodes, the time
complexity will be O(d?n/p) per processing nodes. Computing I" in total of b
blocks of fixed size m will make the time complexity O(md?b/p). In case of k-
Gamma matrix, we only compute L and diagonal of @} of the whole Gamma
matrix. So, for I'* it will be O(mdb/p) in each processing nodes.

In case of transferring all the partial I', if we transfer to the master node all at
once: O(d?), for sequential transfer: O(d?p), for hierarchical binary tree fashion:
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Table 2: Base data sets description

Data set d n|Description Models Applied
YearPredictionMSD|90|515K |predict if there is rain or not LR, PCA
CreditCard 30|285K |predict if there is raise in credit line| NB, KM

O(d?p + loga(p)d?). We take advantage of Gamma to accelerate computing the
machine learning models. So, the time complexity of this part does not depend
on n and is £2(d?).

In case of space complexity and memory analysis, our algorithm uses very
little RAM. In each node, space required by I” in main memory is O(d?). And it
is O(kd) for I'*, where k is the number of classes/clusters. As I or I'* does not
depend on n, the space required by each processing node in the parallel cluster
will be same as computing it in a single node (O(d?) and O(kd) respectively).
Also, as we are adding the new I" with the previous one for each block, the space
does not depend on the number of blocks.

4 Experimental Evaluation

We present an experimental evaluation in this section. First, we introduce the
systems, input data sets, and our choice of programming languages. We compare
our proposed algorithm with Spark running in parallel clusters and a parallel
DBMS to make sure our algorithm is competitive with other parallel systems.
We also compare processing in parallel cluster vs single machine. All the time
measurements were taken five times and we report the average excluding the
maximum and minimum value.

4.1 Experimental Setup

Hardware and Software: We performed our experiments using our 8-node
parallel cluster each with Pentium(R) Quadcore CPU running at 1.60 GHz, 8 GB
RAM, and 1 TB disk space. For single machine, we conducted our experiments
on a machine with Intel Pentium(R) Quadcore CPU running at 1.60 GHz, 8
GB RAM, 1 TB disk, and Linux Ubuntu 14.04 operating system. We developed
our algorithms using standard R and C++. For parallel comparison, we used
Spark-MLIib and programmed the models using Scala. And we used Vertica as
a parallel DBMS.

Data sets: Computing machine learning models on raw data is not practical.
Also, it has hard to obtain public data sets to compute all the models. Therefore,
we had to use common data sets available and replicate them to mimic large data
sets. We used two data sets as our base data sets: YearPredictionMSD and Cred-
itCard data set, summarized in Table 2, obtained from the UCI machine learning
repository. We include the information about the models which utilize these data
sets. We sampled and replicated the data sets to get varying n (data set size)
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Table 3: Time (in Seconds) to compute the ML models in our solution (p = 8
nodes) with I" and in Spark (p = 8 nodes) (M=Millions)

C] Our solution  (p=8) Spark (p=8)

(Data set) n d|Phase 0 Phase 1 Phase 2 Total|Partition Compute @ Total
LR 1M 10 9 3 9 21 7 41 48
(Year- 10M 10 23 20 9 52 17 286 303
Prediction)|100M 10 317 209 9 535 161 1780 1941
PCA 1M 10 9 3 9 21 7 15 22
(Year- 10M 10 23 20 9 52 17 46 63
Prediction)|100M 10 317 209 9 535 161 277 438
NB 1M 10 11 4 9 24 7 Crash Crash
(credit- 10M 10 28 27 9 64 25 Crash Crash
card) 100M 10 335 243 9 587 231 Crash Crash
KM 1M 10 11 4 9 24 7 64 71
(credit- 10M 10 28 27 9 64 25 392 417
card) 100M 10| 335 243 9 587 231 Stop Stop

and d (dimensionality), without altering its statistical properties. We replicate
them in random order. The columns of the data sets were replicated to get
d = (5,10, 20,40) and rows were replicated to get n = (100K, 1M, 10M, 100M).
In both cases, we chose d randomly from the original data set.

4.2 Comparison with Hadoop Parallel Big Data Systems: Spark

We compare the ML models in parallel nodes (p = 8) with Spark, a data process-
ing engine developed to provide faster and easy-to-use analytics than Hadoop
MapReduce. We partition the data set using HDFS and then run the algorithm
in Spark-MLIlib. We used the available functions in MLIlib, Spark’s scalable ma-
chine learning library to run the ML models. We emphasize that we used the
recommended settings and parameters as given in the library documentation.
Here, we are taking the data sets with a higher n (n = 1M,10M,100M) and
medium d (d = 10) to demonstrate how large data sets perform on both.

Table 3 presents the time to compute the ML models in the parallel cluster
with R and in Spark. For each entry, we round it up to the nearest integer
value. The ’Phase 0’ column is the time to split the data set X and transfer X;s
to the processing nodes. We used the standard and fastest UNIX commands
available to perform this operation. The 'Phase 1’ column shows the maximum
time to compute ;s among p machines. We report the maximum time because
the parallel execution cannot be faster than the slowest machine. The 'Phase 2’
column shows the total time to send the partial Gamma matrices (I7) to the
master node in a compressed format, decompress them on the master node, add
them to get the final Gamma (I") and compute the model (@) based on I". This
time is almost similar regardless of the value of n and d. The reason is that I" is
d x d which is very small. Moreover, I is sent in a compressed format over the
network. In the receiving end (master node), we take advantage of R run time.
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The decompression, addition of the Is, all these operations are very fast in R
(< 1sec). So, from transferring I'ss to get the final I', it is almost a constant time
(~ 8 seconds). On the other hand, the ML model computation (©) also happens
in R run time, very fast, and takes a fraction of a second (~ 1 sec). Hence, for
"Phase 2’, we put a constant time 9 seconds for each entry. In the Spark part of
Table 3, the "Partition’ column is the time to load the data set in HDFS and we
report the time to compute the models in Spark-MLIlib in ’Compute @’ column.

Despite HDFS being faster to partition the data sets (Table 3), the total
time is much faster in our method for most cases. HDFS is faster in partitioning
because we are splitting and transferring the data set sequentially over the net-
work. A parallel partition that sends blocks in parallel is already implemented
efficiently in DBMS and is beyond the scope of this paper. In case of Linear
Regression (LR), the Spark-MLIlib trains and outputs the coefficients and inter-
cept as the model. We load the data set and fit the data set to get the model.
Spark’s performance is slow when fit is called and we can see that our I" is al-
most 10X faster. For PCA, the Spark-MLIib uses a similar algorithm as I". For
a large X, it computes X”.X by computing the outer product of each row of the
matrix by itself, then adding all the results up. This is the @ from our I" which
is manipulated in the main memory by each worker node. Still, Spark is slightly
slower for computing the PCA model than our method in all cases. For Naive
Bayes (NB) model, Spark-MLlib implements multinominal Naive Bayes which
takes an RDD labeled point and an optional smoothing parameter as input and
outputs the model. The major drawback of this model is, having negative values
in the data set crashes the model which has happened for Creditcard data set
here. The Spark crashed showing ”illegal ArgumentException” as the model re-
quires non-negative values. As for k-means, the MLIlib implementation includes
a parallelized variant of k-means++ [2] which generates a k-means model. The
distributed version of the algorithm is roughly O(k), so this suffers a slower start
with a large k. It is also expensive when the model is trained. We put ”Stop”
because Spark could not finish the computation in 30 minutes.

4.3 Comparison with a Parallel DBMS:

We compare our solution with a parallel columnar DBMS (Vertica) running on p
processing nodes. As columnar DBMSs store data by columns and not by rows, it
is much faster than a row DBMS [13]. We adapted the solution presented in [15]
using UDF's and SQL queries which is the current best solution to compute the
Gamma summarization matrix in a parallel array DBMS. As there is no prior
solution of k-Gamma matrix in a DBMS, here we only compare our solution
with the Gamma matrix. We already know that the ML model (@) computation
is very fast (~ 1 second) in the main memory exploiting I". So, we only report
the time to compute the I" using p processing nodes.

Fig 2 shows the comparison to compute I' between our solution and the
parallel columnar DBMS. We compute I" for varying n (1M,10M,100M) and
d = 10. Fig 2a shows the comparison when we split the data set into p processing
nodes and compute I" and Fig 2b shows the comparison to just compute I" using
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Fig. 3: Time comparison for I" and I'* in parallel cluster (p = 8 nodes) and single
machine (p = 1 node) for varying n and d.

p machines (data set is already partitioned and loaded into DBMS). We show
both plots to give the parallel DBMS a fair chance because it is often assumed
that data is already stored in the DBMS. We use standard SQL queries to COPY
(Partition) the data set in all machines. As partitioning in DBMS is slow, we
can see that parallel DBMS performs much slower than our solution for all n
when it has to partition the data first. Our solution also performs better for I’
computation as n grows (Fig 2b). Moreover, DBMS solutions using UDF are not
portable and they require a lot of memory to scale-up.

4.4 Understanding trade-offs: Parallel cluster and single machine

We compute the I" and I'* on a parallel cluster and single machine to understand
the trade-offs between them. For both cases, we used our optimized version of the
algorithms. I" is computed on YearPredictionMSD data set to compute models
like LR and PCA, and I'* is computed on the CreditCard data set to compute
NB and KM models. The total time to compute the I" and I'* for parallel cluster
and the single machine can be plotted in Fig 3. We can see that single machine
performs better when n and d is low (< 1M x 10) in both cases. The reason
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is, the parallel cluster is spending much time in partitioning the data set and
transferring the partial I'7 (or I'F) matrices. Parallel cluster seems to be more
faster from n = 1M and d = 20. When n is very high (n = 10M or more), the
parallel cluster is at least 2X to 4X faster than the local machine. The reason
is, a single machine cannot scale as data size grows due to limited memory.
However, the model computation part utilizing I" or I'* is almost same for both.
So, the parallel cluster is the obvious choice when it comes to summarizing very
large data sets.

5 Related Works

Summarization of scalable machine learning algorithms was done in a parallel
manner in [15]. However, this work was developed for a parallel array DBMS and
did not work for classification or clustering models. In this paper, we removed
the use of DBMS completely which was the main focus on [15]. We adapted
the algorithm, generalized, and implemented such a way that it can work in a
parallel cluster efficiently. Moreover, we introduced k-Gamma matrics that can
compute models like NB and KM which are significantly different from [15]. We
also made use of reading data in blocks to read an infinite amount of input
data. Similar to our proposed k-Gamma matrix, the summaries of [22] and [4]
represent a (constrained) diagonal version of I" because dimension independence
is assumed (i.e. cross-products, covariances, correlations are ignored) and there
is a separate vector to capture L. From a computational perspective, our I’
computation boils down to one matrix multiplication, whereas those algorithms
work is aggregations. Also, our summarization is more general and it helps to
compute more complex models like LR, PCA, NB, and KM that could not be
solved with older summaries. Parallel processing for data summarization has
received moderate attention. [12] highlights the following techniques: sampling,
incremental aggregation, matrix factorization, and similarity joins. Research has
developed fast algorithms based mostly on sampling, data summarization, and
gradient descent [8], generally working in a sequential manner (data mining).
Stochastic (incremental) gradient descent (SGD) [9] is a popular approach, useful
when there is a convex function to optimize (like least-squares in LR). As for
drawbacks, SGD is naturally sequential (difficult to process in parallel), it obtains
an approximate solution and it is difficult to adapt to non-convex functions (e.g.
clustering).

From a “systems” angle, R combined with C++ did not exist and nobody
thought we could insert efficient C++ code for a very common computation on
parallel machines. However, R has been used for parallel computing on computer
clusters, on multi-core systems, and in grid computing. There are many available
packages in R for parallel computing and they are reviewed and compared in [18]
based on development, usability, acceptance, and performance. There is a large
body of work on computing machine learning models in Hadoop “Big Data”
systems, before with MapReduce [3] and currently with Spark [21]. On the other
hand, computing models with parallel DBMSs have received less attention [9],
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[19] because they are considered cumbersome and more difficult to program. This
article is a significant step forward and is fundamentally different from [5] which
worked only on a single machine. We introduced a new generalized algorithm
to compute I in a parallel cluster. Also, we improved the k-Gamma algorithm
where k summarization matrices (each d x d) were needed in [5] to compute NB
and KM models. The improved algorithm needs only one matrix (d + 1 x 2k).
Also, [5] cannot scale to big data as it was done in a local machine. Experimental
results prove that our new solution does not have any limitation: neither main
memory nor CPU power available.

6 Conclusions

We presented an improved 3-phase algorithm to compute ML models. Specifi-
cally, we added a pre-processing phase, to partition and distribute the data set.
Also, parallel processing is fully automated and we now cover a wide spectrum
of unsupervised and supervised ML models. We introduced a general, parallel,
summarization algorithm that can work across multiple programming languages
and platforms. We then studied how to integrate our parallel algorithm into
the R language, a popular language in ML and statistics. We justified why C++
code is required and so we focused on optimizing summarization, with specialized
C—++ functions for a fundamental vector outer product, returning one or multiple
Gamma matrices (I'*). We showed the actual model computation, fortunately,
can be done with existing R functions, eliminating the need to reprogram them.
An experimental evaluation shows our solution is either faster or more scalable
than Spark. On the other hand, our solution is remarkably faster than a previous
prototype programmed with SQL queries and UDF's, the best previous solution
based on the same approach.

Our research opens many possibilities for future work. We will tackle other
ML models, including HMMs, LDA, and SVMs. We plan to compare tradeoffs
when integrating our algorithm with Python, another popular language with
significantly different syntax and evaluation compared to R. Even though pro-
cessing in one machine is slower than a parallel cluster, we intend to study how
to accelerate computation with multicore CPUs and GPUs in a single box. We
would like to encode our result summarization matrix in a general format that
can be consumed by any langua ge or system. It should be feasible to detect
intermediate computations in analytic source code, where our summarization
matrix or matrices may accelerate or simplify processing.
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