
Anomaly Based Network Intrusion Detection with
Unsupervised Outlier Detection

Jiong Zhang and Mohammad Zulkernine
School of Computing

Queen’s University, Kingston
Ontario, Canada K7L 3N6

{zhang, mzulker} @cs.queensu.ca

Abstract-Anomaly detection is a critical issue in Network
Intrusion Detection Systems (NIDSs). Most anomaly based
NIDSs employ supervised algorithms, whose performances
highly depend on attack-free training data. However, this kind of
training data is difficult to obtain in real world network
environment. Moreover, with changing network environment or
services, patterns of normal traffic will be changed. This leads to
high false positive rate of supervised NIDSs. Unsupervised outlier
detection can overcome the drawbacks of supervised anomaly
detection. Therefore, we apply one of the efficient data mining
algorithms called random forests algorithm in anomaly based
NIDSs. Without attack-free training data, random forests
algorithm can detect outliers in datasets of network traffic. In
this paper, we discuss our framework of anomaly based network
intrusion detection. In the framework, patterns of network
services are built by random forests algorithm over traffic data.
Intrusions are detected by determining outliers related to the
built patterns. We present the modification on the outlier
detection algorithm of random forests. We also report our
experimental results over the KDD’99 dataset. The results show
that the proposed approach is comparable to previously reported
unsupervised anomaly detection approaches evaluated over the
KDD’99 dataset.

I. INTRODUCTION

With the tremendous growth of network-based services and
sensitive information on networks, the number and the
severity of network-based computer attacks have significantly
increased. Although a wide range of security technologies
such as information encryption, access control, and intrusion
prevention can protect network-based systems, there are still
many undetected intrusions. Thus, Intrusion Detection
Systems (IDSs) play a vital role in network security. Network
Intrusion Detection Systems (NIDSs) detect attacks by
observing various network activities, while Host-based
Intrusion Detection Systems (HIDSs) detect intrusions in an
individual host.

There are two major intrusion detection techniques: misuse
detection and anomaly detection. Misuse detection discovers
attacks based on the patterns extracted from known intrusions.
Anomaly detection identifies attacks based on the deviations
from the established profiles of normal activities. Activities
that exceed thresholds of the deviations are detected as attacks.
Misuse detection has low false positive rate, but cannot detect

new types of attacks. Anomaly detection can detect unknown
attacks, under a basic assumption that attacks deviate from
normal behavior.

Currently, many NIDSs such as Snort [14] are rule-based
systems, which employ misuse detection techniques and have
limited extensibility for novel attacks. To detect novel attacks,
many anomaly detection systems are developed. Most of them
are based on supervised approaches [3, 5, 23]. For instance,
ADAM [23] employs association rules algorithm in intrusion
detection. ADAM builds a profile of normal activities over
attack-free training data, and then detects attacks with the
previously built profile. The problem of ADAM is the high
dependency on training data for normal activities. However,
the attack-free training data is difficult to come by, since there
is no guarantee that we can prevent all attacks in real world
networks. Actually, one of the most popular ways to
undermine anomaly based IDSs is to incorporate some
intrusive activities into the training data [13]. The IDSs trained
by the training data with intrusive activities will lose the
ability to detect this kind of intrusions. Another problem of the
supervised anomaly based IDS is high false positive rate when
network environment or services are changed. Since training
data only contain historical activities, profile of normal
activities can only include historical patterns of normal
behavior. Therefore, new activities due to changing of
network environment or services will deviate from the
previously built profile and are detected as attacks. That will
raise false positives.

To overcome the limitations of supervised anomaly based
systems, a number of IDSs employ unsupervised approaches
[1, 2, 9]. Unsupervised anomaly detection does not need
attack-free training data. It detects attacks by determining
unusual activities from data under two assumptions [9]:

• The majority of activities are normal.
• Attacks statistically deviate from normal activities.
The unusual activities are outliers that are inconsistent with

the remainder of data set [11]. Thus, outlier detection
techniques can be applied in unsupervised anomaly detection.
Actually, outlier detection has been used in a number of
practical applications such as credit card fraud detection,
voting irregularity analysis, and severe weather prediction [12].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

2388

We propose an approach to use outlier detection technique
provided by random forests algorithm in anomaly intrusion
detection. Random forests is an ensemble classification and
regression approach, which is unsurpassable in accuracy
among current data mining algorithms [15]. Random forests
algorithm has been used extensively in different applications.
For instance, it has been applied to prediction [16, 17],
probability estimation [24], and pattern analysis in multimedia
information retrieval and bioinformatics [18]. Unfortunately,
to the best of our knowledge, random forests algorithm has not
been applied in anomaly intrusion detection.

 The main challenge of anomaly intrusion detection is to
minimize false positives. The outlier detection technique is
effective to reduce false positive rate with a desirable
detection rate. The proposed approach is evaluated using the
KDD’99 dataset, which were used for the third International
Knowledge Discovery and Data Mining Tools Competition
[19]. Our experimental results show that the detection
performance is improved by our approach of using the outlier
detection technique.

The paper is organized as follows. In Section II, we discuss
the related work. In Section III, we describe in detail the
approach to detect outliers using random forests algorithm.
The experiments and performance evaluations are presented in
Section IV. Finally, we summarize the paper and outline our
future research plans in Section V.

II. RELATED WORK

Anomaly detection has been an important subject in
intrusion detection research. Various anomaly detection
approaches have been proposed and implemented.

Unsupervised anomaly detection in NIDSs as discussed
below is a new research area [9]. Eskin, et al. [1] investigate
three algorithms in unsupervised anomaly detection: cluster-
based estimation, k-nearest neighbor, and one class SVM
(Support Vector Machine). Other researchers [2, 9] apply
clustering approaches in unsupervised NIDSs.

Supervised anomaly detection has been studied extensively.
ADAM (Audit Data Analysis and Mining) [23] is widely
known and well published project in the field. It is an on-line
network-based IDS. ADAM can detect known attacks as well
as unknown attacks. ADAM builds the profile of normal
behavior from attack-free training data and represents the
profile as a set of association rules. At run-time, ADAM
detects suspicious connections according to the profile. Other
supervised approaches are also applied to anomaly detection,
such as fuzzy data mining and genetic algorithm [3], neural
networks [4, 8], and SVM [5].

In our previous work, we applied random forests algorithm
in misuse detection [7]. In this paper, we employ the outlier
detection function provided by random forests algorithm for
unsupervised anomaly detection. Random forests algorithm is
more accurate and efficient on large datasets with many
features such as datasets of network traffic.

III. DETECTING OUTLIERS

In this section, we describe the proposed framework of the
NIDS, and illustrate how to use random forests algorithm to
detect outliers over datasets of network traffic.
A. Overview of the framework

The proposed framework applies random forests algorithm
to detect novel intrusions. The framework is shown in Fig. 1.

Figure 1. The framework of the unsupervised anomaly NIDS

The NIDS captures the network traffic and constructs

dataset by pre-processing. After that, the service-based
patterns are built over the dataset using random forests
algorithm. With the built patterns, we can find outliers related
to each pattern. Then the system will raise alerts when outliers
are detected.

After capturing network traffic, the processing is off-line.
Due to the high computational requirements by the outlier
detection algorithm, on-line processing is not suitable in real
network environment.

B. Random forests algorithm
The random forests [15] is an ensemble of un-pruned

classification or regression trees. It is unsurpassable in
accuracy among the current data mining algorithms, especially
for large datasets with many features.

Random forests algorithm generates many classification
trees. Each tree is constructed by a different bootstrap sample
from the original data using a tree classification algorithm.
After the forest is formed, a new object that needs to be
classified is put down each of the tree in the forest for
classification. Each tree gives a vote that indicates the tree’s
decision about the class of the object. The forest chooses the
class with the most votes for the object.

In random forests algorithm, there is no need for cross-
validation or a test set to get an unbiased estimate of the test
error. Since each tree is constructed using the bootstrap
sample, approximately one-third of the cases are left out of the
bootstrap samples and not used in training. These cases are
called out of bag (oob) cases. These oob cases are used to get
a run-time unbiased estimate of the classification error as trees
are added to the forest.

C. Mining patterns of network services
Network traffic can be categorized by services (e.g., http,

telnet, and ftp). Each network service has its own pattern.

Network
Traffic

Pre-
Processing

Dataset Pattern
Building

AlertsOutlier
Detection

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

2389

Therefore, we can build patterns of network services using
random forests algorithm. However, random forests algorithm
is supervised, so we need datasets labeled by network services.
Since the information of network services is in network
packets, network traffic can be labeled by the services
automatically instead of time consuming manual processing.
Actually, many datasets used to evaluate NIDSs can be
labeled by network services with a little effort. For example,
one of features in the KDD’99 dataset is service type which
can be used as label.

Before building the patterns, we need to optimize the
parameters of random forests algorithm. When the forest is
growing, random features are selected at random out of the all
features in the training data. The best split on these random
features is used to split the node. The number of random
features (Mtry) is held constant. The number of features
employed in splitting each node for each tree is the primary
tuning parameter (Mtry). To improve the performance of
random forests algorithm, this parameter should be optimized.
Another parameter is the number of trees in a forest.

We use the dataset to find the optimal value of the
parameter Mtry and the number of the trees. The minimum
error rate corresponds to the optimal values. Therefore, we use
the different value of Mtry and number of the trees to build the
forest, and evaluate the error rate of the forest. Then, we select
the value corresponding to the minimum error rate to build the
patterns of the services.

D. Unsupervised outlier detection
We can detect intrusions by finding unusual activities or

outliers. There are two types of outliers in the proposed NIDS.
The first type is the activities that deviate significantly from
others in the same network service. The second type is the
activities whose patterns belong to other services other than
their own service. For instance, if an http activity is classified
as ftp service, the activity will be determined as an outlier.

Random forests algorithm uses proximities to find outliers
whose proximities to all other cases in the entire data are
generally small. The proximities are one of the most useful
tools in random forests algorithm [15]. After the forest is
constructed, all cases in the dataset are put down each tree in
the forest. If cases k and n are in the same leaf of a tree, their
proximity is increased by one. Finally, the proximities are
normalized by dividing by the number of the trees.

For a dataset with N cases, the proximities originally
formed a N×N matrix. The complexity of calculation is N×N.
Datasets of network traffic are huge, so the calculation needs a
lot of memory and CPU time. To improve the performance,
we modify the algorithm to calculate the proximities. As we
mentioned above, if a service activity is classified as another
service, it will be determined as outlier. Therefore, we do not
care about the proximity between two cases that belong to
different services. Si denotes the number of cases in service i.
The complexity will be reduced to × ii SS after the
modification.

With respect to random forests algorithm, outliers can be
defined as the cases whose proximities to other cases in the
dataset are generally small [15]. Outlier-ness indicates a
degree of being an outlier. It can be calculated over
proximities. class(k) = j denotes that k belongs to class j.
prox(n,k) denotes the proximity between cases n and k. The
average proximity from case n in class j to case k (the rest of
data in class j) is computed as:

),()(

)(

2 knproxnP
jkclass =

= (1)

N denotes the number of cases in the dataset. The raw

outlier-ness of case n is defines as:

)(/ nPN (2)

In each class, the median and the absolute deviation of all

raw outlier-ness are calculated. The median is subtracted from
each raw outlier-ness. The result of the subtraction is divided
by the absolute deviation to get the final outlier-ness. If the
outlier-ness of a case is large, the proximity is small, and the
case is determined as an outlier.

To detect outliers in a dataset of network traffic, we build
patterns of services over the dataset. Then, we calculate the
proximity and outlier-ness for each activity. An activity that
exceeds a specified threshold will be determined as an outlier.

IV. EXPERIMENTS AND RESULTS

In this section, we summarize our experimental results to
detect intrusions using the unsupervised outlier detection
technique over the KDD’99 dataset. We first describe the
datasets used in the experiments. Then we evaluate our
approach and discuss the results.

A. Dataset and preprocessing
Under the sponsorship of Defense Advanced Research

Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL), MIT Lincoln Laboratory has collected
and distributed the datasets for the evaluation of computer
network intrusion detection systems [20, 21]. The DARPA
dataset is the most popular dataset used to test and evaluate a
large number of IDSs. The KDD’99 dataset is a subset of the
DARPA dataset prepared by Sal Stofo and Wenke Lee [25].
The data was preprocessed by extracting 41 features (e.g.,
protocol type, service, and flag) from the tcpdump data in the
1998 DARPA dataset. The KDD’99 dataset can be used
without further time-consuming preprocessing and different
IDSs can compare with each other by working on the same
dataset. Therefore, we carry out our experiments on the
KDD’99 dataset.

The full training set, one of the KDD’99 datasets, has
4,898,431 connections, which contains attacks. The attacks in
the dataset fall into four categories [19]: DoS (Denial of
Service), R2L (unauthorized access from a remote machine),

Σ

Σ

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

2390

U2R (unauthorized access to root privileges), and probing.
The dataset is labeled by type of attacks. Since our approach is
unsupervised, the dataset does not satisfy the needs of our
experiments. We must remove the labels that indicate types of
attacks from the dataset.

To generate new datasets for our experiments, we first
separate the dataset into two pools according to the labels.
One includes normal connections. Another includes attacks.
Then, we remove all the labels from the pools. However, we
need the data labeled by service to build patterns of services,
so we use service feature in the dataset as label. As a result, all
the data contains 40 features and is labeled by service.

For our experiments, we choose five most popular network
services: ftp, http, pop, smtp, and telnet. By selecting ftp, pop,
telnet, 5% http, and 10% smtp normal connections, we
generate a dataset called normal dataset, which contains
47,426 normal connections. Finally, by injecting anomalies
from the pool of attacks into normal dataset, we generate four
new datasets: 1%, 2%, 5%, and 10% dataset. 1% (2%, 5%,
and 10%) dataset means that 1% (2%, 5%, and 10%) of
connections in the dataset are attacks.

B. Evaluation and discussion
We carry out the first experiment over the 1% attack dataset.

We first optimize the parameters (Mtry and the number of
trees) of random forests algorithm by feeding the dataset into
the NIDS. The NIDS builds patterns of the network services
with different values of the parameters, and then calculates the
oob error rate. The values corresponding to the lowest oob
error rate are optimized.

With the optimized parameters, we build the patterns of the
network services. Over the built patterns, the NIDS calculates
the outlier-ness of each connection. Fig. 2 plots the outlier-
ness of the 1% attack dataset. Since the attacks are injected at
the beginning of the dataset, the figure shows the outlier-ness
of the attacks is much higher than most of normal activities.
Some normal activities also have high outlier-ness. That leads
to false positives. The NIDS will raise an alert if an outlier-
ness of a connection exceeds a specified threshold.

We evaluate the performance of our system by the detection
rate and the false positive rate. The detection rate is the
number of attacks detected by the system divided by the
number of attacks in the dataset. The false positive rate is the
number of normal connections that are misclassified as attacks
divided by the number of normal connections in the dataset.
We can evaluate the performance by varying the threshold of
outlier-ness.

In intrusion detection, ROC (Receiver Operating
Characteristic) curve is often used to measure performance of
IDSs. The ROC curve is a plot of the detection rate against the
false positive rate. Fig. 3 plots ROC curve to show the
relationship between the detection rates and the false positive
rates over the dataset.

The result indicates that our system can achieve a high
detection rate with a low false positive rate. Compared to
other unsupervised anomaly based systems [1, 9], our system

provides better performance over the KDD’99 dataset while
the false positive rate is low. Table I lists some results from
Eskin, et al. [1]. The results from the other detection systems

-5

0

5

10

15

20

25

30

35

1 4053 8105 12157 16209 20261 24313 28365

Connections

O
ut

lie
r-

ne
ss

Figure 2. The outlier-ness of the 1% attack dataset

0
10
20
30
40
50
60
70
80
90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 5 6 7 8 9 10

False positive rate (%)

D
et

ec
tio

n
ra

te
 (%

)

Figure 3. The ROC curve for the 1% attack dataset

TABLE I

THE PERFORMANCE OF EACH ALGORITHM OVER THE KDD’99 DATASET [1]

Algorithm Detection rate False
positive rate

Cluster 66% 2%

Cluster 28% 0.5%

K-NN 11% 4%

K-NN 5% 2%

SVM 67% 4%

SVM 5% 3%

show that the detection rate is reduced significantly when the
false positive rate is low (below 1%). Although our

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

2391

experiments are carried out under different conditions, Fig. 3
shows that our system still provides relatively higher detection
rates when the false positive rates are low. For example, the
detection rate is 95% when the false positive rate is 1%. When
the false positive rate is reduced to 0.1%, the detection rate is
still over 60%.

To evaluate our system under different number of attacks,
we carry out the experiments over the 1%, 2%, 5%, and 10%
attack dataset. Fig. 4 plots the ROCs for each dataset. The
result shows that the performance tends to be reduced while
increasing number of attacks.

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10

False positive rate (%)

D
et

ec
tio

n
ra

te
 (%

)

1% attacks

2% attacks

5% attacks

10% attacks

Figure 4. The ROC curves for the datasets

C. Implementation
We develop the NIDS using WEKA (Waikato Environment

for Knowledge Analysis) [22]. WEKA is an open source Java
package which contains machine learning algorithms for data
mining tasks. However, WEKA does not implement the
outlier detection function in the random forests algorithm.
Therefore, we modify the source code of WEKA to implement
outlier detection.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new framework of unsupervised
anomaly NIDS based on the outlier detection technique in
random forests algorithm. The framework builds the patterns
of network services over datasets labeled by the services. With
the built patterns, the framework detects attacks in the datasets
using the outlier detection algorithm.

Due to large population of datasets used in NIDSs, the
process to detect outliers is very time-consuming and costs a
large amount of memory. To improve the performance, we
modify the original outlier detection algorithm to reduce the
calculation complexity, under the assumption that each
network service has its own pattern for normal activities.

Compared to supervised approaches, our approach breaks
the dependency on attack-free training datasets. The
experimental results over the KDD’99 dataset confirm the
effectiveness of our approach using the unsupervised detection
technique.

The performance of our system is comparable to that of
other reported unsupervised anomaly detection approaches.
Especially, our approach achieve higher detection rate when
the false positive rate is low. It is more significant for NIDSs,
since high false positive rate will make NIDSs useless.

Due to high complexity of the unsupervised anomaly
detection algorithm, low detection speed performance of the
approach makes real time detection impossible. However, the
approach can detect novel intrusions without attack-free
training data. The detected novel intrusions can be used to
train real time supervised misuse detection systems. Therefore,
the trained misuse detection systems can detect the novel
intrusions in real time.

The results also show that the performance tends to be
reduced with increasing number of attack connections. That is
a problem of unsupervised systems. Some attacks (e.g., DoS)
produce a large number of connections, which may undermine
an unsupervised anomaly detection system. To overcome the
problem, we will incorporate both anomaly based and misuse
based approaches into the NIDS in the future. Misuse
approach can detect known attacks. By removing known
attacks, the number of attacks can be reduced significantly in
datasets for unsupervised anomaly detection. Misuse detection
has high detection rate with low false positive rate. Anomaly
detection can detect novel attacks to increase the detection rate.
Therefore, combining misuse and anomaly detection can
improve the overall performance of the NIDS.

ACKNOWLEDGMENT

This research work is funded by The Mathematics of
Information Technology and Complex Systems (MITACS).

REFERENCES
 [1] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A Geometric

Framework for Unsupervised Anomaly Detection: Detecting Intrusions
in Unlabeled Data”, Applications of Data Mining in Computer Security,
Kluwer, 2002.

[2] Rasheda Smith, Alan Bivens, Mark Embrechts, Chandrika Palagiri, and
Boleslaw Szymanski, “Clustering Approaches for Anomaly Based
Intrusion Detection”, Walter Lincoln Hawkins Graduate Research
Conference 2002 Proceedings, New York, USA, October 2002.

[3] Susan M.Bridges, and Rayford B. Vaughn, “Fuzzy Data Mining and
Genetic Algorithms Applied to Intrusion Detection”, Proceedings of the
National Information Systems Security Conference (NISSC), Baltimore,
MD, October, 2000.

[4] Alan Bivens, Mark Embrechts, Chandrika Palagiri, Rasheda Smith, and
Boleslaw Szymanski, “Network-Based Intrusion Detection Using Neural
Networks”, Artificial Neural Networks In Engineering, St. Louis,
Missouri, November 2002.

[5] Q.A. Tran, H. Duan, and X. Li, “One-class Support Vector Machine for
Anomaly Network Traffic Detection”, The 2nd Network Research
Workshop of the 18th APAN, Cairns, Australia, 2004.

[6] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava & V. Kumar, “A
Comparative Study of Anomaly Detection Schemes in Network
Intrusion Detection”, Proceedings of Third SIAM Conference on Data
Mining, San Francisco, May 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

2392

[7] J. Zhang and M. Zulkernine, “Network Intrusion Detection Using Random
Forests”, Proc. of the Third Annual Conference on Privacy, Security and
Trust, St. Andrews, New Brunswick, Canada, October 2005.

[8] M. Ramadas, S. Ostermann and B. Tjaden, “Detecting Anomalous
Network Traffic with Self-Organizing Maps”, RAID, 2003.

[9] Kingsly Leung and Christopher Leckie, “Unsupervised Anomaly
Detection in Network Intrusion Detection Using Clusters”, Australasian
Computer Science Conference, Newcastle, NSW, Australia, 2005.

[10] Ian H. Witten, and Eibe Frank, Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations, Morgan
Kaufmann publishers, October 1999.

[11] V. Barnett and T. Lewis, Outliers in Statistical Data, John Wiley, 1994.
[12] C. T. Lu, D. Chen, and Y. Kou, “Algorithms for Spatial Outlier

Detection”, Proceedings of 3rd IEEE International Conference on Data
Mining, Melbourne, Florida, November 2003.

[13] K. Tan, K. Killourhy, and R. Maxion, “Undermining an anomaly based
intrusion detection system using common exploits”, RAID, Zurich,
Switzerland, Oct. 2002.

[14] Snort, Network Intrusion Detection System, http://www.snort.org.
[15] L. Breiman, “Random Forests”, Machine Learning 45(1):5–32, 2001.
[16] Lan Guo, Yan Ma, Bojan Cukic, and Harshinder Singh, “Robust

Prediction of Fault-Proneness by Random Forests”, Proceedings of the
15th International Symposium on Software Reliability Engineering
(ISSRE'04), pp. 417-428, Brittany, France, November 2004.

[17] Bogdan E. Popescu, and Jerome H. Friedman, Ensemble Learning for
Prediction, Doctoral Thesis, Stanford University, January 2004.

[18] Yimin Wu, High-dimensional Pattern Analysis in Multimedia
Information Retrieval and Bioinformatics, Doctoral Thesis, State
University of New York, January 2004.

[19] KDD’99 datasets, The UCI KDD Archive,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Irvine, CA,
USA, 1999.

[20] M. Mahoney and P. Chan, “An Analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Anomaly Detection”,
Proceeding of Recent Advances in Intrusion Detection (RAID),
Pittsburgh, USA, September 2003.

[21] MIT Lincoln Laboratory, DARPA Intrusion Detection Evaluation,
http://www.ll.mit.edu/IST/ideval/, MA, USA.

[22] WEKA software, Machine Learning,
http://www.cs.waikato.ac.nz/ml/weka/, The University of Waikato,
Hamilton, New Zealand.

[23] Daniel Barbarra, Julia Couto, Sushil Jajodia, Leonard Popyack, and
Ningning Wu, “ADAM: Detecting Intrusions by Data Mining”,
Proceedings of the 2001 IEEE, Workshop on Information Assurance and
Security, T1A3 1100 United States Military Academy, West Point, NY,
June 2001.

[24] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng, “Probability Estimates
for Multi-class Classification by Pairwise Coupling”, The Journal of
Machine Learning Research, Volume 5, December 2004.

[25] Charles Elkan, “Results of the KDD'99 Classifier Learning”, SIGKDD
Explorations 1(2): 63-64, 2000.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

2393

