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Abstract-Anomaly detection is a critical issue in Network 
Intrusion Detection Systems (NIDSs). Most anomaly based 
NIDSs employ supervised algorithms, whose performances 
highly depend on attack-free training data. However, this kind of 
training data is difficult to obtain in real world network 
environment. Moreover, with changing network environment or 
services, patterns of normal traffic will be changed. This leads to 
high false positive rate of supervised NIDSs. Unsupervised outlier 
detection can overcome the drawbacks of supervised anomaly 
detection. Therefore, we apply one of the efficient data mining 
algorithms called random forests algorithm in anomaly based 
NIDSs. Without attack-free training data, random forests 
algorithm can detect outliers in datasets of network traffic. In 
this paper, we discuss our framework of anomaly based network 
intrusion detection. In the framework, patterns of network 
services are built by random forests algorithm over traffic data. 
Intrusions are detected by determining outliers related to the 
built patterns. We present the modification on the outlier 
detection algorithm of random forests. We also report our 
experimental results over the KDD’99 dataset. The results show 
that the proposed approach is comparable to previously reported 
unsupervised anomaly detection approaches evaluated over the 
KDD’99 dataset.  

I. INTRODUCTION 

With the tremendous growth of network-based services and 
sensitive information on networks, the number and the 
severity of network-based computer attacks have significantly 
increased. Although a wide range of security technologies 
such as information encryption, access control, and intrusion 
prevention can protect network-based systems, there are still 
many undetected intrusions. Thus, Intrusion Detection 
Systems (IDSs) play a vital role in network security. Network 
Intrusion Detection Systems (NIDSs) detect attacks by 
observing various network activities, while Host-based 
Intrusion Detection Systems (HIDSs) detect intrusions in an 
individual host.  

There are two major intrusion detection techniques: misuse 
detection and anomaly detection. Misuse detection discovers 
attacks based on the patterns extracted from known intrusions. 
Anomaly detection identifies attacks based on the deviations 
from the established profiles of normal activities. Activities 
that exceed thresholds of the deviations are detected as attacks. 
Misuse detection has low false positive rate, but cannot detect 

new types of attacks. Anomaly detection can detect unknown 
attacks, under a basic assumption that attacks deviate from 
normal behavior. 

Currently, many NIDSs such as Snort [14] are rule-based 
systems, which employ misuse detection techniques and have 
limited extensibility for novel attacks. To detect novel attacks, 
many anomaly detection systems are developed. Most of them 
are based on supervised approaches [3, 5, 23]. For instance, 
ADAM [23] employs association rules algorithm in intrusion 
detection. ADAM builds a profile of normal activities over 
attack-free training data, and then detects attacks with the 
previously built profile. The problem of ADAM is the high 
dependency on training data for normal activities. However, 
the attack-free training data is difficult to come by, since there 
is no guarantee that we can prevent all attacks in real world 
networks. Actually, one of the most popular ways to 
undermine anomaly based IDSs is to incorporate some 
intrusive activities into the training data [13]. The IDSs trained 
by the training data with intrusive activities will lose the 
ability to detect this kind of intrusions. Another problem of the 
supervised anomaly based IDS is high false positive rate when 
network environment or services are changed. Since training 
data only contain historical activities, profile of normal 
activities can only include historical patterns of normal 
behavior. Therefore, new activities due to changing of 
network environment or services will deviate from the 
previously built profile and are detected as attacks. That will 
raise false positives.   

To overcome the limitations of supervised anomaly based 
systems, a number of IDSs employ unsupervised approaches 
[1, 2, 9]. Unsupervised anomaly detection does not need 
attack-free training data. It detects attacks by determining 
unusual activities from data under two assumptions [9]: 

• The majority of activities are normal. 
• Attacks statistically deviate from normal activities.  
The unusual activities are outliers that are inconsistent with 

the remainder of data set [11]. Thus, outlier detection 
techniques can be applied in unsupervised anomaly detection. 
Actually, outlier detection has been used in a number of 
practical applications such as credit card fraud detection, 
voting irregularity analysis, and severe weather prediction [12].  
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We propose an approach to use outlier detection technique 
provided by random forests algorithm in anomaly intrusion 
detection. Random forests is an ensemble classification and 
regression approach, which is unsurpassable in accuracy 
among current data mining algorithms [15]. Random forests 
algorithm has been used extensively in different applications. 
For instance, it has been applied to prediction [16, 17], 
probability estimation [24], and pattern analysis in multimedia 
information retrieval and bioinformatics [18]. Unfortunately, 
to the best of our knowledge, random forests algorithm has not 
been applied in anomaly intrusion detection. 

 The main challenge of anomaly intrusion detection is to 
minimize false positives. The outlier detection technique is 
effective to reduce false positive rate with a desirable 
detection rate. The proposed approach is evaluated using the 
KDD’99 dataset, which were used for the third International 
Knowledge Discovery and Data Mining Tools Competition 
[19]. Our experimental results show that the detection 
performance is improved by our approach of using the outlier 
detection technique. 

The paper is organized as follows. In Section II, we discuss 
the related work. In Section III, we describe in detail the 
approach to detect outliers using random forests algorithm. 
The experiments and performance evaluations are presented in 
Section IV. Finally, we summarize the paper and outline our 
future research plans in Section V. 

 

II. RELATED WORK 

Anomaly detection has been an important subject in 
intrusion detection research. Various anomaly detection 
approaches have been proposed and implemented. 

Unsupervised anomaly detection in NIDSs as discussed 
below is a new research area [9]. Eskin, et al. [1] investigate 
three algorithms in unsupervised anomaly detection: cluster-
based estimation, k-nearest neighbor, and one class SVM 
(Support Vector Machine). Other researchers [2, 9] apply 
clustering approaches in unsupervised NIDSs. 

Supervised anomaly detection has been studied extensively. 
ADAM (Audit Data Analysis and Mining) [23] is widely 
known and well published project in the field. It is an on-line 
network-based IDS. ADAM can detect known attacks as well 
as unknown attacks. ADAM builds the profile of normal 
behavior from attack-free training data and represents the 
profile as a set of association rules. At run-time, ADAM 
detects suspicious connections according to the profile. Other 
supervised approaches are also applied to anomaly detection, 
such as fuzzy data mining and genetic algorithm [3], neural 
networks [4, 8], and SVM [5]. 

In our previous work, we applied random forests algorithm 
in misuse detection [7]. In this paper, we employ the outlier 
detection function provided by random forests algorithm for 
unsupervised anomaly detection. Random forests algorithm is 
more accurate and efficient on large datasets with many 
features such as datasets of network traffic. 

III. DETECTING OUTLIERS  

In this section, we describe the proposed framework of the 
NIDS, and illustrate how to use random forests algorithm to 
detect outliers over datasets of network traffic.  
A. Overview of the framework  

The proposed framework applies random forests algorithm 
to detect novel intrusions. The framework is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 

 
 

Figure 1. The framework of the unsupervised anomaly NIDS 
 
The NIDS captures the network traffic and constructs 

dataset by pre-processing. After that, the service-based 
patterns are built over the dataset using random forests 
algorithm. With the built patterns, we can find outliers related 
to each pattern. Then the system will raise alerts when outliers 
are detected.  

After capturing network traffic, the processing is off-line. 
Due to the high computational requirements by the outlier 
detection algorithm, on-line processing is not suitable in real 
network environment.  

B. Random forests algorithm 
The random forests [15] is an ensemble of un-pruned 

classification or regression trees. It is unsurpassable in 
accuracy among the current data mining algorithms, especially 
for large datasets with many features.  

Random forests algorithm generates many classification 
trees. Each tree is constructed by a different bootstrap sample 
from the original data using a tree classification algorithm. 
After the forest is formed, a new object that needs to be 
classified is put down each of the tree in the forest for 
classification. Each tree gives a vote that indicates the tree’s 
decision about the class of the object. The forest chooses the 
class with the most votes for the object. 

In random forests algorithm, there is no need for cross-
validation or a test set to get an unbiased estimate of the test 
error. Since each tree is constructed using the bootstrap 
sample, approximately one-third of the cases are left out of the 
bootstrap samples and not used in training. These cases are 
called out of bag (oob) cases. These oob cases are used to get 
a run-time unbiased estimate of the classification error as trees 
are added to the forest. 

C. Mining patterns of network services  
Network traffic can be categorized by services (e.g., http, 

telnet, and ftp). Each network service has its own pattern. 
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Therefore, we can build patterns of network services using 
random forests algorithm. However, random forests algorithm 
is supervised, so we need datasets labeled by network services. 
Since the information of network services is in network 
packets, network traffic can be labeled by the services 
automatically instead of time consuming manual processing. 
Actually, many datasets used to evaluate NIDSs can be 
labeled by network services with a little effort. For example, 
one of features in the KDD’99 dataset is service type which 
can be used as label. 

Before building the patterns, we need to optimize the 
parameters of random forests algorithm. When the forest is 
growing, random features are selected at random out of the all 
features in the training data. The best split on these random 
features is used to split the node. The number of random 
features (Mtry) is held constant. The number of features 
employed in splitting each node for each tree is the primary 
tuning parameter (Mtry). To improve the performance of 
random forests algorithm, this parameter should be optimized. 
Another parameter is the number of trees in a forest. 

We use the dataset to find the optimal value of the 
parameter Mtry and the number of the trees. The minimum 
error rate corresponds to the optimal values. Therefore, we use 
the different value of Mtry and number of the trees to build the 
forest, and evaluate the error rate of the forest. Then, we select 
the value corresponding to the minimum error rate to build the 
patterns of the services. 

D. Unsupervised outlier detection  
We can detect intrusions by finding unusual activities or 

outliers. There are two types of outliers in the proposed NIDS. 
The first type is the activities that deviate significantly from 
others in the same network service. The second type is the 
activities whose patterns belong to other services other than 
their own service. For instance, if an http activity is classified 
as ftp service, the activity will be determined as an outlier. 

Random forests algorithm uses proximities to find outliers 
whose proximities to all other cases in the entire data are 
generally small. The proximities are one of the most useful 
tools in random forests algorithm [15]. After the forest is 
constructed, all cases in the dataset are put down each tree in 
the forest. If cases k and n are in the same leaf of a tree, their 
proximity is increased by one. Finally, the proximities are 
normalized by dividing by the number of the trees.  

For a dataset with N cases, the proximities originally 
formed a N×N matrix. The complexity of calculation is N×N. 
Datasets of network traffic are huge, so the calculation needs a 
lot of memory and CPU time. To improve the performance, 
we modify the algorithm to calculate the proximities. As we 
mentioned above, if a service activity is classified as another 
service, it will be determined as outlier. Therefore, we do not 
care about the proximity between two cases that belong to 
different services. Si denotes the number of cases in service i.  
The complexity will be reduced to × ii SS  after the 
modification. 

With respect to random forests algorithm, outliers can be 
defined as the cases whose proximities to other cases in the 
dataset are generally small [15]. Outlier-ness indicates a 
degree of being an outlier. It can be calculated over 
proximities. class(k) = j denotes that k belongs to class j. 
prox(n,k) denotes the proximity between cases n and k. The 
average proximity from case n in class j to case k (the rest of 
data in class j) is computed as: 

 
 ),()(
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N denotes the number of cases in the dataset. The raw 

outlier-ness of case n is defines as: 

  )(/ nPN  (2) 
 
In each class, the median and the absolute deviation of all 

raw outlier-ness are calculated. The median is subtracted from 
each raw outlier-ness. The result of the subtraction is divided 
by the absolute deviation to get the final outlier-ness. If the 
outlier-ness of a case is large, the proximity is small, and the 
case is determined as an outlier. 

To detect outliers in a dataset of network traffic, we build 
patterns of services over the dataset. Then, we calculate the 
proximity and outlier-ness for each activity. An activity that 
exceeds a specified threshold will be determined as an outlier.   

IV. EXPERIMENTS AND RESULTS  

In this section, we summarize our experimental results to 
detect intrusions using the unsupervised outlier detection 
technique over the KDD’99 dataset. We first describe the 
datasets used in the experiments. Then we evaluate our 
approach and discuss the results.   

A. Dataset and preprocessing   
Under the sponsorship of Defense Advanced Research 

Projects Agency (DARPA) and Air Force Research 
Laboratory (AFRL), MIT Lincoln Laboratory has collected 
and distributed the datasets for the evaluation of computer 
network intrusion detection systems [20, 21]. The DARPA 
dataset is the most popular dataset used to test and evaluate a 
large number of IDSs. The KDD’99 dataset is a subset of the 
DARPA dataset prepared by Sal Stofo and Wenke Lee [25]. 
The data was preprocessed by extracting 41 features (e.g., 
protocol type, service, and flag) from the tcpdump data in the 
1998 DARPA dataset. The KDD’99 dataset can be used 
without further time-consuming preprocessing and different 
IDSs can compare with each other by working on the same 
dataset. Therefore, we carry out our experiments on the 
KDD’99 dataset. 

The full training set, one of the KDD’99 datasets, has 
4,898,431 connections, which contains attacks. The attacks in 
the dataset fall into four categories [19]: DoS (Denial of 
Service), R2L (unauthorized access from a remote machine), 

Σ

Σ

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

2390



U2R (unauthorized access to root privileges), and probing. 
The dataset is labeled by type of attacks. Since our approach is 
unsupervised, the dataset does not satisfy the needs of our 
experiments. We must remove the labels that indicate types of 
attacks from the dataset. 

To generate new datasets for our experiments, we first 
separate the dataset into two pools according to the labels. 
One includes normal connections. Another includes attacks. 
Then, we remove all the labels from the pools. However, we 
need the data labeled by service to build patterns of services, 
so we use service feature in the dataset as label. As a result, all 
the data contains 40 features and is labeled by service. 

For our experiments, we choose five most popular network 
services: ftp, http, pop, smtp, and telnet. By selecting ftp, pop, 
telnet, 5% http, and 10% smtp normal connections, we 
generate a dataset called normal dataset, which contains 
47,426 normal connections. Finally, by injecting anomalies 
from the pool of attacks into normal dataset, we generate four 
new datasets: 1%, 2%, 5%, and 10% dataset. 1% (2%, 5%, 
and 10%) dataset means that 1% (2%, 5%, and 10%) of 
connections in the dataset are attacks.  

B. Evaluation and discussion  
We carry out the first experiment over the 1% attack dataset. 

We first optimize the parameters (Mtry and the number of 
trees) of random forests algorithm by feeding the dataset into 
the NIDS. The NIDS builds patterns of the network services 
with different values of the parameters, and then calculates the 
oob error rate. The values corresponding to the lowest oob 
error rate are optimized.  

With the optimized parameters, we build the patterns of the 
network services. Over the built patterns, the NIDS calculates 
the outlier-ness of each connection. Fig. 2 plots the outlier-
ness of the 1% attack dataset. Since the attacks are injected at 
the beginning of the dataset, the figure shows the outlier-ness 
of the attacks is much higher than most of normal activities. 
Some normal activities also have high outlier-ness. That leads 
to false positives. The NIDS will raise an alert if an outlier-
ness of a connection exceeds a specified threshold. 

We evaluate the performance of our system by the detection 
rate and the false positive rate. The detection rate is the 
number of attacks detected by the system divided by the 
number of attacks in the dataset. The false positive rate is the 
number of normal connections that are misclassified as attacks 
divided by the number of normal connections in the dataset. 
We can evaluate the performance by varying the threshold of 
outlier-ness. 

In intrusion detection, ROC (Receiver Operating 
Characteristic) curve is often used to measure performance of 
IDSs. The ROC curve is a plot of the detection rate against the 
false positive rate. Fig. 3 plots ROC curve to show the 
relationship between the detection rates and the false positive 
rates over the dataset. 

The result indicates that our system can achieve a high 
detection rate with a low false positive rate. Compared to 
other unsupervised anomaly based systems [1, 9], our system 

provides better performance over the KDD’99 dataset while 
the false positive rate is low. Table I lists some results from 
Eskin, et al. [1]. The results from the other detection systems 
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Figure 2. The outlier-ness of the 1% attack dataset 
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Figure 3. The ROC curve for the 1% attack dataset 

 
TABLE I 

THE PERFORMANCE OF EACH ALGORITHM OVER THE KDD’99 DATASET [1]  

Algorithm Detection rate False 
positive rate 

Cluster 66% 2% 

Cluster 28% 0.5% 

K-NN 11% 4% 

K-NN 5% 2% 

SVM 67% 4% 

SVM 5% 3% 

 
show that the detection rate is reduced significantly when the 
false positive rate is low (below 1%). Although our 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

2391



experiments are carried out under different conditions, Fig. 3 
shows that our system still provides relatively higher detection 
rates when the false positive rates are low. For example, the 
detection rate is 95% when the false positive rate is 1%. When 
the false positive rate is reduced to 0.1%, the detection rate is 
still over 60%.    

To evaluate our system under different number of attacks, 
we carry out the experiments over the 1%, 2%, 5%, and 10% 
attack dataset. Fig. 4 plots the ROCs for each dataset. The 
result shows that the performance tends to be reduced while 
increasing number of attacks. 
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Figure 4. The ROC curves for the datasets 

 

C. Implementation   
We develop the NIDS using WEKA (Waikato Environment 

for Knowledge Analysis) [22]. WEKA is an open source Java 
package which contains machine learning algorithms for data 
mining tasks. However, WEKA does not implement the 
outlier detection function in the random forests algorithm. 
Therefore, we modify the source code of WEKA to implement 
outlier detection.   

V. CONCLUSION AND FUTURE WORK   

In this paper, we propose a new framework of unsupervised 
anomaly NIDS based on the outlier detection technique in 
random forests algorithm. The framework builds the patterns 
of network services over datasets labeled by the services. With 
the built patterns, the framework detects attacks in the datasets 
using the outlier detection algorithm. 

Due to large population of datasets used in NIDSs, the 
process to detect outliers is very time-consuming and costs a 
large amount of memory. To improve the performance, we 
modify the original outlier detection algorithm to reduce the 
calculation complexity, under the assumption that each 
network service has its own pattern for normal activities. 

Compared to supervised approaches, our approach breaks 
the dependency on attack-free training datasets. The 
experimental results over the KDD’99 dataset confirm the 
effectiveness of our approach using the unsupervised detection 
technique.  

The performance of our system is comparable to that of 
other reported unsupervised anomaly detection approaches. 
Especially, our approach achieve higher detection rate when 
the false positive rate is low. It is more significant for NIDSs, 
since high false positive rate will make NIDSs useless. 

Due to high complexity of the unsupervised anomaly 
detection algorithm, low detection speed performance of the 
approach makes real time detection impossible. However, the 
approach can detect novel intrusions without attack-free 
training data. The detected novel intrusions can be used to 
train real time supervised misuse detection systems. Therefore, 
the trained misuse detection systems can detect the novel 
intrusions in real time. 

The results also show that the performance tends to be 
reduced with increasing number of attack connections. That is 
a problem of unsupervised systems. Some attacks (e.g., DoS) 
produce a large number of connections, which may undermine 
an unsupervised anomaly detection system. To overcome the 
problem, we will incorporate both anomaly based and misuse 
based approaches into the NIDS in the future. Misuse 
approach can detect known attacks. By removing known 
attacks, the number of attacks can be reduced significantly in 
datasets for unsupervised anomaly detection. Misuse detection 
has high detection rate with low false positive rate. Anomaly 
detection can detect novel attacks to increase the detection rate. 
Therefore, combining misuse and anomaly detection can 
improve the overall performance of the NIDS. 
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