Gibbs Sampler Derivation for Latent Dirichlet Allocation (Blei et al., 2003)
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I. Generative process, Plates, Notations
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Notations:
D: # of documents

| N: # of words/document (N, for d** document)

K: # of topics

0y =< 8,.|t € {1... K} >: topic distribution for
document ¢

Vr =< Yyl € {1...V} > : topic k’s word distribution
over vocabulary V (set of all words)

Zqy: latent topic assignment to n'® word of document d
Wyt N word of document d

Z = {Zd,n}: W= {wd,n}} O = {ed}: ¢ = {‘pk}

II. The joint distribution:
P(W,Z;0;8) = P(W|Z)P(2) = I, x I,

I, = PW|Z)= /(P(W|Z, O)P(P))dd
I,=P(Z)= /P(Z|6))P(6))d@

Let us solve for I, first

I, = P(Z) = / P(Z]0)P(0)dO

From definition, © = {6,,6,,...0,} < 0,/d € {1... D} >

P(©) = HP(9d|a)

© Draw each topic »; ~ Dir(y), forie {1,..., K}.
® For each document:
© Draw topic proportions 6y ~ Dir(a).
® For each word:
© Draw Zy , ~ Cat (6y).
® Draw Wy n ~ Cat (#2,,)-

Now, we know, 0, ~ Dir(a). Recall that 0, = {0, ,,0,5,...04 } <04t €{1... K} >

Recall that X =< x4, ...z, > ~Dir(ay, ... af ) has the following PDF:
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f@y, oz oy ay) = g I1 ()", where B(a) =

[IT(e;)
LX)

Also since integrating the PDF over the simplex must equal 1 (from definition), we have



Ja T ()t dX =1 or [[[T7,(x,)]dX = B(a) (Identity A)

B(a) =1
Thus,
D D K o
P(@) = Hd:l P(9d|a) = Hd:l(ﬁnk:l<<9d,k) ' ) ) (1)
In our case, we assume each hyper-parameter of the K dimensional Dir, oy = - = a = a,

e, the vector & =< ay,...ap > =< a,...a >

Recall that

Z = {2421 jo1s - Zam1 joN s Za=D jeNy } =< Zajld € {1..D},j € {1... Ny} >
P(Z|©) = Hfl):l (vazdl p(Zd,j|9d)> (2)

Now since z, ; ~ Cat(0,)

We have p(z,,]0,) = Hle(ed,k)xi where for a given word, 7, out of {z/_,, ...z _,} exactly one of 2/ = 1 and
rest all are zero, i.e., 7, = 0. This follows directly from the categorical distribution because we are sampling a single

topic for the j** word in document d. The sampled topic & has the probability of 04 -

Thus,

N N K zd K Ng pJ
17 pla160) = TL (I, 00n) ) =TI, (00,544 )
as y* X y* = y*** where y = 6,

Now, ZNd ) =# of words in document d that were assigned to topic k. Let us denote this count by C(d, k) or C¥,
j=1 k d

ie.,

C(d, k) = Ck =N 27

j=1 k*

Continuing from (3), we get

1% plza100) = T, (90,5557 =TI, (6,0) 749 (@
Substituting (4) in (2), we get

P(210) =TT, (IL* p(za,1160)) =TT, (IT,_, (64,) M) (5)
Using (5) and (1), we get

I, = P(Z) = / P(2|0)P(©)dO

= I (T, (0 )T, (5 T, (Bai) 1) )] d© (6)

Since, the document topic distributions, 6, are independent of each other, we can group as follows:
D K o

= giag Loy [ (T, (0 )48 ))db, ] (7)

Using identity A, we get

f(HK ((Gd’k)o‘_HC(d”“) ))db, = B(a + Cy) where Cy =< Ch=1,Ch=2, .. Ch=K >

k=1



And B(a+C,) = % Continuing, from (7), we get

I, = P(Z) = [ PZ|O)P(©)d0 = 7117 Bla+C,) ®)

Now Simplifying I,

I, = P(W|Z) :/(P(W\Z, ®)P(®))dd

K
=[[P(eil®

k=1

Since p,, ~ Dir([3)
P@) =TI, (7511 (¢e.)"") ) O
PW|z.@) =11, , (I1* (IT,_, pwa ler))) (10)

7=1
Since w, ; ~ Cat(py,)
p(w, j‘gok = HZ 1(<pk v)"/’g’j where for a given word, j, in doc d out of {:cd] , ...xf)’:jv} exactly one of 47 = 1 and
rest all are zero, i.e., 7%/ = 0 as we are drawing a word v from the topic word distribution, ¢, with probability ¢ ko

d,j

Continuing from (10) and substituting p(wd,j|g0k) = Hq‘;l(@k,v)x“ ’

ﬁ(ﬁ(ﬁm )

Clho)=Cp=>">" abi
d J

Thus, we have

PW|2,®) = I, T, (¢,) % (11)
Using (9) and (11), we get

I,= PW|Z)= /(P(W|Z, (I))P((I)))dCD

- (L) ([ G L))o

k=1 v=1

Noting that topic distributions, ¢,, are independent and grouping the terms

1 K v
—I@H (/ H(@k,v>ﬁ+ C(k’v)ldS%)
k=1 v=1

The integral simplifies to B(8 + C},) where C,, =< C?=!, Cv=2, ... Cy=V >. Thus,



Iy = P(W|Z)= [(P(W|Z,9)P(®))d® = 55, BB+Cy) (12)
Thus, using (8) and (12), the full joint distribution of the model can be written as
P(W,Z;a;8) = P(W|Z)P(2) = I, x I,

= [l Bla+Co) [5g I, BB+C] (13

III. The Posterior on 8 and ¢

(A) Computing the posterior distribution for 6, having observed topic assignments, z, ,, in document d.

Prior: 0| ~ Dir (c). Prior probability: P(6,) = 5T ((0,,)* ")

B(a)llk=1

Likelihood of this document given 6,: P(Z,|0,) Hj,v:dl P(z4,104) =TI, (6,,)°'%" (using (4))

k=1
Posterior on 6, using Bayes theorem:

P(Z4l04)P(64) o

TPy 00 Pt g, ™ L)

P(9d|Zd> =

i.e., Posterior on 6,|Z, ~ Dir(a + C})

which is nothing but proportional to the Dirichlet(a + C;) . Here we see conjugate priors in action. Since Dirichlet
is the conjugate prior of Categorical distribution, the posterior also takes the form of the prior, i.e., another Dirichlet
with added pseudocounts.

In fact one can directly use the properties of conjugate priors to arrive at 0,|Z, ~ Dir(a + C,).

Using the properties of the Dirichlet distribution, one can easily obtain the expected value of the probability mass
associated to each topic in the document d as follows:

_ g _ _atClak)
El6yy] = Oap = SF @rcdry (P

(B) Computing the posterior distribution for ¢,

Using the fact that the Dirichlet is conjugate to the categorical distribution used for word emission process, we can
arrive at ¢, |W, ~ Dir(8 + C},). Thus,

- 5 = _BtCky)
E[(pk,v] = $Pro = >V (B+C(k,v)) (15)

IV. Gibbs sampler

Let Z = {24} = {241 jo1s -+ Zac1 j=n,s - Za=D,j=n, } D€ a Y N; dimensional random vector, i.e., Z denotes the
collection of all latent topic variables, z, ,, corresponding to all words in all documents.

Also let us posit a Markov chain X = < 20, 71 72 ZWner) > over the data and the model, whose stationary
distribution converges to the posterior on distribution of Z.



Alsolet Z = {z;,} = {%;} be denoted by single subscript of ease of notation. For a given token/word, i = (d’, j),

i.e., the word j” at document d’, the Gibbs conditional (sampling distribution) for its latent topic z, can be constructed
as follows:

g . P(Z,W) . P(W|Z)P(Z) P(W\Z)P(Z)
Pz = K2 W) = przwn = pow 2 Pz neten X Powzpiz) (10
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where Z = {2,,Z_, } and W = {w;, W_, }. Equation (16) gives us the probability that the latent topic variable z, at
i=(d’,j") is assigned to topic k" € {1... K} having observed all other topic assignments and words except w,. Also
for subsequent steps the subscript —¢ denotes all counts/variables/functional values upon discounting (or not
accounting) the token at w,

Expanding the sampling distribution using (13) we get:

7 W)« PWDPZ) (12 Bt Cp)(TTE, BECy)]
P (ZZ - k ‘Z—ﬂ,’ W—\Z7 wz) XX P(W_‘Z‘Z_W)P(Zﬁ?) (0.8 [(HdDle(OL-‘er))(Hi{:l B(,B—i—Ck))LZ_

Hle<a+Cd>} [Hflmmcm} 1
= |:H51B(0‘+Cd)ﬂ. % HiilB(ﬁﬂLCk). (17)
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Thus, the Gibbs sampling distribution for p(z; = k) says that it is proportional to the full joint distribution of the
model divided by the joint considering the token/word, w;, and its associated topical assignment did not exist in our
data/model.

Observing that o remains fixed, and ¢ corresponds to the topic and words, {z,, w, = (d’, j)} at some document d’
and some position 5 in that document, we can further simplify the first term in (17) as

H5:13<0‘+Cd) _ B(a+Cy_y) _ BlatC,_ ) (18)
HdD:1B<a+Cd>ﬁi N (B<O‘+Cd:d/))ﬂ. - Bla+[Cy_g/]-)

As for all documents other than d’ the numerator and denominator remain exactly the same and cancel out. Now let us
see what changes happen in the count vector C;_ s with or without including the term/word at w, = (d’, j') whose

latent topic assignment is z; = k’. We recall that C; =< C*=' C*=2 . C*=K > and C% = C(d, k) # of words in
document d that were assigned to topic k. Hence, we can write

_ [ [C@RL, ik F
@0 = {oan]s 1 nmi 09

Expanding (18) using the definition of B(ax) = g(gzzi

, we get

Bla+Cy g)
B(Ot-i—[cd:d/]ﬂ-)

k=1

T IE  T(a+C(d k) ) X r(2F (at+C(d’ k)

[ T(a+C(d k) _ T(X5 (a+C(d k)-,))

Using the result in (19) this further simplifies to (upon canceling out all non &k’ terms)

_ D(a+C(d,E)) XF(ZL\M(wC(d’,k)ﬁH a+C(d',K),))
CDle+ O k) T (X, (a+Cd.k)+ [a+Cd, k)

k=1\k’

T+ O k), +1) L (X pla+Cd k) + la+Cd,K).])
- Tla+C(d K))  T(XS) | (a+Cd k)) + [a+Cd, k) +1))

k=1\k’




Using the identity I'(z + 1) = «I'(z), we get
Bla+Cyy)  a+Cd, k),
Bla+[Cy_g]-) ZkK:l(a +C(d',k)_;)

In a similar way, one can also simply the second term in (17) as follows:

Hle(ﬁ+0k)]_ Ba+C_.) B+C’(/€/,v/)ﬁ‘

L5616 | (Bla+C,,)) T <5+C(k;’”?)ﬁi)

Where v’ refers to the vocabulary token which is assigned to w,. We can thus simplify the full Gibbs conditionals as
follows:

W
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P(z;, = K12,

w;)

a+C(d k), ] y [ B+CE W),
YU (et Cd k)| | B+ CH )

The full algorithm for Gibbs sampling is as follows (from Fig 8, [Heinrich, 2008]). There are some minor notation
changes which are noted below.

D—>M;C’(’j—>n§s);C£—>n§?;n = nk) . nmzztng)

m km )

@ initialisation
zero all count variables, n,[.,f} s ni_”, i
for all documents m € [1, M] do
for all words n € [1, N,,] in document m do
sample topic index z,,,=k ~ Mult(1/K)
increment document—topic count: n%’ + 1
increment document—topic sum: n,, + 1
increment topic—term count: ni” +1
increment topic—term sum: n; + 1
end for
end for
@ Gibbs sampling over burn-in period and sampling period
while not finished do
for all documents m € [1, M] do
for all words n € [1, Ni;] in document m do
@ for the current assignment of k to a term ¢ for word w,,, ,:
decrement counts and sums: nf,f} - lin, — l;n;” —Lin—1
& multinomial sampling acc. to Eq. 79 (decrements from previous step):
sample topic index k ~ p(z;|7.;. W)
& use the new assignment of z,, , to the term ¢ for word w,,, , to:
increment counts and sums: nf,f’ + 1:n, + l;n%” +1imp+1
end for
end for
@ check convergence and read out parameters
if converged and L sampling iterations since last read out then
@ the different parameters read outs are averaged.
read out parameter set @ according to Eq. 82
read out parameter set @ according to Eq. 83
end if
end while




