
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝟏𝟏 − 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐈𝐈𝐏𝐏𝐈𝐈𝐏𝐏𝐈𝐈𝐈𝐈𝐈𝐈 𝐒𝐒𝐒𝐒𝐈𝐈𝐏𝐏𝐏𝐏𝐒𝐒𝐈𝐈𝐈𝐈𝐈𝐈 𝐆𝐆𝐏𝐏𝐆𝐆𝐈𝐈𝐒𝐒𝐈𝐈𝐏𝐏𝐆𝐆𝐈𝐈 𝐌𝐌𝐏𝐏𝐌𝐌𝐏𝐏𝐈𝐈𝐌𝐌
𝐀𝐀𝐌𝐌𝐀𝐀𝐆𝐆𝐈𝐈𝐏𝐏𝐏𝐏𝐌𝐌 𝐍𝐍𝐆𝐆𝐏𝐏𝐍𝐍𝐏𝐏𝐆𝐆𝐈𝐈 𝐋𝐋𝐆𝐆𝐈𝐈𝐈𝐈𝐍𝐍𝐆𝐆𝐈𝐈𝐏𝐏 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐌𝐌𝐌𝐌𝐈𝐈𝐈𝐈𝐈𝐈

𝐌𝐌𝐆𝐆𝐌𝐌 𝐌𝐌𝐆𝐆𝐏𝐏𝐌𝐌𝐌𝐌: 𝟏𝟏𝟏𝟏𝟏𝟏

1. Introduction

We have learned how topic models (e.g., Latent Dirichlet Allocation, LDA [1]) work. In this
project we will learn about a new graphical model which extends LDA. LDA only performs a
weak semantic clustering of topical words. However, in most real-world documents, we find topics
and intentions/sentiments jointly mentioned in them. Our goal is design a graphical model which
can model mentions of two kinds of distributions (topics and intentions) from text. As modeling
large scale document collections can be computationally expensive, for this project we will be
simulating our results in the pixel space visualizing the state of the Markov Chain as it approaches
its posterior distribution upon Gibbs sampling iterations.

Obtain the Java codebase (eclipse package) and reading materials for this project from links below:
http://www2.cs.uh.edu/~arjun/courses/GraphicalModelsInventory.zip
http://www2.cs.uh.edu/~arjun/courses/Topic models reading materials.zip

2. Jointly Modeling Topics and Intentions using Beta Switch Samplers

To jointly model topics and intentions in documents, let us first take a look how they appear in

the real-world data. We choose the online debate/discussion domain which generates a large
amount of Web traffic. Figure 1 shows mentions of topics and two intentions/sentiments
(contention/disagreement, and concurrence/agreement) in debate discussions and online forums,
where people often use topics in conjunction with sentiment/emotion intentions (e.g.,
contention/disagreement, and concurrence/agreement). To illustrate, consider the following
excerpts of two actual debate posts where topics and intentions are color coded:

Figure 1: Topic/Intention color coded debate excerpts

i.e., all red/blue colored phrases/words indicate disagreement/agreement respectively. Further, we
also have different topics (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 → 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 → 𝑠𝑠𝑑𝑑𝑑𝑑𝑜𝑜𝑝𝑝𝑑𝑑𝑠𝑠, 𝑠𝑠ℎ𝑑𝑑𝑝𝑝𝑑𝑑𝑠𝑠𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 → 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝, etc.).
Building on LDA, if we wish to model this kind of text data, we need a new graphical model.
Essentially, we need to retain the topic word emission process of LDA but somehow need to
“switch” between topics and intentions when generating the next word in the document. We also
need to separate topics and intention models (i.e., topic distribution over words and intention
distribution over words). Hence, we propose a new model, Joint Topic Intention (JTI) model.

http://www2.cs.uh.edu/%7Earjun/courses/GraphicalModelsInventory.zip

2.1 Model Overview

The JTI model belongs to the family of generative models for text where words
(unigrams)/phrases (𝑝𝑝-grams) are viewed as random variables, a document is viewed as a bag of
𝑝𝑝-grams, and each 𝑝𝑝-gram (word/phrase) takes one value from a predefined vocabulary. In this
work we refer both words (unigrams)/phrases (n-grams) by terms. We denote the entries in our
vocabulary by 𝑣𝑣 = 1, … , 𝑉𝑉 where 𝑉𝑉 is the number of unique terms in the vocabulary. A
document (discussion post), 𝑑𝑑 is represented as a vector of 𝑝𝑝-grams 𝒘𝒘𝑑𝑑, with 𝑁𝑁𝑑𝑑 entries. The entire
corpus is comprised of 𝑑𝑑 = 1, … , 𝐷𝐷 documents. 𝑊𝑊 is the set of all observed terms in the corpus
with cardinality, |𝑊𝑊| = ∑ 𝑁𝑁𝑑𝑑𝑑𝑑 . The JTI model is a hierarchical generative model which is
motivated by the joint occurrence of intention types (disagreement, agreement) and topics in
discussion posts. In general there could be a total of 𝐼𝐼 intentions and 𝑇𝑇 topics mentioned in our
document corpus/collection. Our model is general and is designed to work with any value of 𝐼𝐼 and
𝑇𝑇 .

The observation in Figure 1 motivates the generative process of our model where documents are
represented as random admixtures of latent topics and intentions. Each topic or intention is
characterized by a distribution over terms (words/phrases). Assume we have 𝑠𝑠 = 1, … , 𝑇𝑇 topics
and 𝑝𝑝 = 1, … , 𝐼𝐼 intentions in our corpus. Also, let 𝜓𝜓𝑑𝑑 denote the distribution of topics and
intentions in document 𝑑𝑑 with 𝑑𝑑𝑑𝑑,𝑗𝑗 denoting the binary indicator “switch” variable (topic or
intention) for the 𝑗𝑗𝑡𝑡ℎ term of 𝑑𝑑, 𝑤𝑤𝑑𝑑,𝑗𝑗. Let 𝑧𝑧𝑑𝑑,𝑗𝑗 denote the appropriate topic or intention index to
which 𝑤𝑤𝑑𝑑,𝑗𝑗 belongs. We parameterize multinomials over topics using a stochastic matrix Θ𝐷𝐷×𝑇𝑇

𝑇𝑇
whose elements signify the probability that document 𝑑𝑑 exhibits topic 𝑠𝑠. For simplicity of notation,
we will drop the latter subscript (like 𝑠𝑠 in this case) when convenient and use 𝜃𝜃𝑑𝑑 to stand for the
𝑑𝑑𝑡𝑡ℎ row of Θ𝑇𝑇 . Similarly, we define multinomials over intentions using a stochastic matrix Θ𝐷𝐷×𝐼𝐼

𝐼𝐼 .
The multinomials over terms (words/phrases) associated with each topic are parameterized by a
stochastic matrix Φ𝑇𝑇×𝑉𝑉

𝑇𝑇 , whose elements denote the probability of generating the term 𝑣𝑣 from topic
𝑠𝑠. Likewise, multinomials over terms associated with each intention are parameterized by a
stochastic matrix Φ𝐼𝐼×𝑉𝑉

𝐼𝐼 . We now formally define the generative process of JTI (Figure 2).

Figure 2: Plate notation of the Joint Topic and Intention Model

2.2 Generative process

1. For each intention 𝑝𝑝, draw 𝜑𝜑𝑖𝑖
𝐼𝐼 ~ 𝐷𝐷𝑝𝑝𝑑𝑑(𝛽𝛽𝐼𝐼)

2. For each topic, 𝑠𝑠, draw 𝜑𝜑𝑡𝑡
𝑇𝑇 ~ 𝐷𝐷𝑝𝑝𝑑𝑑(𝛽𝛽𝑇𝑇)

3. For each document post, 𝑑𝑑 ∈ {1… 𝐷𝐷}:
i. Draw 𝜓𝜓𝑑𝑑 ~ 𝐵𝐵𝑠𝑠𝑠𝑠𝑜𝑜(𝛾𝛾𝒖𝒖) = 𝐵𝐵𝑠𝑠𝑠𝑠𝑜𝑜(𝛾𝛾𝑎𝑎, 𝛾𝛾𝑏𝑏) // draw the switch prior

ii. Draw 𝜃𝜃𝑑𝑑
𝐼𝐼 ~ 𝐷𝐷𝑝𝑝𝑑𝑑(𝛼𝛼𝐼𝐼) // draw the document intention distribution

iii. Draw 𝜃𝜃𝑑𝑑
𝑇𝑇 ~ 𝐷𝐷𝑝𝑝𝑑𝑑(𝛼𝛼𝑇𝑇) // draw the document topic distribution

iv. For each term 𝑤𝑤𝑑𝑑,𝑗𝑗; 𝑗𝑗 ∈ {1… 𝑁𝑁𝑑𝑑}:
a. Draw the topic/intention switch variable for this term, 𝑑𝑑𝑑𝑑,𝑗𝑗 ~

𝐵𝐵𝑠𝑠𝑑𝑑𝑝𝑝𝑠𝑠𝑑𝑑𝐵𝐵𝐵𝐵𝑝𝑝(𝜓𝜓𝑑𝑑)
b. if (𝑑𝑑𝑑𝑑,𝑗𝑗 = 𝑠𝑠)̂ // the term at 𝑤𝑤𝑑𝑑,𝑗𝑗 is a topical term

Draw 𝑧𝑧𝑑𝑑,𝑗𝑗 ~ 𝑀𝑀𝑑𝑑𝐵𝐵𝑠𝑠(𝜃𝜃𝑑𝑑
𝑇𝑇)

c. if (𝑑𝑑𝑑𝑑,𝑗𝑗 = 𝚤𝚤)̂ // the term at 𝑤𝑤𝑑𝑑,𝑗𝑗 is an intention term
Draw 𝑧𝑧𝑑𝑑,𝑗𝑗 ~ 𝑀𝑀𝑑𝑑𝐵𝐵𝑠𝑠(𝜃𝜃𝑑𝑑

𝐼𝐼)
d. Emit the corresponding topical/intention term from its corresponding

(latent) topic/intention term distribution, 𝑤𝑤𝑑𝑑,𝑗𝑗 ~ 𝑀𝑀𝑑𝑑𝐵𝐵𝑠𝑠(𝜑𝜑𝑧𝑧𝑑𝑑,𝑗𝑗

𝑟𝑟𝑑𝑑,𝑗𝑗)

The graphical model corresponding to this process is shown in plate notation in Figure 2. Our
goal in this project is to implement an approximate inference scheme, using MCMC collapsed
Gibbs sampling for posterior inference.

3. Generating Synthetic Data

The class IntentModelSyntheticData generates a small document corpus of 1000 documents,
each document containing 300 words. The entire vocabulary of the corpus is consisting only of 25
words which can be easily visualized as a 5 x 5 pixel matrix as follows (each pixel 0-24 is a word):

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
Figure 3: Pixel Matrix

Further, as we know form topic models [1], that topics are nothing but a distribution over words

in the vocabulary, we can define various topics on this vocabulary using appropriate multinomial
distributions. We can also make a distinction between two kinds of topics: (a) regular topics (b)
intentions to simulate the documents in debate discussions and online forums. We can simulate
the discussions data in a simplistic manner with just a 25 word vocabulary (i.e., there are no
phrases, words can represent both topics and intentions). We can do this by generating about 10
topics and 2 intentions using the class SyntheticData and visualize the predefined topics and

intentions using the class GibbsVisualizer. We show the topics and intentions generated by
GibbsVisualizer below:

Figure 3: Visualizing Topics/Intentions

However, it is important to note that documents generated using the class SyntheticData follow
the following generate process (assuming a total of fixed 𝐾𝐾 = 12 topics, 10 proper topics + 2
intentions):

For each 𝑑𝑑 ∈ {1 … 𝑀𝑀 = 100}
{
1. Draw the topic distribution for the document, 𝑑𝑑, 𝜃𝜃𝑑𝑑 ~ 𝐷𝐷𝑝𝑝𝑑𝑑(𝛼𝛼)
2. Compute the weighted probability of a word appearing in document 𝑑𝑑, using 𝜃𝜃𝑑𝑑,𝑡𝑡 ×

𝜑𝜑𝑡𝑡,𝑤𝑤
3. This generates the document word distribution, 𝑃𝑃(𝑤𝑤|𝑑𝑑) = ∑ �𝜃𝜃𝑑𝑑,𝑡𝑡 × 𝜑𝜑𝑡𝑡,𝑤𝑤�𝑡𝑡 .
4. Finally, emit actual words in this document, 𝑑𝑑 by sampling words from the multinomial

distribution over all words {𝑃𝑃(𝑤𝑤𝑖𝑖|𝑑𝑑) | 𝑝𝑝 = 0 …24 }.
}

These are clearly detailed in the methods init_topics() and generateDocs() in the class
SyntheticData. You can also see the helper classes DirichletSampler and SampleMultinomial
to understand “how exactly” it is done.

Going back to our IntentModelSyntheticData, we find that it further simplifies the problem by
only considering 7 topics and 3 intentions. It employs a similar mechanism as in to generate the
synthetic data, i.e., documents comprising of topics and intentions on a 25 word vocabulary. It is
important to note that is specifically draws the (topic/intention) switch variable, 𝑑𝑑 from a
biased/asymmetric Beta distribution, 𝑑𝑑 ~ 𝐵𝐵𝑠𝑠𝑠𝑠𝑜𝑜(3.5, 1.0) which ensures that topic words appear in
majority (to simulate the real-world distribution). This can be easily understood by following the
details in the generateDocs() method in the class IntentModelSyntheticData. Further, the
aggregate point estimates of 𝑑𝑑 over all synthetic documents show that on average topic and
intention words appear approximately 79% and 21% of the times respectively in documents.

4. Implementing the Markov Chain Monte Carlo (MCMC) Gibbs Sampler

Start with the template IntentModelGibbsSampler. This builds over the LDAGibbsSampler
which was provided in the preparatory materials. The structure is very similar but adds more
functionality to standard Latent Dirichlet Allocation. Use the following prior beliefs on the
hyperparameters:

𝛼𝛼𝑇𝑇 = 𝛼𝛼 = 50
𝑇𝑇 = 7

= 7.1428

𝛼𝛼𝐸𝐸 = 𝛼𝛼𝑖𝑖 = 50
𝐼𝐼 = 3

= 16.667

𝜓𝜓 ~ 𝐵𝐵𝑠𝑠𝑠𝑠𝑜𝑜(4, 1) = 𝐵𝐵𝑠𝑠𝑠𝑠𝑜𝑜(𝛾𝛾 = 5 × 𝒖𝒖 = [45 , 1
5]), where 𝛾𝛾 denotes the concentration parameter and

𝒖𝒖 the base measure for Beta distribution.
Also note the representation used to jointly model topics and intents. To bootstrap the state of

the Markov chain (i.e., assigning the latent variables 𝑧𝑧𝑑𝑑,𝑗𝑗 to random topic/intention assingments),
we use the following scheme. When 𝑧𝑧𝑑𝑑,𝑗𝑗 takes on topic assignments (i.e., the corresponding 𝑑𝑑𝑑𝑑,𝑗𝑗 =
𝑠𝑠 ̂) it is assigned values 𝑧𝑧𝑑𝑑,𝑗𝑗 = 0, 1,… 𝑇𝑇 − 1. When 𝑧𝑧𝑑𝑑,𝑗𝑗 takes on intentions (i.e., the corresponding
𝑑𝑑𝑑𝑑,𝑗𝑗 = 𝚤𝚤)̂, it is assigned values 𝑧𝑧𝑑𝑑,𝑗𝑗 = −1,−2, …− 𝐼𝐼 . This scheme allows us to capture both topic
and intention assignments using exactly one variable. There are other splitting schemes possible
too, but this is simple and does the job! Further, the topic/intention indicator switch variable 𝑑𝑑𝑑𝑑,𝑗𝑗
for each word assignment, takes the value true for topics and false for intents. This is detailed in
the method initialState(). It is important to follow the same representation to ensure ease
and correctness of implementation for the methods in Section 4.2.

Recall that the machine learning goal is to mine the synthetic data (as documents) and estimate
the original topics and intention distribution that generated the synthetic data. This results in
learning a model which estimates the latent topic and intention distribution and can be broken into
three sub problems:

4.1 Derivation [15 + 15 + 5 = 35 points]

Derive the following showing full details and using appropriate nomenclature for count
variables.

(a) Complete joint distribution of JTI, i.e., 𝑃𝑃(𝑊𝑊,𝑍𝑍, 𝑅𝑅), where the capitalized random
variables denote the family of all sub random variables mentioned with small cases in the
above draft.

(b) Collapsed Gibbs Samplers, specifically, derive the following Gibbs conditional
distribution:
(i) 𝑃𝑃�𝑧𝑧𝑘𝑘 = 𝑠𝑠′, 𝑑𝑑𝑘𝑘 = 𝑠𝑠�̂𝑤𝑤𝑘𝑘, 𝑊𝑊¬𝑘𝑘, 𝑍𝑍¬𝑘𝑘 , 𝑅𝑅¬𝑘𝑘� ∝ ⋯ where 𝑝𝑝 = (𝑑𝑑, 𝑗𝑗) denotes a specific

token being assigned to topic 𝑠𝑠′.
(ii) 𝑃𝑃(𝑧𝑧𝑘𝑘 = 𝑝𝑝′, 𝑑𝑑𝑘𝑘 = 𝚤𝚤|̂𝑤𝑤𝑘𝑘, 𝑊𝑊¬𝑘𝑘, 𝑍𝑍¬𝑘𝑘 , 𝑅𝑅¬𝑘𝑘) ∝ ⋯ where 𝑝𝑝 = (𝑑𝑑, 𝑗𝑗) denotes a specific

token being assigned to intention 𝑝𝑝′.

(c) The posterior distribution over the latent variables 𝜃𝜃𝑑𝑑,𝑖𝑖
𝐼𝐼 , 𝜃𝜃𝑑𝑑,𝑡𝑡

𝑇𝑇 , 𝜑𝜑𝑖𝑖,𝑣𝑣
𝐼𝐼 , 𝜑𝜑𝑡𝑡,𝑣𝑣

𝑇𝑇

4.2 Implementing Collapsed Gibbs Samplers [25 + 6 + 3 + 3 + 3 = 40 points]

Implement the following methods in the driver class IntentModelGibbsSampler.

(a) sampleFullConditional(int m, int n)
Similar to LDA (as in LDAGibbsSampler), first carefully subtract the topic/intent counts form
all the relevant count variables, perform sampling based on the samplers derived in the previous
step. Then add back the sampled topic/intent to the appropriate count variables respecting the
coding scheme detailed in initialState().

(b) updateParams()
Similar to LDA (as in LDAGibbsSampler), correctly update the following variables:
thetasum[m][t], thetasum_i[m][i], phisum[t][w], phisum_i[i][w] for all documents
𝑚𝑚, topics, 𝑠𝑠, intents 𝑝𝑝 and words 𝑤𝑤.

(c) Implement the posterior distribution of the latent variables 𝜃𝜃𝑑𝑑 , 𝜑𝜑𝑡𝑡

𝑇𝑇 , and 𝜑𝜑𝑖𝑖
𝐼𝐼 in the methods the

getTheta(),getPhi(),getPhi_i() extending the version appearing in LDAGibbsSampler
with suitable modification as applicable in this problem and its data structures/variable
nomenclatures.

4.3 Visualizing the intermediate state of the latent topic/intentions during Gibbs sampling
[5 points]

This has been already implemented in printCurrentPhi() which is called within the main
Gibbs sampling method, gibbs(). You do not need to do anything but ensure that the
implementation of printCurrentPhi() aligns well with your sampleFullConditional() and
updateParams() method (i.e., they should respect the variables and the point estimates being
taken in the implementation of printCurrentPhi()). If sampleFullConditional() and
updateParams() methods are correctly implemented, then this would automatically generate the
set of visualized topics and intents as they approach the posterior distribution. You will see that
the original topics/intents (predefined in IntentModelSyntheticData) emerge from the raw data
as Gibbs sampling estimation progresses. You are required to provide the set of images (which are
also automatically generated by the existing implementation) to obtain full scores for this step with
Synthetic data generated from IntentModelSyntheticData and Gibbs parameters in the class
IntentModelGibbsSampler set to model.configure(2000, 25, 50, 10).

Hint: One way to check you implementation is to compute the log-likelihood of the model. See
the getLogLiklihood () method in LdaGibbsSampler included in the codebase for this project,
i.e., GraphicalModelsInventory. It computes the log value of the joint probability of the entire
model. Also read [2] (text-est_heinrich.pdf included in the reading materials). It can be a bit tricky
and require some thought to extend getLogLiklihood for IntentModelGibbsSampler. But if you
can do it (i.e., derive both the Math and implement the code), it is a sure check that your
implementation is correct. In fact part of this task is included in the next section.

4.4 Analyzing the variation of posterior distribution [5 x 4 = 20 points]: In this section we
explore the posterior distribution of the model. For scoring in this section, you are required to: (1)
Compute the complete model likelihood in its closed form, and (2) Generate a plot of model
likelihood vs. Gibbs iteration number, (3) Compute the perplexity of the model in closed form
using the ideas of query sampler presented in [2] (a sample implementation of perplexity
computation of LDA is given in LdaGibbsSampler included in the codebase for this project, i.e.,
GraphicalModelsInventory), (4) Plot the perplexity vs. Gibbs iteration number.

5. Submission instructions

Submit the following for evaluation: (1) Typeset draft of derivation (4.1 (a, b, c), 4.4 (closed form
of model’s complete log-likelihood, and perplexity, plots of perplexity/model’s log-likelihood vs.
Gibbs iteration), (2) Codebase for (4.2, 4.3, 4.4).

References

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” J. Mach. Learn.
Res., vol. 3, no. 4–5, pp. 993–1022, 2003.

[2] G. Heinrich, “Parameter estimation for text analysis,” Techincal Rep., 2005.

