Detecting Deceptive Opinion Spam using Linguistics, Behavioral and Statistical Modeling

Arjun Mukherjee[†] Department of Computer Science University of Houston

[†] Contains contents (results/ideas/figures) of published papers by several contributors. Referenced in place.

Public opinion in this country is everything. —Abraham Lincoln

Which review is fake?

I want to make this review in order to comment on the excellent service that my mother and I received on the Serenade of the Seas, a cruise line for Royal Caribbean. There was a lot of things to do in the morning and afternoon portion for the 7 days that we were on the ship. We went to 6 different islands and saw some amazing sites! It was definitely worth the effort of planning beforehand. The dinner service was 5 star for sure. I recommend the Serenade to anyone who is looking for excellent service, excellent food, and a week full of amazing day-activities!

Guacamole burger was quite tall; clam chowder was tasty. The appetizers weren't very good at all. And the service kind of lagged. A cross between Las Vegas and Disney world, but on the cheesy side. This Cafe is a place where you eat inside a plastic rain forest. The walls are lined with fake trees, plants, and wildlife, including animatronic animals. I could see it being fun for a child's birthday party (there were several that occurred during our meal), but not a place to go if you're looking for a good meal.

Which review is fake?

I want to make this review in order to comment on the excellent service that my mother and I received on the Serenade of the Seas, a cruise line for Royal Caribbean. There was a lot of things to do in the morning and afternoon portion for the 7 days that we were on the ship. We went to 6 different islands and saw some amazing sites! It was definitely worth the effort of planning beforehand. The dinner service was 5 star for sure. I recommend the Serenade to anyone who is looking for excellent service, excellent food, and a week full of amazing day-activities!

Guacamole burger was quite tall; clam, chowder was tasty. The appetizers wer very good at all. And the service kind of lagg cross betwe Vega Disney world, b ut on the chee e is a l where you eat inside a plastic The with fake trees, olants, lined d wild cluding animatronic animals. I could see it bei fun for a child's birthday p e were several that t occurred during arty (the but not a place to go if you're looking for a our meal) good meal.

How Much Fake is Out There? Various estimates from different deception prevalence studies 2-6% in Orbitz, Priceline, Expedia, Tripadvisor, etc. [Ott et al., WWW 2012] 14-20% in Yelp [Mukherjee et al., ICWSM 2013; Wang et al., J. Eco. Policy 2010]

Opinion Spam Detection per Types

□ Type 2, 3 \rightarrow Supervised Learning

- Type 1 (Hard as difficult to get ground truths)
 - Approximation:
 "Use duplicates as positive samples"

Opinion Spam Feature Types

- □ Review centric features (content)
 - Features about reviews

□ Reviewer centric features

Features about the reviewers

Product centric features

Features about products reviewed.

Opinion Spam Review Feature In Number of feedbacks (F1)
Number (F2) and Percent (F3) of helpful feedbacks
□ Length of the review title (F4)
□ Length of review body (F5)
□

Opinion Spam Reviewer Features
Ratio of the first reviews (F22) of the products to the total number of reviews that he/she wrote
Ratio of the number of cases in which he/she was the only reviewer (F23)
□ Average rating given by reviewer (F24)
□ Standard deviation in rating (F25)

Opinion Spam Product Features
□ Price (F33) of the product
□ Sales rank (F34) of the product
□ Average rating (F35) of the product
Standard deviation in ratings (F36) of the reviews on the product

Cross Validation	Spam Type	Num reviews	AUC	AUC – text features only	AUC – w/o feedbacks
	Types 2 & 3	470	98.7%	90%	98%
Text features alone	Type 2 only	221	98.5%	88%	98%
not sufficient	Type 3 only	249	99.0%	92%	98%
Feedbacks unhelpful (as feedback itself subject to abuse!)					

Duplicate Opinion Spam Types

□ Same userid, same product

Different userid, same product

□ Same userid, different products

The last three types are very likely to be fake!

Different userid, different products

Predictive Power of Duplicates

Representative of all kinds of spam

□ Only 3% duplicates accidental

Duplicates as positive examples, rest of the reviews as negative examples

Near duplicates is a sheer sign of spamming – spammers usually want to recycle their fake reviews anyways!

Features used	AUC
All features	78%
Only review features	75%
Only reviewer features	72.5%
Without feedback features	77%
Only text features	63%

Linguistic Classifiers of Deception
Deception detection via Linguistic Signals [Ott et al., ACL 2011]
 □ Labeling fake reviews infeasible ■ Duplicate detection [Jindal and Liu, 2008] → naïve
 Generate fake reviews using Amazon Mechanical Turk (AMT) 20 hotels -20 reviews / hotel - Offer \$1 / review - 400 reviews

Human Performance on Deception Detection

- □ Test set: 80 Truthful and 80 Deceptive reviews (balanced data)
- Judges: 3 undergraduates (with 2 meta judges)

Deception detection is non-trivial by mere reading of reviews

 \Box Accuracies ranging from 53 – 61 %

Linguistic Classifier Performance Analysis

Classifier: Linear SVM

□ 3 Feature Families:

- Genre 48 POS tags
- Psycholinguistics, LIWC [Pennebaker et al., 2007] 4500 keywords across 80 linguistic dimensions
- N-grams

Linguistic Classifier Performance Classifier: Linear SVM Accuracy results on balanced data (400+(400)) rig 5_fold CVb				
(400+/400-) via 5-fold CV:	Feature Set	Accuracy		
	Genre (POS)	73.0		
	LIWC	76.8		
	Unigrams	88.4		
	Bigrams	89.6		
	Bigrams + LIWC	89.8		

Performance Evaluation of Deep Syntax
Classifier: LIBLINEAR
5-fold CV with 80-20 train-test splits
□ Feature value assignment: TF-IDF
 3 Feature Families: Lexical (uni/bigrams) Shallow syntax: POS tags Deep syntax: rules from parse trees

		Syntax	
Feature Set	TripAd visor	Essay	Yelp
Words	88.4	77.0	59.9
Shallow Syntax	87.4	80.0	62.0
Deep Syntax	90.4	78.0	63.5
Deep Syntax + Words	91.2	85.0	64.3
	Words Shallow Syntax Deep Syntax +	visorWords88.4Shallow Syntax87.4Deep Syntax90.4Deep Syntax +91.2	visor visor Words 88.4 77.0 Shallow Syntax 87.4 80.0 Deep Syntax 90.4 78.0 Deep Syntax + 91.2 85.0

Generic Deception Sign	al Discovery	
General Rule for Deception Detection Result due to [Li et al., ACL 2014]		
Domains	NYC-Hotel	0.76
 Hotel 	Chicago Restaurant	0.77
RestaurantDoctor	Doctor	0.61
 How well do deception classifiers transfer knowledge? Would text classifiers trained on hotel domain work well on Doctor domain? 	F1 scores of SVMs t on [Ott et al., 2011]	

Generic Deception Signals
Main results of [Li et al., ACL 2014] inferred from estimated feature weights
 (1) Domain specific details can be predictive of deception Spatial details in Hotel/Res domain reviews
□ (2) Both actual customers and experts tend to include spatial details → lack of spatial details <u>may not</u> be a generic cue for deception

Generic Deception Signals
Main results of [Li et al., ACL 2014] inferred from estimated feature weights
(3) Turkers and Experts (e.g., Hotel/Res employees) tend to have an "exaggerated" use of sentiment vocabulary
 (4) Decreased use of 1st person pronouns in deceptive text – "psychological detachment" [Newman et al., 2003] – similar findings as [Mukherjee et al., ICWSM 2013]

Modeling Spamming Behaviors Target and Deviation Based Spamming [Lim et al., CIKM 2010] Observation: Spammers direct their efforts to a set of target products/product groups and inflict spam via rating via multiple ratings

Interpretation Based Features Deviation based Spamming Single product group multiple high ratings $E_{ik}^{\mathcal{H}}(w) = \{e_{ij} \in E_{i*} \mid o_j \in b_k \land t(e_{ij}) \in w \land e_{ij} \in HRatingSet\}$ $C_i^{\mathcal{H}} = \bigcup_{k,w} \{E_{ik}^{\mathcal{H}}(w) \mid |E_{ik}^{\mathcal{H}}(w)| \ge minsize^{\mathcal{H}}\}$ Single product group multiple low ratings $E_{ik}^{\mathcal{L}}(w) = \{e_{ij} \in E_{i*} \mid o_j \in b_k \land t(e_{ij}) \in w \land e_{ij} \in LRatingSet\}$ $C_i^{\mathcal{L}} = \bigcup_{k,w} \{E_{ik}^{\mathcal{L}}(w) \mid |E_{ik}^{\mathcal{L}}(w)| \ge minsize^{\mathcal{L}}\}$ Combined Spam Score $c_g(u_i) = \frac{1}{2}(c_{g,\mathcal{H}}(u_i) + c_{g,\mathcal{L}}(u_i))$

- Each method works by ranking the users by decreasing behavior score order. The highly ranked users are more likely to be spammers. Methods are:
- (a) single product multiple reviews behavior (TP); (b) single product group multiple reviews behavior (TG) only; (c) general deviation (GD) behavior; and (d) early deviation (ED) behavior with α=1.5.
- combined method (ALL) that considers all the behaviors using a combined score.
- Baseline: ranks the reviewers by their average unhelpfulness.

True Spamicity Ranking (via human experts)
Obtaining gold-standard spamicity ranking for each reviewer is challenging due to scale.
Selective evaluation: Select 10 top/bottom ranked reviewers for each spammer detection method. Merge all the selected spammers into a pool. Upon sorting, 25 top ranked reviewers and 25 bottom ranked reviewers are then selected for user evaluation.
The above ranking feeds the signal for DCG (of ideal ranking)

Modeling Group Spam – Need for Relations

- Standard feature based learning [Jindal and Liu, WSDM 2008; Ott et al., ACL 2011] falls short
- Groups share members. i.e., apart from group features, the group spanicity is also affected by other groups sharing its members, the spanicity of the shared members, etc.
- □ Group features (f1...f8) only summarize (e.g., by max/avg) group behaviors but individual member level spam contributions not considered.
- \Box No notion of extent to which a product is spammed

Group Spam – Product Relation

□ The group spam-product relations can be expressed as:

•
$$s(p_i) = \sum_{j=1}^{|G|} w_1(p_i, g_j) s(g_j); V_P = W_{PG} V_G$$
 (1)

 \Box (1) computes the extent p_i is spammed by various groups. It sums the spam contribution by each group, $w_1(p_i, g_j)$, and weights it by the spamicity of that group, $s(g_j)$

•
$$s(g_j) = \sum_{i=1}^{|P|} w_1(p_i, g_j) s(p_i); V_G = W_{PG}^T V_P$$
 (2)

□ (2) updates the group's spamicity by summing its spam contribution on all products weighted by the extent those products were spammed.

Member Spam – Product Relation

- □ Like w_1 , we employ $w_2 \in [0, 1]$ to model spam contribution by a member m_k towards product p_i .
- \Box Like before, we compute the spanicity of m_k by summing its spam contributions towards various products, w_2 weighted by $s(p_i)$ in (3).

$$s(m_k) = \sum_{i=1}^{|P|} w_2(m_k, p_i) s(p_i); V_M = W_{MP} V_P \quad (3)$$

 \Box Update p_i to reflect the extent it was spammed by members by summing the individual contribution of each member w_2 , weighted by its spamicity.

$$s(p_i) = \sum_{k=1}^{|M|} w_2(m_k, p_i) s(m_k); V_P = W_{MP}^T V_M \quad (4)$$

GSRank: Group Spam Rank

- Modeling collusion behaviors via GSRank
- GSRank: Group ↔ member ↔ product reinforcement based ranking
 [Mukherjee et al., WWW 2012]
- Theoretical Guarantees:
 - Lemma 1: GSRank is an instance of an eigenvalue problem
 - Theorem 1: GSRank converges

Input	: Weight matrices W_{PG} , W_{MP} , and W_{GM}
Outp	ut: Ranked list of candidate spam groups
1.	Initialize $V_G^0 \leftarrow [0.5]_{ G }; t \leftarrow 1;$
2.	Iterate:
	i. $V_P \leftarrow W_{PG} V_G^{(t-1)}; V_M \leftarrow W_{MP} V_P;$
	ii. $V_G \leftarrow W_{GM} V_M; V_M \leftarrow W_{GM}^T V_G;$
	iii. $V_P \leftarrow W_{MP}^{T} V_M; V_G^{(t)} \leftarrow W_{PG}^{T} V_P;$
	iv. $V_G^{(t)} \leftarrow V_G^{(t)} / V_G^{(t)} _1;$
	until $\ V_{G}^{(t)} - V_{G}^{(t-1)}\ _{\infty} < \delta$
3.	Output the ranked list of groups in descending order of V_G^*

GSRank Performance Evaluation

Baselines: SVM, LR **Metric**: AUC.

Feature sets:

GSF: Group spam features [Mukherjee et al., WWW 2011]

ISF: Indiv. spam features [Lim et al., CIKM 2010]

LF: Linguistic features [Ott et al., 2011]

Feature Settings	SVM	LR	SVR			SVM Rank_H	Rank Boost_H	GS Rank
GSF	0.81	0.77	0.83	0.83	0.85	0.81	0.83	0.93
ISF	0.67	0.67	0.71	0.70	0.74	0.68	0.72	
LF	0.65	0.62	0.63	0.67	0.72	0.64	0.71	
GSF + ISF + LF	0.84	0.81	0.85	0.84	0.86	0.83	0.85	

(a) The spamicity threshold of $\xi = 0.5$

Feature Settings	SVM	LR	SVR			SVM Rank_H	Rank Boost_H	GS Rank
GSF	0.83	0.79	0.84	0.85	0.87	0.83	0.85	0.95
ISF	0.68	0.68	0.73	0.71	0.75	0.70	0.74	
LF	0.66	0.62	0.67	0.69	0.74	0.68	0.73	
GSF + ISF + LF	0.86	0.83	0.86	0.86	0.88	0.84	0.86	

(b) The spamicity threshold of $\xi = 0.7$

 Table 1: AUC results of different algorithms and feature sets.

 All the improvements of GSRank over other methods are statistically significant at the confidence level of 95% based on paired *t*-test.

• Unlikely to be coincidental- Something seems fishy!

Graph Based Model Variants

Online Store Spammer Detection [Wang et al., ICDM 2011]

Reinforcement Ranking based on Graph Manifolds [Li et al., EMNLP 2013]

Rating Distributional Analyses

- Q: Can we detect opinion spammers using distribution of review rating scores?
- Detect opinion spammers via divergence of rating distributions [Feng et al., ICWSM 2012]

Rating Distributional Analyses

- □ Hypothesis: Deceptive business entity that hires people to write fake reviews will necessarily distort its distribution of review scores, leaving distributional footprints behind. [Feng et al., ICWSM 2012]
- □ Analyses on 4 years of TripAdvisor data [2007-2011] revealed
- Significant increase in 4,5 star ratings over time – as if all hotels are consistently improving there services!

Spatio-Temporal Analysis on Large-Scale Data

- Q: What are the spatio-temporal dynamics of opinion spamming?
- Experiments on industry-scale filtered fake reviews – Dianping.com (Chinese Yelp) [Li et al., ICWSM 2015]

- Data Volume: over 6 Million reviews
- Richness: IP address and cookie information of users

43

l Novel spatic [Li et al., 20	Spatio-Temporal Features o-temporal features explored in 15]:
Feature	Description
regMainsite	Whether the user is registered on main site of Dianping
regTu2Tr	Whether the user is registered between Tue. and Thur
regDist2SH	Distance from the city where a user registered to Shanghai
ATS	Average Travel Speed
weekendPcnt	% of reviews written at weekends
pcPcnt	% of reviews posted through PC
avgDist2SH	Average distance from the city where the user posts each review to Shanghai

Spatio-Temporal Features

□ Novel spatio-temporal features explored in [Li et al., 2015]:

Feature	Description
AARD	Average absolute rating deviation of users' reviews
ulPs	# of unique IPs used by the user
uCookies	# of unique cookies used by the user
uCities	# of unique cities where users write reviews

- Results of deception detection using spatio-temporal features explored in [Li et al., ICWSM 2015]
- Spatio-Temporal features alone are more effective than linguistic (n-gram) and behavioral features.
- Combining all linguistic, behavioral, and spatiotemporal features yield the best detection performance

Method	Accuracy	Precision	Recall	F1
Unigram and Bigram	0.68	0.71	0.63	0.67
Behavioral Features	0.74	0.71	0.78	0.73
Proposed New Features	0.84	0.81	0.86	0.83
Combined	0.85	0.83	0.87	0.85

Commercial Opinion Spam Filters: Case Study of Yelp

- Deception Research has mostly used duplicate reviews [Jindal and Liu, 2008] or AMT generated reviews [Ott et al., 2011] as fakes.
- Q: How does this compare to fake reviews detected by commercial filters?
- Q: How much fake is out there?

Selper Official Blog We know just the place."

From Yelp's official blog:

"about 25% of the reviews *submitted* to Yelp are not published on a business's listing"

- Vince S., VP Communications & Public Affairs

Results of State-of-the-Art Supervised Learning

- AUC = 0.78 assuming duplicate reviews as fake [Jindal & Liu, WSDM 2008]. Duplicate reviews as fake is a naïve assumption.
- Accuracy = 90% using n-grams on Amazon Mechanical Turk (AMT) crowdsourced fake reviews [Ott et al., ACL 2011].

Q: How well do linguistic ngrams perform in detecting fake reviews filtered by Yelp? [Mukherjee et al., 2013]

Results of State-of-the-Art Supervised Learning

- AUC = 0.78 assuming duplicate reviews as fake [Jindal & Liu, WSDM 2008]. Duplicate reviews as fake is a naïve assumption.
- Accuracy = 90% using n-grams on Amazon Mechanical Turk (AMT) crowdsourced fake reviews [Ott et al., ACL 2011].

Q: How well do linguistic ngrams perform in detecting fake reviews filtered by Yelp? [Mukherjee et al., 2013]

Objective: Compare ngrams and behavioral features on Yelp data and postulate what might Yelp fake review filter be doing?

Applying Linguistic Features on Yelp Data

- □ Yelp Data Statistics
- □ Linguistic feature families:
- □ ngrmas, LIWC [Ott et al., 2011]
- Deep syntax: lexicalized and un-lexicalized production rules involving immediate or grandparent nodes of sentence parse trees [Feng et al., 2012]
- POS sequential patterns [Mukherjee and Liu, 2012]

Domain	fake	non-fake	% fake	total # reviews	# reviewers
Hotel	802	4876	14.1%	5678	5124
Restaurant	8368	50149	14.3%	58517	35593

Classific	ation Expe	rimer	its o	on Y	Yelp	D	ata	l		
□ SVM 5-fold CV	Features	Р	R	F1	Α		Р	R	F1	Α
results across	Word unigrams (WU)	62.9	76.6	68.9	65.6		64.3	76.3	69.7	66.9
different sets of features.	WU + IG (top 1%)	61.7	76.4	68.4	64.4		64.0	75.9	69.4	66.2
icatures.	WU + IG (top 2%)	62.4	76.7	68.8	64.9		64.1	76.1	69.5	66.5
$\square WU \rightarrow word unigram$	Word-Bigrams (WB)	61.1	79.9	69.2	64.4		64.5	79.3	71.1	67.8
$\square WB \rightarrow word bigrams$	WB+LIWC	61.6	69.1	69.1	64.4		64.6	79.4	71.0	67.8
\Box Top 1/9/ refers to	POS Unigrams	56.0	69.8	62.1	57.2		59.5	70.3	64.5	55.6
Top k% refers to using top features	WB + POS Bigrams	63.2	73.4	67.9	64.6		65.1	72.4	68.6	68.1
according to	WB + Deep Syntax	62.3	74.1	67.7	64.1		65.8	73.8	69.6	67.6
Information Gain (IG)	WB + POS Seq. Pat.	63.4	74.5	68.5	64.5		66.2	74.2	69.9	67.7
		Ho	otel Do	main			Res	staurai	nt Don	nain

Classific	Classification Experiments on Yelp Data											
• Across both hotel and	Features	Р	R	F1	Α		Р	R	F1	Α		
restaurant domains,	Word unigrams (WU)	62.9	76.6	68.9	65.6		64.3	76.3	69.7	66.9		
word unigrams only yield about 66%	WU + IG (top 1%)	61.7	76.4	68.4	64.4		64.0	75.9	69.4	66.2		
accuracy on real-life	WU + IG (top 2%)	62.4	76.7	68.8	64.9		64.1	76.1	69.5	66.5		
fake review data	Word-Bigrams (WB)	61.1	79.9	69.2	64.4		64.5	79.3	71.1	67.8		
	WB+LIWC	61.6	69.1	69.1	64.4		64.6	79.4	71.0	67.8		
	POS Unigrams	56.0	69.8	62.1	57.2		59.5	70.3	64.5	55.6		
	WB + POS Bigrams	63.2	73.4	67.9	64.6		65.1	72.4	68.6	68.1		
	WB + Deep Syntax	62.3	74.1	67.7	64.1		65.8	73.8	69.6	67.6		
	WB + POS Seq. Pat.	63.4	74.5	68.5	64.5		66.2	74.2	69.9	67.7		
		Но	otel Do	main			Res	staurai	nt Don	nain		

Are Yelp Spammers Smart?

Plausible inference:

Yelp spammers (authors of filtered reviews) made an effort (are smart enough) to ensure that their fake reviews align with nonfakes (i.e., have most words that also appear in truthful reviews) to sound "convincing".

However, during the process/act of "faking" they happened to <u>overuse</u> some words consequently resulting in much higher frequencies of certain words in their fake reviews than other non-fake reviews.

Deception Signals in Yelp Fake Reviews

O: What are those words that spammers tend to overuse?

- □ us, price, stay, feel, nice, deal, comfort, etc. in the hotel domain; and options, went, seat, helpful, overall, serve, amount, etc. in the restaurant domain.
- □ More use of personal pronouns and emotions \rightarrow pretense (?) [Result later corroborated by Li et al., ACL 2014]
- **Q:** How do these differ from traditional lies in deception?

		-		
Word	AVI		Word	AVI
(w)	ΔKL_{Word}		(w)	ΔKL_{Word}
us	0.0446		places	0.0257
area	0.0257		options	0.0130
price	0.0249		evening	0.0102
stay	0.0246		went	0.0092
said	-0.0228		seat	0.0089
feel	0.0224		helpful	0.0088
when	-0.0221		overall	0.0085
nice	0.0204		serve	0.0081
deal	0.0199		itself	-0.0079
comfort	0.0188		amount	0.0076
Hotel	Domain		Restaura	int Domain

Conventional Deception/Lying Signals

- □ Newman et al., [2003] reports lying/deception communication is characterized by the use of **fewer** first-person pronouns, more negative emotion words, and more motion/action words
- Fewer personal pronouns refers to the psycholinguistic process of "detachment" - liars trying to "disassociate" themselves [Knapp et al., 1974].

<section-header><text><list-item><list-item><list-item><list-item>

Linguis	tic vs. Bel	havi	oral	Fea	ture	es			
Q: Which feature families are more	Feature Setting	Р	R	F1	А	Р	R	F1	А
discriminative?	Unigrams	62.9	76.6	68.9	65.6	64.3	76.3	69.7	66.9
Behavioral features along have a major gain	Bigrams	61.1	79.9	69.2	64.4	64.5	79.3	71.1	67.8
alone have a major gain	Behavior Feat.(BF)	81.9	84.6	83.2	83.2	82.1	87.9	84.9	82.8
Linguistic features further improves gains	Unigrams + BF	83.2	80.6	81.9	83.6	83.4	87.1	85.2	84.1
Linguistic features	Bigrams + BF	86.7	82.5	84.5	84.8	84.1	87.3	85.7	86.1
obtain > 50% accuracy → Contain subtle signals			Hotel D	omain		Ro	estaura	<mark>nt Don</mark>	nain

What are the M	lost Discrin	ninat	ive Feat	ures?
□ Ablation experiments	Feature Setting	P R	F1 A	P R F1 A
to assess feature	Unigrams 6	62.9 76.6	68.9 65.6	64.3 76.3 69.7 66.9
	Bigrams 6	61.1 79.9	69.2 64.4	64.5 79.3 71.1 67.8
contribution	Behavior Feat.(BF) 8	81.9 84.6	83.2 83.2	82.1 87.9 84.9 82.8
			81.9 83.6	83.4 87.1 85.2 84.1
\Box Graceful degradation \rightarrow	Bigrams + BF 8	86.7 82.5	84.5 84.8	84.1 87.3 85.7 86.1
Every feature	(a)): Hotel		(b): Restaurant
contributes to some				
extent	Dropped Feature	P F	R F1 A	P R F1 A
	MNR		0.6 82.7 83.3	82.8 86.0 84.4 84.4
D Dropping PL MCS	PR	82.9 78		81.3 83.4 82.3 82.5
Dropping RL, MCS	RL		0 80.3 79.7	81.8 82.9 82.3 81.8
reduces accuracy by 4-	RD		.6 83.4 84.0	83.4 86.7 85.0 85.7
$6\% \rightarrow$ Potentially more	MCS		0.1 81.9 82.9	82.8 85.0 83.9 84.3
discriminative		(a): Hotel		(b): Restaurant

Author Spamicity Model

- □ Latent Variables:
 - Author spamicity $s_a \sim Beta(\alpha)$
 - Class label (spam/non-spam) of a $\hat{\pi}_r \in \{s, n\}$ review, r,

□ Latent Behavioral Distributions

□ Review behavioral models:

- Rating Abuse, $\theta^{RA} \sim Beta(\gamma^{RA})$ i.
- Duplicate Review Posting, $\theta^{DUP} \sim Beta (\gamma^{DUP})$ ii.
- iii. Extreme Review Rating, $\theta^{EXT} \sim Beta(\gamma^{EXT})$
- iv. Rating Deviation, $\theta^{DEV} \sim Beta(\gamma^{DEV})$ v. Early Time Frame, $\theta^{ETF} \sim Beta(\gamma^{ETF})$
- □ Author behavioral models:
 - Content Similarity, $\theta^{CS} \sim Beta(\psi^{CS})$ i.
 - ii. Max No. of Reviews, $\theta^{MNR} \sim Beta(\psi^{MNR})$
 - iii. Reviewing Burstiness, $\theta^{BST} \sim Beta(\psi^{BST})$
 - iv. Ratio of first reviews, $\theta^{RFR} \sim Beta(\psi^{RFR})$

Opinion spammers differ from others on behavioral dimensions resulting in a separation margin between distributions of two naturally occurring clusters: spammers and non-spammers

Author Spamicity Model

□ Latent Variables:

- Author spamicity $s_a \sim Beta(\alpha)$
- Class label (spam/non-spam) of a review, r, $\pi_r \in \{s, n\}$

□ Latent Behavioral Distributions

□ Review behavioral models:

- i. Rating Abuse, $\theta^{RA} \sim Beta(\gamma^{RA})$
- ii. Duplicate Review Posting, $\theta^{DUP} \sim Beta(\gamma^{DUP})$
- iii. Extreme Review Rating, $\theta^{EXT} \sim Beta(\gamma^{EXT})$
- iv. Rating Deviation, $\theta^{DEV} \sim Beta(\gamma^{DEV})$
- v. Early Time Frame, $\theta^{ETF} \sim Beta(\gamma^{ETF})$

□ Author behavioral models:

- i. Content Similarity, $\theta^{CS} \sim Beta(\psi^{CS})$
- ii. Max No. of Reviews, $\theta^{MNR} \sim Beta(\psi^{MNR})$
- iii. Reviewing Burstiness, $\theta^{BST} \sim Beta(\psi^{BST})$
- iv. Ratio of first reviews, $\theta^{RFR} \sim Beta(\psi^{RFR})$

Observed features: RA, DUP, EXT, ...BST, RFR computed from Amazon.com review dataset of 50,704 reviewers, 985,765 reviews, and 112,055 products.

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \alpha \\ s \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	$\begin{array}{c} \theta^{RA} & \theta^{DUP} & \theta^{EXT} & \theta^{DEV} & \theta^{ETF} \\ \gamma^{RA} & \gamma^{DUP} & \gamma^{EXT} & \gamma^{DEV} & \gamma^{ETF} \end{array}$

Evaluating ASM via Review Classification

- □ If ASM is effective → it should rank highly likely spammers at the top and highly likely nonspammers at the bottom.
- So, supervised classification of reviews of likely spammers and likely non-spammers can the spamicity ranking.

Г

This evaluation is based on the hypothesis that spam opinions can be separated from truthful ones using ngrams [Ott et al., 2011].

Review classification of top/bottom authors being good → ASM spamicity ranking of reviewers is effective because text classification concurs with the abnormal behavior spam detection of ASM

$\square \Delta SM \qquad k \qquad ASM-UP \qquad ASM-IP \qquad ASM-HE$																	
\Box ASM	k		-									1				1Rank	
2	(%	/	R	F1	A	Р	R	F1	Α	Р	R	F1	Α	Р	R	F1	Α
outperforms	5				75.5					79.6		77.3			74.7	73.4	73.1
	10		62.9														70.4
various	15	5 62.9	59.9	61.4	60.2	66.8	64.5	65.6	66.1	68.9	67.4	68.1	66.7	57.2	60.9	58.9	59.2
1 1.							_	T	able 2	(b)							
baselines:	k								Sum			H			-	1	
- Frank and Gran	(%)	Р	R	_	71	Α	F		R	F1	-	А	P		R	F1	A
 Feature Sum 	5	74.6	75.1		4.8	74.6	_		73.6	74.		75.2	57.		51.7	59.7	59.8
 IIalafalaaga 	10	68.1	71.6	_	9.8	71.2	67		60.2	63.		61.4	58.		50.8	59.8	60.6
 Helpfulness 	15	58.3	57.8	58	8.0	59.8	60	.2	55.3	57.	6	57.2	61.	7 5	8.0	59.8	58.2
 SVMRank 																ors' re (-) cla	
 RankBoost 		ision,															

Evaluating ASM via Expert Evalaution

	ASM-UP			ASM-IP			ASM-HE			SVMRank			RankBoost			FSum			HS		
	B ₁	B_2	B_3	B_1	B_2	B_3	B_1	B_2	B_3	B ₁	B_2	B ₃	B ₁	B ₂	B_3	B ₁	B_2	B_3	B ₁	B_2	B ₃
J ₁	31	15	3	36	11	1	43	5	0	36	19	1	37	13	1	34	13	0	6	14	17
J ₂	28	14	3	31	6	1	36	6	0	32	16	4	34	8	2	32	11	0	5	12	14
J_3	29	13	2	33	8	0	39	3	0	33	11	2	34	11	0	31	8	0	8	9	10
Avg.	29.3	14.0	2.67	33.3	8.33	0.67	39.3	4.67	0	33.7	15.3	2.33	35.0	10.7	1	32.3	10.7	0	6.33	11.7	13.7
κ_{Fleiss}	0.73		0.68		0.74			0.71			0.72			0.76			0.73				

Table 3: Number of spammers detected in each bucket (B_1, B_2, B_3) by each judge (J_1, J_2, J_3) across each method. Last row reports the agreement of judges using Fleiss' multi-rater kappa (κ_{Fleiss}) for each method.

Profile evaluation of likely spammers via domain experts across three buckets. ASM variants ranks maximums # of spammers in B1 and almost 0 spammers in B3

(left:blue/dotted for non-spam and right: solid/red for spam). Also shown are the expected values for each latent behavior for spam (red/dashed) and non-spam (blue/dash-dot) in respective scales. Expected values are also reported in plot captions.

(Ger	ier	ativ	ve I	Mo	del	Ba	ise	d C	lus	ter	ing	5 0 1	n R	evi	ews	5	
Algorithm	Feat.	Е	Р	Prec.	Rec.	F1]	Е	Р	Prec.	Rec.	F1		Е	Р	Prec.	Rec.	F1
17	L	0.99	0.54	52.6	81.2	63.8		0.99	0.54	46.3	83.1	59.5		0.99	0.52	48.0	54.1	50.8
K-means (KM)	В			-	-	-		0.99	0.52	47.6	85.0	61.0		0.99	0.52	48.1	54.2	50.9
(KIVI)	L+B		-	_	_	-		0.99	0.52	48.1	85.4	61.5		0.99	0.51	48.9	55.5	52.0
0:	L	0.99	0.53	48.3	79.3	60.0		0.99	0.54	46.1	87.2	60.3		0.99	0.54	45.5	53.5	49.2
Single-Link HC	В		-	-	-	-		0.99	0.54	46.3	88.0	60.6		0.99	0.55	45.9	54.0	49.6
пс	L+B		T	_	_	-		0.99	0.54	46.5	88.4	60.9		0.99	0.55	46.0	55.3	50.2
Complete	L	0.99	0.51	49.6	83.1	62.1		0.99	0.52	48.1	85.4	61.5		0.99	0.52	47.5	54.6	50.8
Complete- Link HC	В		-	-	-	-		0.99	0.52	48.4	85.6	61.8		0.99	0.52	48.2	54.9	51.3
LIIKIIC	L+B		1	-	-	-		0.99	0.52	49.1	85.9	62.5		0.99	0.52	48.6	55.2	51.7
LSM-UP	L+B	0.85	0.70	66.0	86.1	74.6		0.91	0.63	57.2	87.7	69.2		0.98	0.56	55.0	62.6	58.4
LSM-HE	L+B	0.83	0.72	66.1	89.0	75.9		0.83	0.70	63.7	89.2	74.3		0.97	0.60	59.2	64.1	61.6
(a) AN	AT Da	ataset	(Ott e	t al., 2	2011)		(b) A	mazor	n (Mul	cherje	e et al	., 201	2)	(c) Ye	lp Re	staura	nt Dat	aset

Table 2: Clustering performance comparison on various metrics: entropy (E), purity (P), and precision (Prec.), recall (Rec.), F1 on the fake (positive) class reported in % for the majority cluster. Metrics are reported for different clustering algorithms against different features (Feat.): (L)inguistics, (B)ehaviors. AMT data in Ott et al., (2011) does not have behavior information so values for B and L+B feature sets are nil. Improvements of LSM are significant (p<0.01, except entropy on the Yelp data which gives p<0.05) according to *t*-test over 50 runs.

PU Learning
Positive examples: One has a set of examples of a class <i>P</i> , and
\Box Unlabeled set: also has a set U of unlabeled (or mixed) examples with instances from P and also not from P (<i>negative examples</i>).
Build a classifier: Build a classifier to classify the examples in U and/or future (test) data.
Generative Key feature of the problem: no labeled negative training data.
This problem setting is often called as, PU-learning [Lee and Liu, ICML 2003]

Deception Detection via PU Learning

- Large-scale gold-standard data for deceptive opinion spam is often limited, costly, time-consuming
- Q: How to leverage unlabeled data (reviews) to improve deception detection?
- □ PU Learning to the rescue

Using small scale positive (spam) labeled data, treat all unlabeled data containing both hidden positive (spam) and negative (non-spam) samples → Apply a PU Learning technique

PU Learning – Type I [Unlabeled as Negative]

- □ Treating Entire Unlabeled Data as Negative [Fusilier et al., ACL 2013]
- Experimented with onclass SVMs, and standard PU-Learning with NB and SVM as intermediate classifiers
- PU Learning outperformed one-class SVMs

One-class SVMs tend to perform better when there is very limited labeled data (~ 50 +ve samples) whereas PU-LEA works better when there are more +ve training smaples

PU Learning – Type II [Spy Induction]

- Q: How to obtain reliable negative samples from the unlabeled data?
- Add select positive examples as "spies" in the unlabeled set [Li et al., MICAI 2015]
- □ Learn a new classifier using *P*, *RN* and *U*

Spy Induction: "As spy examples are from P and are put into U as negatives in building the intermediate classifier, they (newly inserted spies) should behave similarly to the hidden positives in U. Hence, we can use them to find the reliable negative set RN from U

Extracting RN	V from U via Spy Induction
Bootstrap RN	1: $RN \leftarrow \emptyset$; // Reliable negative set
□ Add spies	2: $SP \leftarrow Sample(P, s\%)$; // Spy set 3: Assign each example in $P \setminus SP$ the class label
□ Learn a new classifier using $P \setminus SP$, and $U \cup SP$	+1; 4: Assign each example in $U \cup SP$ the class label -1;
Find most confident negative samples using a threshold	 5: C ← NB(P \ SP, U ∪ SP); // Produce a NB classifier 6: Classify each u ∈ U ∪ SP using C; 7: Decide a probability threshold t using SP and l; 8: for each u ∈ U do
This works because spies behave as their true lable (i.e., positive class)	9: if its probability $Pr(+ u) < t$ then 10: $RN \leftarrow RN \cup u$ 11: end if 12: end for

EM via NB/SVM

- Bootstrap initial classifier using P and RN
- □ Iterate (until parameters stabilize):
 - E-step: obtain class likelihoods of unlabeled data
 - M-step: Maximize the likelihood of predicting the labels of the classifier in P, RN, and U
- □ Predict labels using the stable model parameters (estimated posterior, for NB)

- 1: Each document in P is assigned the class label +1:
- 2: Each document in RN is assigned the class label -1:
- 3: Learn an initial NB classifier f from P and RN;
- 4: **do**
 - // E-Step for each document d_i in $U \setminus RN$ do
- 5 Using the current classifier f to compute 6: $Pr(c_j|d_i);$
- 7. end for
- // M-Step
- Learn a new NB classifier f from P, RN 8: and $U \setminus RN$ using $Pr(c_j)$ and $Pr(w_t|c_j)$;
- 9: while the classifier parameters stablize
- 10: The last iteration of EM gives the final classifier f:
- 11: for each document d_i in U do
- if its probability $Pr(+|d_i) \ge 0.5$ then 12: Output d_i as a positive document;
- 13:
- 14: else
- Output d_i as a negative document; 15:
- end if 16:
- 17: end for

Detection Performance on Chinese Fake Reviews

- Data courtesy of Dianping (Chinese Yelp)
- □ 3476 fake positive reviews, 3476 unknown (negative reviews)
- □ Feature set: unigrams and bigrams

Table 1. 5-fold CV results

		SVM			PU-LEA	4	5	Spy+El	Λ	S	py+SV	М
	Р	R	F	Р	R	F	Р	R	F	Р	R	F
Unigrams	0.54	0.51	0.52	0.54	0.53	0.54	0.44	0.86	0.58	0.49	0.77	0.60
Bigrams	0.54	0.52	0.52	0.55	0.54	0.55	0.44	0.89	0.59	0.53	0.72	0.61

Detection F Data courtesy of	Perfor	ma	nc	e o			nes fold CV	-	'ak	e R	lev	iew	/S
			SVM			PU-LE	۵		Spy+El	M	S	py+SV	M
Dianping		Р	R	F	Р	R	F	Р	R	F	Р	R	F
(Chinese Yelp)	Unigrams	0.54	0.51	0.52	0.54	0.53	0.54	0.44	0.86	0.58	0.49	0.77	0.60
	Bigrams	0.54	0.52	0.52	0.55	0.54	0.55	0.44	0.89	0.59	0.53	0.72	0.61
positive reviews, 3476 unknown (negative reviews)			0 re [[tł	omp .72 esta Muk ne d	usin urar herj eteo	g bi nt re jee (-gra eviev et al	ms ws ii I., IC	on \ n XWS	/elp M 2	013],	
Feature set: unigrams and bigrams				: W		is th	ne re	easo	on?				

Detection P	erfor	mance o	n Chines	e Fa	ke F	Revie	ews
□ Data courtesy of			Table 1. 5-fold CV	results			

		SVM		- I	PU-LEA	4	5	Spy+EN	Λ	S	py+SV	М
	Р	R	F	Р	R	F	Р	R	F	Р	R	F
Unigrams	0.54	0.51	0.52	0.54	0.53	0.54	0.44	0.86	0.58	0.49	0.77	0.60
Bigrams	0.54	0.52	0.52	0.55	0.54	0.55	0.44	0.89	0.59	0.53	0.72	0.61

 3476 fake positive reviews, 3476 unknown (negative reviews)

(Chinese Yelp)

Dianping

□ Feature set: unigrams and bigrams (1) Dianping reviews are much shorter than Yelp reviews and thus have less information for learners.

(2) Chinese words are not naturally separated by white spaces. Errors produced by word segmentation would lead to poorer linguistic features.

Detectio	n Per	for	ma	nc	e u	sin	g P	U-	Le	arı	nin	g	
D PU-LEA					Tal	ble 1. 5-	fold CV	results					
[Fusilier et al.,			SVM			PU-LEA	4	5	Spy+EM	N	S	py+SV	M
E ź		Р	R	F	Р	R	F	Р	R	F	Р	R	F
ACL 2013]	Unigrams Bigrams	0.54 0.54	0.51 0.52	0.52 0.52	0.54 0.55	0.53 0.54	0.54 0.55	0.44 0.44	0.86 0.89	0.58 0.59	0.49 0.53	0.77 0.72	0.60 0.61
(Using all U as negative set)	Key C)bse	rvat	tion	s:								
Spy induction – [Li et al., MICAI 2014]	(1) Sp confi						forr	ns P	PU-L	EA a	at 98	3%	
Feature set: Unigrams and													

Detection	Performance	using P	TJ_T	earning
Dettetion	I CI IUI manee	using I	0-1	Jearning

							_						
D PU-LEA					Tal	ble 1. 5-	fold CV	results					
[Fusilier et al.,			SVM		I	PU-LE	۹	5	Spy+E	Ν	S	spy+SV	M
L		Р	R	F	Р	R	F	Р	R	F	Р	R	F
ACL 2013]	Unigrams	0.54	0.51	0.52	0.54	0.53	0.54	0.44	0.86	0.58	0.49	0.77	0.60
(Using all U as	Bigrams	0.54	0.52	0.52	0.55	0.54	0.55	0.44	0.89	0.59	0.53	0.72	0.61
negative set)	Key C	bse	rva	tion	s:								
D Spy induction	(1) Sp	ov in	duc	tion	ou	tper	forr	ns P	U-L	FA a	nt 98	3%	
□ Spy induction – [Li et al., MICAI 2014]	confi	•								_,			
1 2	confi	den	ce (J	o<0.	02).	•							
[Li et al., MICAI 2014]	confie	den y-EN	ce (VI (v	o<0. vith	02). NB	as ir							
[Li et al., MICAI	confi	den y-EN	ce (VI (v	o<0. vith	02). NB	as ir							
[Li et al., MICAI 2014]	confie	den y-EN	ce (VI (v	o<0. vith	02). NB	as ir							
[Li et al., MICAI 2014]	confie	den y-EN	ce (VI (v	o<0. vith	02). NB	as ir							

Detection	n Per	for	m:	nc	e u	sin	g P	PU-	Le	arr	ning	g	
D PU-LEA					Tab	ole 1. 5-	fold CV	results					
[Fusilier et al.,			SVM		I	PU-LEA	۱	S	Spy+EN	Λ	S	py+SV	М
L ,		Р	R	F	Р	R	F	Р	R	F	Р	R	F
ACL 2013]	Unigrams	0.54	0.51	0.52	0.54	0.53		0.44	0.86	0.58	0.49	0.77	0.60
(Using all U as	Bigrams	0.54	0.52	0.52	0.55	0.54	0.55	0.44	0.89	0.59	0.53	0.72	0.61
negative set)	Key C	bse	rvat	ion	s:								
Spy induction – [Li et al., MICAI 2014]	(1) Sp confi	- C				tper	forr	ns P	U-L	EA a	nt 98	3%	
□ Feature set:	(2)Sp outpe		•				nter	mec	liate	e cla	ssifi	ier)	
Unigrams and bigrams	(3) Sp classi	-		•					med	liate	•		

Behavioral Analysis of False Positives

Table 1. 5-fold CV results □ PU-Learning SVM PU-LEA Spy+EM Spy+SVM yields Ρ R F Ρ R F Ρ R F Ρ R F significantly Unigrams 0.54 0.60 0.51 0.52 0.54 0.53 0.54 0.44 0.86 0.58 0.49 0.77 Bigrams 0.54 **0.55** 0.54 0.44 0.89 0.53 0.52 0.52 0.55 0.59 0.72 0.61 higher recall than SVM, but lower precision. \Box Q: Is low precision is caused by hidden fake reviews in the unlabeled set?

□ PU-Learning	vioral	Ar	naly	ysis			ilse		osit	ive	S		
U			SVM		I	PU-LEA	۱.	5	Spy+EN	M	S	py+SV	М
yields		Р	R	F	Р	R	F	Р	R	F	Р	R	F
significantly	Unigrams	0.54	0.51	0.52	0.54	0.53	0.54	0.44	0.86	0.58	0.49	0.77	0.60
higher recall	Bigrams	0.54	0.52	0.52	0.55	0.54	0.55	0.44	0.89	0.59	0.53	0.72	0.61
than SVM, but													
lower precision.		D	oes '	tran	sfer	ring	; sor	ne I	alse	e			
I I I I I I I I I I I I I I I I I I I		Po	ositi	ves	(FP)	to 1	Гrue	Pos	sitiv	e (T	P)		
Q: Is low	Positives (FP) to True Positive (TP) (because those reviews are indeed												
		de	ecep	tive	as	atte	stec	l by	oth	er			
precision is			hai	viora	l cid	Icat	c) in	cro		tha			
precision is		De	- I d V	1010	11 312	21101	51 111	LIE	dse	LIIE.			
caused by						siiai	5) 11	crea	ase	uie			
caused by hidden fake				ion		şılaı	57 11	ici e	ase	uie			
caused by hidden fake reviews in the		pr	ecis	ion	?	-							
caused by hidden fake		pr	ecis		?	-					; to		

Beha	vio	ral	An	aly	sis	of I	al	se P	osi	tiv	es		
Two behavioral			Table 3	. Label a		ts by move ≥ 0.8 is t				rue posi	tive (TP).		
heurists of			SVM			PU-LEA		LPU	J (Spy+E	EM)	LPU	(Spy+S	VM)
spamming:	ANR	#FP1	#FP2	#MV	#FP1	#FP2	#MV	#FP1	#FP2	#MV	#FP1	#FP2	#MV
spanning.	≥ 2	49	0	49	41	0	41	170	228	295	86	114	149
	≥ 3	49	0	49	41	0	41	170	110	227	86	56	115
 Max content 	≥ 4 ≥ 5	49 49	0	49 49	41 41	0	41 41	170 170	62 43	201 192	86 86	31 22	101 97
similarity	≥ 6	49	0	49	41	0	41	170	34	185	86	17	94
(MCS).		Se	et MC	S > 0	.8 an	d var	v th	e thre	eshol	d for			
 Average # reviews/day (ANR) 		#F	P1: r	eviev	vs m	eetin eetin	g MC	CS cri	teria				
		#N	۸V: R	evie	ws sa	tifisf	ying	eithe	er one	e of t	he		

Performance Gains upon Transferring FP \rightarrow **TP**

Significant gains in precision and F1 of Spy+EM and Spy+SVM

Improvements of SVM and PU-LEA are smaller than Spy models Table 4. Results using bigrams after moving false positive (FP) to true positive (TP). MCS ≥ 0.8 is used for all experiments

		SVM			PU-LEA	١	5	Spy+EN	Λ	S	py+SV	М
ANR	Р	R	F	Р	R	F	Р	R	F	Р	R	F
≥ 2	0.63	0.52	0.57	0.62	0.54	0.58	0.59	0.89	0.71	0.68	0.72	0.70
≥ 3	0.63	0.52	0.57	0.62	0.54	0.58	0.55	0.89	0.68	0.64	0.72	0.68
≥ 4	0.63	0.52	0.57	0.62	0.54	0.58	0.53	0.89	0.66	0.63	0.72	0.67
≥ 5	0.63	0.52	0.57	0.62	0.54	0.58	0.52	0.89	0.66	0.62	0.72	0.67
≥ 6	0.63	0.52	0.57	0.62	0.54	0.58	0.52	0.89	0.65	0.62	0.72	0.67

Inference - Spy induction can discover hidden positives (fakes) in unlabeled data.

Performance Gains upon Transferring FP → **TP**

- Significant gains in precision and F1 of Spy+EM and Spy+SVM
- Improvements of SVM and PU-LEA are smaller than Spy models

Table 4. Results using bigrams after moving false positive (FP) to true positive (TP). MCS ≥ 0.8 is used for all experiments

		SVM		I	PU-LE/	١	5	Spy+EN	Λ	S	py+SV	М
ANR	Р	R	F	Р	R	F	Р	R	F	Р	R	F
≥ 2	0.63	0.52	0.57	0.62	0.54	0.58	0.59	0.89	0.71	0.68	0.72	0.70
≥ 3	0.63	0.52	0.57	0.62	0.54	0.58	0.55	0.89	0.68	0.64	0.72	0.68
≥ 4	0.63	0.52	0.57	0.62	0.54	0.58	0.53	0.89	0.66	0.63	0.72	0.67
≥ 5	0.63	0.52	0.57	0.62	0.54	0.58	0.52	0.89	0.66	0.62	0.72	0.67
≥ 6	0.63	0.52	0.57	0.62	0.54	0.58	0.52	0.89	0.65	0.62	0.72	0.67

Dianping's Fraud Detection Team agreed that those moved FP to TP are indeed true positive (spam) that their classifier could not catch!

Beyo	ond PU Learning
 Drawbacks of PU Learning: Flat – Static Data (as opposed to Linked/Graph based Data) 	Fake reviews might share IP addresses (latent sockpuppet) in the embedded network structure.
Premature Convergence – converges too early before enough hidden positives are discovered if the positives are not very close to the hidden positives in the unlabeled data	How to leverage PU learning with network information?

Opinion Spam Detection via Collective PU Learning

- Using IP addresses as bridges for users and reviews [Li et al., ICDM 2014]:
- Heterogeneous Network of Users, IP, Reviews
- one review only belongs to one user and one IP address, but users and IPs can connect to more than one entities of other types.

Collective Classification

- □ Collective classifiers (CC) [Sen et al., Tech Rep. 2008] serve the baseline framework
- Conventional classifiers (CC) on graph nodes only use the local features of that node
- CC such as ICA [Sen et al., Tech Rep. 2008] trains a local classifier leveraging the observed local (node) features and estimated labels of its neighbors.

Multi-Type Heterogeneous Collective Classification

- Step 1: Bootstrap review classifier. Estimate user and IP labels from majority class label of their related reviews.
- Step 2: During iterative prediction, construct a relational feature matrix M from the estimate labels of the neighboring nodes.
- Step 3 Then train three different relational (local) classifiers for reviews, users and IPs

Dianping's		Fake reviews	Unlabeled reviews	Total
Data Statistics	No. of reviews	3523	6242	9765
	No. of unique users	3310	5894	9067
D 500	No. of unique IPs	1314	4564	5535
5 00	No. of reviews per user	1.064	1.059	1.077
restaurants in	No. of reviews per IP	2.681	1.368	1.764
Shanghai	Avg No. of Chinese Characters	75.60	91.10	85.50
between	Avg No. of Chinese Words	53.17	63.21	59.59
November				
1st, 2011 and				
November				
28th, 2013				
,				

Modeling Opinion Spamming Campaigns via MRFs

- □ Campaign detection via Typed-MRFs [Li et al., ICDM 2014]
- $\square MRF \rightarrow Typed MRFs. State spaces of node types are:$
- A user is either a promoter or a non-promoter.
- □ A URL is either a promoted or organic URL.
- A burst is either a planned or normal burst.

Modeling Opinion Spamming Campaigns via MRFs Symbol Definition VSet of nodes in the graph E Set of edges in the graph TMapping from nodes to node types HSet of types of nodes *i*-th node or random variable in the graph v_i Type of node $i, t_i \in H$ t_i $(\mathbf{1})$ Set of states node *i* can be in S_{t_i} $\psi_i(\sigma_i|t_i)$ Prior of node *i* in state σ_i Edge potentials for node i of type t_i in $\psi_{i,j}(\sigma_i,\sigma_j|t_i,t_j)$ state σ_i and node j of type t_i in σ_j Message from node i to node j expressing $m_{i \to j}(\sigma_j | t_j)$ node *i*'s belief to node *j* being in state σ_j $b_i(\sigma_i|t_i)$ Belief of node *i* in state σ_i

Node Potentials (Priors)

□ User type node priors derived using local discriminative classifiers (e.g., LR)

□ Features:

- number of URLs per tweet
- number of hashtags per tweet
- number of user mentions per tweet
- percentage of retweets
- maximum/minimum/average number of tweets per day
- maximum/minimum/average time interval between two consecutive tweets

$$P_{user}(+) = \frac{1}{1 + e^{-\beta_0 - \sum_{j=1}^k \beta_j x_j}}$$
$$P_{user}(-) = \frac{e^{-\beta_0 - \sum_{j=1}^k \beta_j x_j}}{1 + e^{-\beta_0 - \sum_{j=1}^k \beta_j x_j}}$$

Node Potentials (Priors)

- Url/burst node type node priors derived using estimated count variables
- \square n^+ : # of estimated promoters
- \Box n^- : # of estimated organic users

$$P_{url}(+) = \frac{n^{+} + \alpha}{n^{+} + n^{-} + 2\alpha}$$
$$P_{url}(-) = \frac{n^{-} + \alpha}{n^{+} + n^{-} + 2\alpha}$$

Edge Potentials (Message Factors)

- □ Url/Burst edge potentials
- □ A user-burst edges denote user posting tweets in the burst.
- Planned bursts contain primarily promoters
- Normal bursts are mostly formed by normal users who are attracted by the campaign.

	$t_j =$	Burst
$t_i = \text{URL}$	planned	normal
promoted	$0.5 + \epsilon$	$0.5 - \epsilon$
organic	$0.5 - \epsilon$	$0.5 + \epsilon$

Edge Potentials (Message Factors)

- □ Usr/Url edge potentials
- □ User-URL edge implies the user has tweeted the URL at least once.
- □ Heavily promoted URL → user likely to be a promoter
- □ Non promoted URL \rightarrow user likely to be a non-promoter

	$t_j = 1$	URL
$t_i = User$	promoted	organic
promoter	$1-2\epsilon$	2ϵ
non-promoter	2ϵ	$1-2\epsilon$

Edge Potentials (Message Factors)

- □ Usr/Burst edge potentials
- URL-burst edge indicates the URL has been tweeted at least once in the burst
- □ URLs mentioned within a planned burst are likely to be promoted
- URLs in a normal burst are likely to be organic

	$t_j =$	Burst
$t_i = \text{User}$	planned	normal
promoter	$0.5 + \epsilon$	$0.5 - \epsilon$
non-promoter	$0.5 - \epsilon$	$0.5 + \epsilon$
	(1.5	

Edge Potentials (Message Factors)

- □ Usr/Usr edge potentials
- Q: How to connect user with other users (latent sockpuppets)?

 Smoking related campaign data from twitter 	ata Statistics			
		CDC2012	CDC2013	E-cigarettes
	users	3447	7896	3615
□ Historical tweets obtained	tweets	4577	11302	53417
from Gnip for user feature	URLs	2262	4481	14730
completeness	promoters(labeled)	266	369	612
	non-promoters(labeled)	534	431	188
Center for Disease Control (CDC) launched regulated stop-smoking campaign in US in 2012 and 2013				
E-cig is a commercial campaign and various e-cig brands participated in it				

				L	ab	elir	ıg (Can	npi	ng	Pr	•0	mote	ers
Labe	lin	o de	ecis	ion v	vas 1	nad	e			U				
base	d fé	ollo	wer	s. U	RLs	and								
		0110		,										
Labeling use	er			_	_	-	_					-	_	
user	≠hashta	#url/twe	#@/twe	#RT/twe	#follow	#friend	s #tweet	s #folers/	age_of_	max_twe	e min t	^	user	text
Paul Son	1	1	1	0	11604	8015	12942	1.44772		2	2		tobaccofreefla	@gingin it's an impactful ad and we're happy to be
HeartHe		1	0	0	187	129	11531	1.44615		2	1		tobaccofreefla	RT @theNCI: Meet Shane, who began smoking at ag
sharedw	-	1	0	0	119	84	42643	1.41176		2	1		tobaccofreefla	RT @CDCTobaccoFree: #TwitterMadeMeRealize the
	0	1	0	0	484	346	97273	1.39769		2	2		tobaccofreefla	RT @LegacyForHealth: Thanks to @CDCTobaccoFree
SportsN		1	0	0	780	560	236153			6	1		tobaccofreefla	RT @CDCgov: Be inspired to quit. Hear @DrFrieden(
cctobacc	1.334	1	0.334	0	87	66	592	1.31343		1	1		tobaccofreefla	Watch: @DrFriedenCDC on launch of 2nd phase of s
HawaiiRe	D	1	1	0	3011	2297	8536	1.31070	1280	1	1		tobaccofreefla	RT @HHS_DrKoh: Starting next week, CDC is launchir
Tofbalzv1	0	1	0	0	605	463	195751			3	3		tobaccofreefla	A powerful reminder from #CDCTips about one of th
KensieS		1	1	0	2035	1589	11397	1.28050		2	2		tobaccofreefla	First look at CDC's new anti-smoking campaign: http
My_Hea		1	0	0	3890	3047	136029			1	1		tobaccofreefla	RT @AP: AP PHOTOS: US launches its latest batch of
Albany		1	0	0	2319	1823	129901	1.27192		3	3		tobaccofreefla	RT @CDCTobaccoFree: .@tobaccofreefla Thanks for
tobaccof	1.115	0.858	0.8	0.372	2464	1965	6309	1.25381		10	1		tobaccofreefla	RT @CDCTobaccoFree: A2: Campaigns like #CDCTip
milutin 1	D	1	0.5	0	1263	1028	49571	1.22837	1113	4	4		tobaccofreefla	.@CDCTobaccoFree studies show that hard-hitting a
CraigEli	D	1	0	0	2287	1959	41101	1.16734		2	2		tobaccofreefla	May is Asthma Awareness Month. See Jessica's sto
PacificCo		1	0	0	19297	16538	63452	1.16681		2	2		tobaccofreefla	#Asthma has even affected prople's jobs because of
													tobaccofreefla	#Asthma has even affected people's jobs because o
													tobaccofreefla	Today is World Asthma Day. Learn about how smoki
follower page	uel	page											tobaccofreefla	Share Jamason's story to raise awareness that secor
rolower page	un	page											tobaccofreefla	#TwoThingsThatDontMixWell: Secondhand smoke as
user		#hashta	#url/tw	#@/tw	#RT/tw	#followers	#friends	#tweets	#folers/	age_of	max_tw	<u>^</u>	tobaccofreefla	@thatnigganickk congrats on quitting. Here are mor
Tamara_RT	E 2		0.929	0.358	0.358	307	1692	149	0.18192		2		tobaccofreefla	@thatnigganickk congrats on quitting! Here are mor
DTTAC_TT			0.834	0.834		176	86	1223	2.03448		2		tobaccofreefla	Don't forget that smoking is a leading cause of #stre
MilesToGoD			1	0	-	713	688	4193	1.03628		1		tobaccofreefla	RT @CDCTobaccoFree: #CDCTips participant Terrie :
SmokeFreel OuitLineCO			1 0.75	0		22 85	56 36	181 181	0.40350	229 530	2		tobaccofreefla	RT @LegacyForHealth: New @CDCTobaccoFree cam
HINHealthC			1	0		1015	1360	9820		1878	1	-	tobaccofreefla	Roosevelt, a former smoker in #CDCTips campaign,
														Roosevelt, a former smoker in #CDCTips campaign.
Baselines and Model Variations

□ Competitors compared:

- Local Classifier : Logistic Regression (LR)
- Iterative Classification Algorithm (ICA)
- T-MRF (all-nodes, no-priors)
- T-MRF (user-URL)
- T-MRF (all-nodes, no-user-user)
- T-MRF (all)

AUC performance										
Results averaged across 5 disjoint random runs		0	DC201	2	0	DC201	2	E		
ansjonne rundom rund		CDC2012		CDC2013		E-cigarettes				
	ϵ	0.05	0.10	0.15	0.05	0.10	0.15	0.05	0.10	0.15
	Local-LR	0.87	0.87	0.87	0.82	0.82	0.82	0.83	0.83	0.83
□ T-MRF (all) is consistent	ICA	0.88	0.88	0.88	0.86	0.86	0.86	0.84	0.84	0.84
in its performance across all thresholds ϵ	T-MRF(all- nodes,no-priors)	0.83	0.83	0.81	0.73	0.73	0.72	0.68	0.70	0.69
	T-MRF(user-url)	0.89	0.89	0.89	0.84	0.85	0.86	0.84	0.84	0.84
	T-MRF(all-nodes, no-user-user)	0.88	0.89	0.90	0.88	0.90	0.88	0.86	0.87	0.86
T-MRFs improve over	T-MRF(all)	0.89	0.92	0.92	0.89	0.92	0.90	0.87	0.88	0.88
both ICA and Local-LR → Message passing in campaign networks is effective										

Most tweeted URLS by Promoters and Non-Promoters CDC2012 CDC2013 E-cigarettes \Box Top/Bottom 10 \rightarrow Most youtube.com cdc.gov vaporgod.com tweeted URLs by bestcelebrex.blogspot.com amazon.com youtube.com facebook.com cnn.com www.shareasale.com promoters/non-promoters kktv.com usatoday.com www.reddit.com drugstorenews.com blogs.nytimes.com www.prweb.com marketingmagazine.co.uk medicalnewstoday.com www.nicotinefreecigarettes.net □ For regulated (Govt.) adage.com cbsnews.com electronicvape.com youtube.com cdc.gov nbcnews.com campaigns (e.g., CDC): howtoquitsmokingfree.com twitter.com dfw-ecigs.com ecigadvanced.com presstitution.com news.yahoo.com youtube.com twitter.com purecigs.com Promoters: news smokefree.gov cdc.gov instagram.com twitlonger.com youtube.com houseofelectroniccigarettes.com website, government smokelesscigarettesdeals.com cdc.gov instagram.com instagram.com deadspin.com aan.atrinsic.com website twitpic.com cnn.com smokelessdelite.com tmi.me soundcloud.com twitpic.com Non-promoters : links facebook.com usatoday.com voutube.com social media including yfrog.com chacha.com electroniccigarettesworld.com chacha.com huffingtonpost.com review-electroniccigarette.com other platforms other than twitter

Most tweeted URLS by Promoters and Non-Promoters

- □ Top/Bottom 10 → Most tweeted URLs by promoters/non-promoters
- □ For spam/promotion campaigns (e.g., e-cig):
 - Promoters heavily promoted product/emarketting pages

CDC2012	CDC2013	E-cigarettes
youtube.com	cdc.gov	vaporgod.com
amazon.com	youtube.com	bestcelebrex.blogspot.com
facebook.com	cnn.com	www.shareasale.com
kktv.com	usatoday.com	www.reddit.com
drugstorenews.com	blogs.nytimes.com	www.prweb.com
marketingmagazine.co.uk	medicalnewstoday.com	www.nicotinefreecigarettes.net
adage.com	cbsnews.com	electronicvape.com
cdc.gov	nbcnews.com	youtube.com
howtoquitsmokingfree.com	twitter.com	dfw-ecigs.com
presstitution.com	news.yahoo.com	ecigadvanced.com
youtube.com	twitter.com	purecigs.com
smokefree.gov	cdc.gov	instagram.com
twitlonger.com	youtube.com	houseofelectroniccigarettes.com
cdc.gov	instagram.com	smokelesscigarettesdeals.com
instagram.com	deadspin.com	aan.atrinsic.com
twitpic.com	cnn.com	smokelessdelite.com
tmi.me	soundcloud.com	twitpic.com
facebook.com	usatoday.com	youtube.com
yfrog.com	chacha.com	electroniccigarettesworld.com
chacha.com	huffingtonpost.com	review-electroniccigarette.com

Learning in Similarity	Space
 Learn feature associations in the (transformed) similarity space instead of original document space (as in AA) [Qian and Liu, EMNLP 2013] 	Similarity can be measured using an s-feature. E.g., cosine: cosine(q, d1) = 0.50 and cosine(q, d2) = 0.27.
 Each document <i>d</i> is still represented as a feature vector, but the vector no longer represents the document <i>d</i> itself. Instead, it represents a set of similarities between the document <i>d</i> and a query (document) <i>q</i>. q: 1:1 2:1 6:2 d1: 1:2 2:1 3:1 d2: 2:2 3:1 5:2 sv (q, d1): +1 1:0.50 sv (q, d2): -1 1:0.27 	With more similarity measures more s-features can be produced. The resulting two s-vectors for d1 and d2 with their class labels, 1 (written by author of query q) and -1 (otherwise)

Learning Paradigm

- □ Candidate identification: For each userid id_i , we first find the most likely userid id_j ($i \neq j$) that may have the same author as id_i . We call id_j the candidate of id_i . We also call this function candid-iden, i.e., $id_j = candid - iden(id_i)$.
- **Candidate confirmation:** In the reverse order, we apply the function candid-iden on id_j , which produces id_k , i.e., $id_k = candid iden(id_j)$.
- **Decision making:** If k = i, $\rightarrow id_i$ and id_j are from the same author. Otherwise, id_i and id_j are not from the same author.

Learning Paradigm

- □ Candidate identification: For each userid id_i , we first find the most likely userid id_j ($i \neq j$) that may have the same author as id_i . We call id_j the candidate of id_i . We also call this function candid-iden, i.e., $id_j = candid - iden(id_i)$.
- □ Candidate confirmation: In the reverse order, we apply the function candid-iden on id_j , which produces id_k , i.e., $id_k = candid - iden(id_j)$.
- **Decision making:** If k = i, $\rightarrow id_i$ and id_j are from the same author. Otherwise, id_i and id_j are not from the same author.

worst case time complexity is $O(m^2)$, for a total of m training documents.

In practice, lesser as not all pairwise comparisons are needed. Only a small subset is sufficient (using candidate-iden)

Performance of LSS								
□ Dataset: 831 reviewers from Amazon.com, 731 for training	T (1 //	. 1	10	20	70	00	100	
and 100 for testing; the	Total # user-ids		10	30	50	80	100	
Ű,	LSS	Pre	100.00	100.00	100.00	100.00	98.68	
numbers of reviews in the		Rec	100.00	83.33	82.00	80.00	75.76	
training and test: 59256 and		F1	100.00	90.91	90.11	88.89	85.71	
14308.	TSL	Pre	50.00	50.00	33.33	0.00	0.00	
 Baselines: (1) TSL: based on the traditional supervised learning, (2) SimUG/SimAD: uses the word unigrams/all d- features to compare the cosine 		Rec	11.11	3.45	2.08	0.00	0.00	
		F1	18.18	6.45	3.92	0.00	0.00	
	SimUG	Pre	100.00	100.00	100.00	100.00	100.00	
		Rec	70.00	46.67	48.00	48.75	43.00	
		F1	82.35	63.64	64.86	65.55	60.14	
	SimAD	Pre	100.00	75.00	100.00	33.33	0.00	
		Rec	20.00	10.35	2.00	1.28	0.00	
similarity of queries and		F1	33.33	18.18	3.92	2.47	0.00	
samples.								

Authorship Attribution (AA) typically assumes several example documents per author Also traditional AA methods are mostly based on supervised learning. Requirements: for each author, a large number of his/her articles are needed as the training data

AA with Limited Training Data

How to build reliable AA models with very few labeled examples per author? (e.g., Consumer reviews - a spammer wrote only 3 reviews using an id)

Tri-Training

□Input:

- A small set of labeled documents $L = \{l_1, ..., l_n\}$,
- A large set of unlabeled documents $U = \{u_1, ..., u_s\}$,
- A set of test documents $T = \{t_1, ..., t_t\}$.

□Parameters:

- The number of iterations *k*,
- The size of selected unlabeled documents *u*,

Output:

• t_k 's class assignment.

	Tri-Training								
	Add confident examples	1 Extract views L_c , L_l , L_s , U_c , U_l , U_s , T_c , T_l , T_s from L , U , T 2 Loop for k iterations:							
	whenever labels are	3 Randomly select u unlabeled documents U' from U ;							
ľ	matched by orthogonal classifiers (i.e.,	4 Learn the first view classifier C_1 from $L_1(L_1=L_c, L_l, \text{ or } L_s)$; 5 Use C_1 to label docs in U' based on $U_1(U_1=U_c, U_l, \text{ or } U_s)$							
	classifiers in two	6 Learn the second view classifier C_2 from $L_2(L_2 \neq L_1)$ 7 Use C_2 to label documents in U' based on $U_2(U_2 \neq U_1)$;							
	different views)	8 Learn the third view classifier C_3 from $L_3(L_2 \neq L_1, L_2)$							
		9 Use C_3 to label documents in U' based on $U_3(U_2 \neq U_1, U_2)$; 10 $U_{p1} = \{u \mid u \in U', u.label \text{ by } C_2 = u.label \text{ by } C_3\};$							
		11 $U_{p2} = \{u \mid u \in U', u.label \text{ by } C_1 = u.label \text{ by } C_3\};$							
		12 $U_{p3} = \{u \mid u \in U', u.label \text{ by } C_1 = u.label \text{ by } C_2\};$ 13 $U = U - U', L_i = L_i \cup U_{pi} (i=13);$							
	14 Learn three classifiers C_1 , C_2 , C_3 from L_1 , L_2 , L_3 ;								
	15 Use C_i to label t_k in T_i (<i>i</i> =13); 16 Aggregate results from three views								

Performance Evaluation of Tri-Training for AA

- Tri-training outperforms all selftraining baselines.
- □ In tri-training, each individual view may be biased but the views are independent. Then each view is more likely to produce random samples for the other views and thus reduce the bias of each view as the iterations progress

k	Tri	SelfTi	ain:CN	G+SVM	SelfTrain:I	LR+SVM
	Train	Char	lex	Syn	Char_Lex	Syn
0	46.85	33.22	45.44	34.50	33.22 45.75	34.48
10	78.82	32.47	45.44	34.50	62.56 73.78	51.94
20	86.19	32.47	45.44	34.09	71.21 81.44	59.88
30	89.69	32.47	45.44	34.09	75.21 84.68	63.70
40	91.52	33.69	45.44	34.09	77.46 88.25	65.74
50	92.58	33.69	45.44	34.09	78.64 88.25	67.45
60	93.15	33.69	45.44	34.09	79.54 89.31	68.37

Performance Evaluation of Tri-Training for AA

- Tri-training outperforms co-training.
- Consensus predictions by two classifiers are more reliable than those by one classifier.

k	Tri	Co-Train				
	Train	Char+Lex	Char+Syn	Lex+Syn		
0	46.85	45.75	42.02	45.75		
10	78.82	78.84	75.89	78.85		
20	86.19	86.02	82.59	85.63		
30	89.69	89.32	85.77	88.98		
40	91.52	91.14	87.52	91.16		
50	92.58	92.19	88.46	92.02		
60	93.15	92.81	89.21	92.50		

Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion Fraud Detection in Online Reviews by Network Effects. In *Proceedings of the AAAI International Conference on Web and Social Media*.

Shlomo Argamon, Casey Whitelaw, Paul Chase, Sobhan Raj Hota, Navendu Garg, and Shlomo Levitan. 2007. Stylistic text classification using functional lexical features. *Journal of the American Society for Information Science and Technology*, 58(6):802–822.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In *Proceedings of the eleventh annual conference on Computational learning theory*, pages 92–100.

Jacob Eisenstein, Brendan O'Connor, Noah A. Smith, and Eric P. Xing. 2010. A latent variable model for geographic lexical variation. *Empirical Methods in Natural Language Processing*:1277–1287, October.

G. Fei, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh. 2013. Exploiting Burstiness in Reviews for Review Spammer Detection. *AAAI International Conference on Weblogs and Social Media*.

Song Feng, Longfei Xing, Anupam Gogar, and Yejin Choi. 2012. Distributional Footprints of Deceptive Product Reviews. In *The International AAAI Conference on Weblogs and Social Media*.

References

Y. Feng, S., Banerjee R., Choi. 2012. Syntactic Stylometry for Deception Detection. In Association for Computational Linguistics.

Donato Hernandez Fusilier, Rafael Guzman Cabrera, Manuel Montes-y-Gomez, and Paolo Rosso. 2013. Using PU-Learning to Detect Deceptive Opinion Spam. ACL Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in High Dimensions via Hashing. Proceedings of the 25th International Conference on Very Large Data Bases:518–529, September.

Nitin Jindal and Bing Liu. 2007. Review spam detection. In Proceedings of the 16th international conference on World Wide Web - WWW '07, page 1189, New York, New York, USA, May. ACM Press.

Nitin Jindal and Bing Liu. 2008. Opinion Spam and Analysis. In ACM International Conference on Web Search and Data Mining.

Sangkyum Kim, Hyungsul Kim, Tim Weninger, Jiawei Han, and Hyun Duk Kim. 2011. Authorship classification: a discriminative syntactic tree mining approach. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 455–464.

Mark L Knapp, Roderick P Hart, and Harry S Dennis. 1974. An exploration of deception as a communication construct. Human communication research, 1(1):15–29.

Ioannis Kourtis and Efstathios Stamatatos. 2011. Author identification using semi-supervised learning. In CLEF 2011: Proceedings of the 2011 Conference on Multilingual and Multimodal Information Access Evaluation (Lab and Workshop Notebook Papers), Amsterdam, The Netherlands.

Huayi Li, Zhiyuan Chen, Bing Liu, Xiaokai Wei, and Jidong Shao. 2014a. Spotting Fake Reviews via Collective Positive-Unlabeled Learning. IEEE International Conference on Data Mining.

Huayi Li, Zhiyuan Chen, Arjun Mukherjee, Bing Liu, and Jidong Shao. 2015. Analyzing and Detecting Opinion Spam on a Large-scale Dataset via Temporal and Spatial Patterns. Proceedings of Ninth International AAAI Conference on Web and Social Media.

Huayi Li, Bing Liu, Arjun Mukherjee, and Jidong Shao. 2014b. Spotting Fake Reviews using Positive-Unlabeled Learning. Computaci{ó}n y Sistemas, 18(3).

Huayi Li, Arjun Mukherjee, Bing Liu, Rachel Kornfield, and Sherry Emery. 2014c. Detecting Campaign Promoters on Twitter using Markov Random Field. Proceedings of IEEE International Conference on Data Mining (ICDM 2014).

References

Jiwei Li, Claire Cardie, and Sujian Li. 2013a. TopicSpam: a Topic-Model-Based Approach for Spam Detection. *Annual Meeting of the Association for Computational Linguistics*.

Jiwei Li, Myle Ott, and Claire Cardie. 2013b. Identifying Manipulated Offerings on Review Portals. *Empirical Methods in Natural Language Processing*.

Jiwei Li, Myle Ott, Claire Cardie, and Eduard Hovy. 2014d. Towards a General Rule for Identifying Deceptive Opinion Spam. *Association for Computational Linguistics*.

Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan Lauw. 2010. Detecting product review spammers using rating behaviors. In *Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM '10*, page 939, New York, New York, USA. ACM Press.

Rada Mihalcea and Carlo Strapparava. 2009. The lie detector: explorations in the automatic recognition of deceptive language. *Proceedings of the ACL-IJCNLP 2009 Conference Short Papers*:309–312, August.

A. Mukherjee, B. Liu, J. Wang, N. Glance, and N. Jindal. 2011. Detecting Group Review Spam. In WWW.

Arjun Mukherjee, V. Venkataraman, B. Liu, and N. Glance. 2013a. Fake Review Detection: Classification and Analysis of Real and Pseudo Reviews. UIC-CS-2013-03.

Arjun Mukherjee, V. Venkataraman, B. Liu, and N. Glance. 2013b. What Yelp Fake Review Filter might be Doing? AAAI International Conference on Weblogs and Social Media.

Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Meichun Hsu, Malu Castellanos, and Riddhiman Ghosh. 2013c. Spotting Opinion Spammers using Behavioral Footprints. Proceedings of the 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012. Spotting Fake Reviewer Groups in Consumer Reviews. In Proceedings of the 21st international conference on World Wide Web - WWW '12.

Arjun Mukherjee and Vivek Venkataraman. 2014. Opinion Spam Detection: An Unsupervised Approach using Generative Models. Techincal Report.

J.M. Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards. 2003. Lying words: predicting deception from linguistic styles. Personality and Social Psychology Bulletin:665–675.

References

Myle Ott, Claire Cardie, and Jeff Hancock. 2012. Estimating the prevalence of deception in online review communities. In Proceedings of the 21st international conference on World Wide Web - WWW '12, page 201, New York, New York, USA. ACM Press.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T Hancock. 2011. Finding Deceptive Opinion Spam by Any Stretch of the Imagination. In Association for Computational Linguistics, pages 309–319.

J.W. Pennebaker, C.K. Chung, M. Ireland, A. Gonzales, and R.J. Booth. 2007. The development and psychometric properties of LIWC2007. LIWC.Net.

Tieyun Qian and Bing Liu. 2013. Identifying Multiple Userids of the Same Author. Empirical Methods in Natural Language Processing.

Tieyun Qian, Bing Liu, Li Chen, and Zhiyong Peng. 2014. Tri-Training for Authorship Attribution with Limited Training Data. Association for Computational Linguistics.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-rad. 2008. Collective Classification in Network Data. Techincal Report:1–24. Belief Propagation in context of Collective Classification.

Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. 2011. Review Graph Based Online Store Review Spammer Detection. 2011 IEEE 11th International Conference on Data Mining:1242–1247, December.

Sihong Xie, Guan Wang, Shuyang Lin, and Philip S. Yu. 2012. Review spam detection via temporal pattern discovery. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '12:823.

Junting Ye and Leman Akoglu. 2015. Discovering Opinion Spammer Groups by Network Footprints. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.