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ABSTRACT

Back-propagation has been the workhorse of recent successes of deep learning
but it relies on infinitesimal effects (partial derivatives) in order to perform credit
assignment. This could become a serious issue as one considers deeper and more
non-linear functions, e.g., consider the extreme case of non-linearity where the re-
lation between parameters and cost is actually discrete. Inspired by the biological
implausibility of back-propagation, a few approaches have been proposed in the
past that could play a similar credit assignment role as backprop. In this spirit,
we explore a novel approach to credit assignment in deep networks that we call
target propagation. The main idea is to compute targets rather than gradients, at
each layer. Like gradients, they are propagated backwards. In a way that is re-
lated but different from previously proposed proxies for back-propagation which
rely on a backwards network with symmetric weights, target propagation relies
on auto-encoders at each layer. Unlike back-propagation, it can be applied even
when units exchange stochastic bits rather than real numbers. We show that a lin-
ear correction for the imperfectness of the auto-encoders is very effective to make
target propagation actually work, along with adaptive learning rates.

1 INTRODUCTION

Recently, deep neural networks have achieved great success in hard AI tasks (Bengio, 2009; Hinton
et al., 2012; Krizhevsky et al., 2012; Sutskever et al., 2014), mostly relying on back-propagation as
the main way of performing credit assignment over the different sets of parameters associated with
each layer of a deep net. Back-propagation exploits the chain rule of derivatives in order to convert
a loss gradient on the activations over layer l (or time t, for recurrent nets) into a loss gradient on
the activations over layer l− 1 (respectively, time t− 1). However, as we consider deeper networks
– e.g., consider the recent best ImageNet competition entrants (Szegedy et al., 2014) with 19 or 22
layers – longer-term dependencies, or stronger non-linearities, the composition of many non-linear
operations becomes more non-linear. To make this concrete, consider the composition of many
hyperbolic tangent units. In general, this means that derivatives obtained by backprop are becoming
either very small (most of the time) or very large (in a few places). In the extreme (very deep
computations), one would get discrete functions, whose derivatives are 0 almost everywhere, and
infinite where the function changes discretely. Clearly, back-propagation would fail in that regime.
In addition, from the point of view of low-energy hardware implementation, the ability to train deep
networks whose units only communicate via bits would also be interesting.

This limitation backprop to working with precise derivatives and smooth networks is the main ma-
chine learning motivation for this paper’s exploration into an alternative principle for credit as-
signment in deep networks. Another motivation arises from the lack of biological plausibility of
back-propagation, for the following reasons: (1) the back-propagation computation is purely linear,
whereas biological neurons interleave linear and non-linear operations, (2) if the feedback paths
were used to propagate credit assignment by backprop, they would need precise knowledge of the
derivatives of the non-linearities at the operating point used in the corresponding feedforward com-
putation, (3) similarly, these feedback paths would have to use exact symmetric weights (with the
same connectivity, transposed) of the feedforward connections, (4) real neurons communicate by
(possibly stochastic) binary values (spikes), (5) the computation would have to be precisely clocked
to alternate between feedforward and back-propagation phases, and (6) it is not clear where the
output targets would come from.
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The main idea of target propagation is to associate with each feedforward unit’s activation value
a target value rather than a loss gradient. The target value is meant to be close to the activation
value while being likely to have provided a smaller loss (if that value had been obtained in the
feedforward phase). In the limit where the target is very close to the feedforward value, target
propagation should behave like back-propagation. This link was nicely made in (LeCun, 1986;
1987), which introduced the idea of target propagation and connected it to back-propagation via a
Lagrange multipliers formulation (where the constraints require the output of one layer to equal the
input of the next layer). A similar idea was recently proposed where the constraints are relaxed
into penalties, yielding a different (iterative) way to optimize deep networks (Carreira-Perpinan
and Wang, 2014). Once a good target is computed, a layer-local training criterion can be defined
to update each layer separately, e.g., via the delta-rule (gradient descent update with respect to the
cross-entropy loss).

By its nature, target propagation can in principle handle stronger (and even discrete) non-linearities,
and it deals with biological plausibility issues 1, 2, 3 and 4 described above. Extensions of the
precise scheme proposed here could handle 5 and 6, but this is left for future work.

In this paper, we provide several experimental results on rather deep neural networks as well as
discrete and stochastic networks. The results show that the proposed form of target propagation
is comparable to back-propagation with RMSprop (Tieleman and Hinton, 2012) - a very popular
setting to train deep networks nowadays.

2 PROPOSED TARGET PROPAGATION IMPLEMENTATION

Although many variants of the general principle of target propagation can be devised, this paper
focuses on a specific approach, described below, which fixes a problem in the formulation introduced
in an earlier technical report (Bengio, 2014).

2.1 FORMULATING TARGETS

Let us consider an ordinary deep network learning process. The unknown data distribution is
p(x,y), from which the training data is sampled. The network structure is defined as

hi = fi(hi−1) = si(Wihi−1), i = 1, . . . ,M (1)

where hi is the i th hidden layer, hM is the output of network, h0 is the input x, si is the non-
linearity (e.g. tanh or sigmoid) and Wi corresponds to the weights for layer i, fi is the i-th layer
feed-forward mapping. For simplicity (but an abuse) of notation, the bias term of each layer is
included in Wi. We define θi,jW as the subset of network parameters θi,jW = {Wk, k = i+ 1, . . . , j}.
By this notion, each hj is a function of hi where hj = hj(hi; θ

i,j
W ) for 0 ≤ i < j ≤ M . We define

the global loss function for one sample (x,y) as L(x,y; θ0,M
W ), where

L(x,y; θ0,M
W ) = loss(hM (x; θ0,M

W ),y)

= loss(hM (hi(x; θ0,i
W ); θi,MW ),y), i = 1, . . . ,M − 1 (2)

Here loss(·) can be any kind of loss measure function (e.g. MSE, Binomial cross-entropy). Then
the expected loss function over the whole data distribution p(x,y) is written

L = E
p
{L(x,y; θ0,M

W )}. (3)

Training a network with back-propagation corresponds to propagating error signals through the net-
work, signals which indicate how the unit activations or parameters of the network could be updated
to decrease the expected loss L. In very deep networks with strong non-linearities, error propagation
could become useless in lower layers due to the difficulties associated with strong non-linearities,
e.g. exploding or vanishing gradients, as explained above. Given a data sample (x,y) and the corre-
sponding activations of the hidden layers hi(x; θ0,i

W ), a possible solution to avoid these issues could
be to assign a nearby value ĥi for each hi(x; θ0,i

W ) that could lead to a lower global loss. For a
sample (x,y), we name such value ĥi a target, with the objective that

loss(hM (ĥi; θ
i,M
W ),y) < loss(hM (hi(x; θ0,i

W ); θi,MW ),y) (4)

2
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In local layer i, we hope to train the network to make hi move towards ĥi. As hi approaches ĥi,
if the path leading from hi to ĥi is smooth enough, we expect that the global loss L(x,y; θ0,M

W )
would then decrease. To update the Wi, instead of using the error signals propagated from global
loss L(x,y; θ0,M

W ) with back-propagation, we define a layer-local target loss Li. For example, using
a MSE loss gives :

Li(ĥi,hi) = ||ĥi − hi(x; θ0,i
W )||22. (5)

In such a case, Wi is updated locally within its layer via stochastic gradient descent, where ĥi is
considered as a constant with respect to Wi

W
(t+1)
i = W

(t)
i − ηfi

∂Li(ĥi,hi)

∂Wi
= W

(t)
i − ηfi

∂Li(ĥi,hi)

∂hi

∂hi(x; θ0,i
W )

∂Wi
. (6)

In this context, derivatives can be used within a local layer because they typically correspond to
computation performed inside each neuron. The severe non-linearity that may originate from the
chain rule arises mostly when it is applied through many layers. This motivates target propagation
methods to serve as alternative credit assignment in the context of a composition of many non-
linearities. What a target propagation method requires is a way to compute the target ĥi−1 from the
higher-level target ĥi and from hi, such that it is likely to respect the constraint defined by Eq.4 and
at least satisfies weaker assumptions, like for example :

Li(ĥi, fi(ĥi−1)) < Li(ĥi, fi(hi−1)) (7)

2.2 HOW TO ASSIGN A PROPER TARGET TO EACH LAYER

The problem of credit assignment is the following: how should each unit change its output so as to
increase the likelihood of reducing the global loss?

With the back-propagation algorithm, we compute the gradient of the loss with respect to the output
of each layer, and we can interpret that gradient as an error signal. That error signal is propagated
recursively from the top layer to the bottom layer using the chain rule.

δhi−1 =
∂L

∂hi−1
=

∂L

∂hi

∂hi
∂hi−1

= δhi
∂hi
∂hi−1

(8)

In the target-prop setting, the signal that gives the direction for the update is the difference ĥ − h.
So we can rewrite the first and the last terms of the previous equation and we get :

ĥi−1 − hi−1 = (ĥi − hi)
∂hi
∂hi−1

= −1

2

∂||ĥi − hi||22
∂hi−1

(9)

Still in the target-prop framework, the parameter update at a specific layer is obtain by a stochastic
gradient descent (sgd) step to minimize the layer wise cost and can be written :

W
(t+1)
i = W

(t)
i − η

∂||ĥi − hi||22
∂Wi

(10)

With back-propagation to compute the gradients at each layer, we can consider that the target of a
lower layer is computed from the target of an upper layer as if gradient descent had been applied
(non-parametrically) to the layer’s activations, such that Li(ĥi, fi(ĥi−1)) < Li(ĥi, fi(hi−1)).
This could be called “target propagation through optimization” and reminiscent of (Carreira-
Perpinan and Wang, 2014).

However, in order to avoid the chain of derivatives through many layers, another option, introduced
in (Bengio, 2014), is to take advantage of an “approximate inverse”. For example, suppose that we
have a function gi such that

fi(gi(ĥi)) ≈ ĥi, (11)

then choosing ĥi−1 = gi(ĥi) would have the consequence that the level i loss Li (to make the output
match the target at level i) would be minimized. This is the vanilla target propagation introduced in
(Bengio, 2014):

ĥi−1 = gi(ĥi) (12)

3



Under review as a conference paper at ICLR 2015

Note that gi does not need to invert fi everywhere, only in the vicinity of the targets. If the feedback
mappings were the perfect inverses of the feed-forward mappings (gi = f−1

i ), we would get directly

Li(ĥi, fi(ĥi−1)) = Li(ĥi, fi(gi(ĥi))) = Li(ĥi, ĥi) = 0. (13)

This would be ideal for target propagation. In fact, we have the following proposition for the case
of a perfect inverse:

Proposition 1. Assume that gi is a perfect inverse of fi, where gi = f−1
i , i = 1, ...,M − 1 and fi

satisfies: 1. fi is a linear mapping or, 2. hi = fi(hi−1) = Wisi(hi−1), which is another way to
obtain a non-linear deep network structure (here si can be any differentiable monotonically increas-
ing element-wise function). Consider one update for both target propagation and back-propagation,
with the target propagation update (with perfect inverse) in ith layer being δW tp

i , and the back-
propagation update being δW bp

i . Then the angle αi between δW tp
i and δW bp

i is bounded by

0 ≤ αi ≤ cos−1(
λmin
λmax

) (14)

Here λmax and λmin are the largest and smallest singular values of (JfM−1
. . . Jfi+1)T , where Jfk

is the Jacobian matrix of fk.

See proof in Appendix A1. Proposition 1 says that if fi has the assumed structures, the descent
direction of target propagation with perfect inverse at least partly matches with the gradient descent
direction, which makes the global loss always decrease. But a perfect inverse may be impractical for
computational reasons and unstable (there is no guarantee that f−1

i applied to a target would yield
a value that is in the domain of fi−1). So here we prefer to learn an approximate inverse gi, making
the fi / gi pair look like an auto-encoder. This suggests parametrizing gi as follows:

ĥi−1 = gi(ĥi) = si(Vihi), i = 0, ...,M (15)

where si is a non-linearity associated with the decoder and Vi the matrix of feedback weights for
layer i. With such a parametrization, it is unlikely that the auto-encoder will achieve zero recon-
struction error. The decoder could be trained via an additional auto-encoder-like loss at each layer:

Linvi = ||fi(gi(ĥi))− ĥi||22 (16)

This makes fi(ĥi−1) closer to ĥi, thus making Li(ĥi, fi(ĥi−1)) closer to zero. But we should get
inverse mapping around the targets. This could help to compute targets which have never been seen
before. For this, we can modify inverse loss using noise injection.

Linvi = ||fi(gi(ĥi + ε))− (ĥi + ε)||22, ε ∼ N(0, σ) (17)

However, the imperfection of the inverse yields severe optimization problems which has brought us
to propose the following linearly corrected formula for the target propagation:

ĥi−1 − hi−1 = gi(ĥi)− gi(hi) (18)

We call this variant “difference target propagation” and we found in the experiments described
below that it can significantly reduce the optimization problems associated with Eq. 12. Note that if
gi was an inverse of fi, then difference target propagation would be equivalent to the vanilla target
propagation of Eq. 12. For the “difference target propagation”, we have following proposition:

Proposition 2. During the t + 1 th update in difference target propagation, we use Linvi (ĥ
(t)
i +

ε;Vi,W
(t)
i ) to update V (t+1)

i and we define L̄invi (Vi,W
(t)
i ) as the expected local auto-encoder-like

loss function over all possible ĥ
(t)
i + ε with W (t)

i fixed,

L̄invi (Vi,W
(t)
i ) = E

ĥ
(t)
i ,ε

{Linvi (ĥ
(t)
i + ε;Vi,W

(t)
i )} (19)

1In the arXiv version of this paper.
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If 1.L̄invi (Vi,W
(t)
i ) has only one minimum with optimal V ∗i (W

(t)
i ); 2. proper learning rates for

Vi and Wi are given; 3. All the Jacobian and Hessian like matrices are bounded during learning;
4. ∇Vi

L̄invi (Vi,W
(t)
i ) always points towards optimal V ∗i (W

(t)
i ); 5. E{V ∗i (W

(t+1)
i ) − V ∗i (W

(t)
i ) |

W
(t)
i } = 0. Then V (t)

i − V ∗i (W
(t)
i ) will almost surely converge to 0 at t th update when t goes to

infinity. Condition 1, 2, 4 follow the settings of stochastic gradient descent convergence similar to
(Bottou, 1998).

See proof in Appendix2. Proposition 2 says that in difference target propagation, gi can learn a good
approximation of fi’s inverse, which will quickly minimize the auto-encoder-like error of each layer.

The top layer does not have a layer above it and it has its own loss function which is also the global
loss function. In our experiments we chose to set the first target of the target-prop chain such that
L(ĥM−1) < L(hM−1). This can be achieved for classification loss as follows:

ĥM−1 = hM−1 − η0
∂L

∂hM−1
(20)

where η0 is a “target-prop” learning rate for making the first target – i.e. one of the hyper-parameters.
Making the first target at layer M −1 with the specific output and loss function instead of the output
layer can reduce algorithm’s dependence on specific type of output and loss function. So we can
apply consistent formulation to compute target in lower layers. And then, once we have a method
to assign proper targets to each layer, we only have to optimize layer-local target losses to decrease
global loss function.

2.3 THE ADVANTAGE OF DIFFERENCE TARGET PROPAGATION

In order to make optimization stable in target propagation, hi−1 should approach to ĥi−1 as hi
approaches to ĥi . If not, even though optimization is finished in upper layers, the weights in lower
layers would continue to be updated. As a result, the target losses in upper layers as well as the
global loss can increase even after we reach the optimum situation. So we found the following
condition to greatly improve the stability of the optimization.

hi = ĥi → hi−1 = ĥi−1 (21)
If we have the perfect inverse gi = f−1

i , it holds with vanilla target propagation because

hi−1 = f−1
i (hi) = gi(ĥi) = ĥi−1. (22)

Although it is not guaranteed with an imperfect inverse mapping gi 6= f−1
i in vanilla target propa-

gation, with difference target propagation, it naturally holds by construction.
ĥi−1 − hi−1 = gi(ĥi)− gi(hi) (23)

More precisely, we can show that the when the input of a layer become the target of lower layer
computed by difference target propagation, the output of the layer moves toward the side of its
target

fi(ĥi−1) = fi(hi−1 + gi(ĥi)− gi(hi)) ∼ hi + f ′i(hi−1)g′i(hi)(ĥi − hi) (24)

(ĥi − hi)
T (fi(ĥi−1)− hi) ∼ (ĥi − hi)

T f ′i(hi−1)g′i(hi)(ĥi − hi)) > 0 (25)
if ĥi ∼ hi and f ′i(hi−1)g′i(hi) = (fi(gi(hi)))

′ is positive definite. It is far more flexible condition
than the perfect inverseness. Even when gi is a random mapping, this condition can be satisfied.
Actually, if fi and gi are linear mappings and gi has a random matrix, difference target propagation
is equivalent to feedback alignment (Lillicrap et al., 2014) which works well on many datasets. As
a target framework, we also can show that the output of the layer get closer to its target

||ĥi − fi(ĥi−1)||22 < ||ĥi − hi||22 (26)

if ĥi ∼ hi and the maximum eigenvalue of (I − f ′i(hi−1)g′i(hi))
T (I − f ′i(hi−1)g′i(hi)) is less than

1 because ĥi − fi(ĥi−1) ∼ [I − f ′i(hi−1)g′i(hi)](ĥi − hi) . Moreover, as gi approaches to f−1
i ,

this approaches to vanilla target propagation formula in (Bengio, 2014).
gi(hi) ∼ hi−1 → ĥi−1 = hi−1 − gi(hi) + gi(ĥi) ∼ gi(ĥi) (27)

2In the arXiv version of this paper.
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3 EXPERIMENTS

3.1 VERY DEEP NETWORKS

As a primary objective, we investigated whether one can train ordinary deep networks on the MNIST
dataset. The network has 7 hidden layers and the number of hidden units is 240. The activation
function is the hyperbolic tangent (tanh). we use RMSprop as a adaptive learning rate algorithm
because we do not have a global loss to optimize. Instead, we have the local layer-wise target losses
that might need their learning rates to be on different scales (this is actually what we find when we
do hyper-parameter optimization over the separate learning rates for each layer). To get this result,
we chose the optimal hyper-parameters for the best training cost using random search. And the
weights are initialized with orthogonal random matrices.

To improve optimization results, layers are updated one at a time from the bottom layer to the top
layer, thus avoiding issues with the current input of each layer being invalid if we update all layers
at once.

As a baseline, back-propagation with RMSprop is used. The same weight initialization and adaptive
learning rate and hyper-parameter searching method are used as with target-prop. We report our
results in figure 1. We got test error 1.92% in target propagation, 1.88% in back propagation. And
we got negative log-likelihood 3.38× 10−6 in target propagation, 1.81× 10−5 in back propagation.
These results are averaged over 5 trials using chosen hyper-parameters.

Figure 1: Training cost (left) and train/test classification error (right) with target-prop and backprop.
Target propagation can converge to lower values of cost with the similar generalization performance
to backprop.

3.2 NETWORKS WITH DISCRETIZED TRANSMISSION BETWEEN UNITS

As an example of extremely non-linear networks, we investigated whether one can train even discrete
networks on the MNIST dataset. The network architecture is 784-500-500-10 and only the 1st
hidden layer is discretized. Instead of just using the step activation function, we have normal neural
layers with tanh, and signals are discretized when transporting between layer 1 and layer 2, based on
biological considerations and the objective of reducing the communication cost between neurons.

h1 = f1(x) = tanh(W1x) (28)

h2 = f2(h1) = tanh(W2sign(h1)) (29)

p(y|x) = f3(h2) = softmax(W3h2) (30)
where sign(x) = 1 if x > 0, 0 if x ≤ 0. We also use feedback mapping with inverse loss. But
in this case, we cannot optimize full auto-encoding loss because it is not differentiable. Instead, we
can use only reconstruction loss given the input and the output of feed-forward mapping.

g2(h2) = tanh(V2sign(h2)) (31)

6
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Linv2 = ||g2(f2(h1 + ε))− (h1 + ε)||22, ε ∼ N(0, σ) (32)

If only feed-forward mapping is discrete, we can train the network using back-propagation with bi-
ased gradient estimator as if we train continuous networks with tanh. However, if training signals
also should be discrete, it is very hard to train using back-propagation. So we compare our result to
two backprop baselines. One baseline is to train the discrete networks directly so we cannot trainW1

using backprop. It still can make training error be zero but we cannot learn any meaningful represen-
tation on h1, so test error is poor in Figure 3 (left). Another baseline is to train continuous-activation
networks with tanh and to test with the discrete networks (that is, indirect training). Though the
estimated gradient is biased so training error does not converge to zero, generalization performance
is fairly good, as seen in Figure 2 (right), 3 (left).

Figure 2: Training cost (left) and train error (right) while training discrete networks. (backprop disc)
Because training signals cannot go across a discretization step, layer 1 cannot be trained by back-
prop. Though training cost is very low, it overfits, and test error is high. (backprop conti) An option
is to use a biased gradient estimator when we train the network as if it were continuous, and test
on the discretized version of the network. It is an indirect training, not overcoming the discreteness
during training. Training error cannot approach zero due to the biased estimator. (diff target-prop)
Target propagation can train discrete networks directly, so training error actually approaches zero.
Moreover, test error is comparable to (backprop conti). It clearly suggests that using target-prop,
training signals can go across a discretization step successfully.

Figure 3: Test error (left) and diagram of the discrete networks (right). The output of h1 is discretized
because signals must be communicated from h1 to h2 through a long cable, so binary representations
are preferred in order to conserve energy. Training signals are also discretized through this cable
(since feedback paths are computed by bona-fide neurons), so it is very difficult to train the network
directly. The test error of diff target-prop is comparable to (backprop conti) even though both feed-
forward signals and training signals are discretized.

7
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However, with target propagation, because we can learn an inverse mapping with a discrete layer
and we do not use derivatives through layers, we can successfully train discrete networks directly.
Though training convergence is slower, training error approaches zero, unlike the biased gradient
estimator with backprop and continuous networks. The remarkable thing is that test error is com-
parable to biased gradient estimator with backprop and continuous networks. We can train W1

properly, that is, training signals can go across the discrete region successfully. Of course, as shown
on the figure, the generalization performance is much better than the vanilla backprop baseline.

3.3 STOCHASTIC NETWORKS

Another interesting learning problem which backprop cannot deal with well is stochastic networks
with discrete units. Recently such networks have attracted attention (Bengio, 2013; Tang and
Salakhutdinov, 2013; Bengio et al., 2013) because a stochastic network can learn a multi-modal
conditional distribution P (Y |X), which is important for structured output predictions. Training
networks of stochastic binary units is also motivated from biology, i.e., they resemble networks of
spiking neurons. Here, we investigate whether one can train networks of stochastic binary units
on MNIST for classification using target propagation. Following Raiko et al. (2014), the network
architecture is 784-200-200-10 and the hidden units are stochastic binary units with the probability
of turning on given by a sigmoid activation.

hpi = σ(Wihi−1), hi = sample(hpi ) (33)

where sample(p) is a binary random variable which is 1 with probability p.

As a baseline, we consider a biased gradient estimator in which we do back-propagation as if it
were just continuous sigmoid networks. This baseline showed the best performance in Raiko et al.
(2014).

δhpi−1 = δhpi
∂hpi
∂hpi−1

∼ σ′(Wihi−1)WT
i δh

p
i (34)

In target propagation, we can train this network directly.

ĥp2 = hp2 − η
∂L

∂h2
, ĥp1 = hp1 + g2(ĥp2)− g2(hp2) (35)

gi(h
p
i ) = tanh(Vih

p
i ), Linvi = ||gi(fi(hi−1 + ε))− (hi−1 + ε)||22, ε ∼ N(0, σ) (36)

Using layer-local target losses Li = ||ĥpi − hpi ||22, we can update all the weights.

We obtained a test error of 1.51% using target propagation and 1.71% using the baseline method. In
the evalution, we averaged the output probabilities of an example over 100 noise samples, and then
classify the example accordingly, following Raiko et al. (2014) This suggests that target propagation
can directly deal with networks of binary stochastic units.

Method Test Error(%)
Difference Target-Propagation, M=1 1.51%

Biased gradient estimator like backprop
(followed by Raiko and Berglund, 2014, M=1) 1.71%

Tang and Salakhutdinov, 2013, M=20 3.99%
Raiko and Berglund, 2014, M=20 1.63%

Table 1: Test Error on MNIST with stochastoc networks. The first row shows the results in our
experiments. These are averaged results over 5 trials using the same hyper-parameter combination
which is chosen for the best valid error. The second row shows the results from (Raiko et al., 2014).
In our experiment, we used RMS-prop and maximum epochs is 1000 different from (Raiko et al.,
2014). M is the number of samples when computing output probability. we use M=100 at test time.

3.4 BACKPROP-FREE AUTO-ENCODER

Auto-encoders are interesting building blocks for learning representations, especially deep ones (Er-
han et al., 2010). In addition, as we have seen, training an auto-encoder is also part of what is

8
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required for target propagation according to the approach presented here, in order to train the feed-
back paths that propagate the targets. We show here how a regularized auto-encoder can be trained
using difference target propagation, without backprop.

Like in the work on denoising auto-encoders (Vincent et al., 2010) and Generative Stochastic Net-
works (Bengio et al., 2014), we consider the denoising auto-encoder like a stochastic network with
noise injected in input and hidden units, trained to minimize a reconstruction loss.

h = f(x) = sigm(Wx + b) (37)

z = g(h) = sigm(WT (h + ε) + c), ε ∼ N(0, σ) (38)

L = ||z− x||22 + ||f(x + ε)− h||22, ε ∼ N(0, σ) (39)

where we also use regularization to obtain contractive mappings. In order to train this network
without backprop (that is, chain rule), we can use difference target propagation. At first, the target
of z is just x, so we can train reconstruction mapping g with Lg = ||g(h) − x||22 in which h is
considered as a constant. And then, we compute the target ĥ of hidden units following difference
target propagation.

ĥ = h + f(ẑ)− f(z) = 2h− f(z) (40)

where f is used as a inverse mapping of g without additional functions, and f(ẑ) = f(x) = h.
As a target loss for the hidden layer, we can use Lf = ||f(x + ε) − ĥ||22 in which regularization
for contractive mapping is also incorporated and ĥ is considered as a constant. Using layer-local
target losses Lf and Lg , we train on MNIST a denoising auto-encoder whose architecture is 784-
1000-784. Stroke-like filters can be obtained (See Figure 4) and after supervised fine-tuning (using
backprop), we get 1.35% test error. That is, our auto-encoder can train a good initial representation
as good as the one obtained by regularized auto-encoders trained by backprop on the reconstruction
error.

Figure 4: Diagram of the evaluated backprop-free auto-encoder (left) and its trained filters, i.e., layer
1 weights (right). Even though we train the networks using only layer-local target losses instead of
a global loss (reconstruction error), we obtain stroke filters, similar to those usually obtained by
regularized auto-encoders. Moreover, we can pre-train good hidden representations for initialization
a classifier, which achieved a test error of 1.35% (after fine-tuning the whole network). The target ĥ
of the hidden layer is naturally derived from difference target propagation.
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APPENDIX

A PROOF OF PROPOSITION 1

Proof. During one update, the training sample is (x,y), with assumed fi we have:

hi = fi(hi−1) = Wisi(hi−1), i = 1, . . . ,M (A-1)

Here si is identity element-wise function if fi is linear mapping. According to the loss function in
section 2.1, the back-propagation update δW bp

i is then

δW bp
i = −ηbp

∂L(x,y; θ0,M
W )

∂Wi

= −ηbp(
∂hi+1

∂hi
)T . . . (

∂hM−1

∂hM−2
)T
∂loss(hM , y)

∂hM−1
(si(hi−1))T

= −ηbpJTfi+1
. . . JTfM−1

∂loss(hM , y)

∂hM−1
(si(hi−1))T (A-2)

where
Jfk =

∂hk
∂hk−1

= Wi · S′i(hk−1), k = i+ 1, . . . ,M − 1 (A-3)

S′i(hk−1) is a diagonal matrix with each diagonal element being corresponding element-wise deriva-
tives and Jfk is the Jocobian matirx of fk(hk−1) with respect to hi−1.

Target propagation update is more complicated. For layer M −1, as mentioned in the end of section
2.2, target ĥM−1 of hM−1 is assigned by

ĥM−1 = hM−1 − η0
∂loss(hM , y)

∂hM−1
(A-4)

If all hks are allocated in smooth areas and η0 is sufficiently small, then the target ĥi in layer i is
achieved by perfect inverse gk = f−1

k , k = i+ 1, . . . ,M − 1 that

ĥi = gi+1(. . . gM−1(ĥM−1) . . . )

= gi+1(. . . gM−1(hM−1) . . . )− η0Jgi+1
. . . JgM−1

∂loss(hM , y)

∂hM−1
+ o(η2

0)

' hi − η0J
−1
fi+1

. . . J−1
fM−1

∂loss(hM , y)

∂hM−1
(A-5)

Now for target propagation update δW tp
i we have

δW bp
i = −ηtp

∂||hi(hi−1;Wi)− ĥi||22
∂Wi

= −ηtp(hi − (hi − η0J
−1
fi+1

. . . J−1
fM−1

∂loss(hM , y)

∂hM−1
))(si(hi−1))T

= −η̃tpJ−1
fi+1

. . . J−1
fM−1

∂loss(hM , y)

∂hM−1
(si(hi−1))T (A-6)

here η̃tp = ηtp · η0 and we write ∂loss(hM ,y)
∂hM−1

as l and si(hi−1) as v for short. Since δW bp
i and δW tp

i

are in matrix form, the inner production of their vector forms vec(δW bp
i ) and vec(δW tp

i ) is

〈vec(δW bp
i ), vec(δW tp

i )〉 = tr((−ηbpJTfi+1
. . . JTfM−1

lvT )T (−η̃tpJ−1
fi+1

. . . J−1
fM−1

lvT ))

= ηbpη̃tptr(vlTJfM−1
. . . Jfi+1J

−1
fi+1

. . . J−1
fM−1

lvT )

= ηbpη̃tptr(vlT lvT )

= ηbpη̃tp||v||22 · ||l||22 (A-7)
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Also for ||vec(δW bp
i )||22 and ||vec(δW tp

i )||22 we have

||vec(δW bp
i )||22 = tr((−ηbpJTfi+1

. . . JTfM−1
lvT )T (−ηbpJTfi+1

. . . JTfM−1
lvT ))

= η2
bptr(v((JfM−1

. . . Jfi+1
)T l)T ((JfM−1

. . . Jfi+1
)T l)vT )

= η2
bp||v||22 · ||(JfM−1

. . . Jfi+1
)T l||22

≤ η2
bp||v||22 · ||(JfM−1

. . . Jfi+1
)T ||22 · ||l||22 (A-8)

and similarly,

||vec(δW tp
i )||22 ≤ η̃2

tp||v||22 · ||(JfM−1
. . . Jfi+1)−1||22 · ||l||22 (A-9)

here ||(JfM−1
. . . Jfi+1)T ||2 and ||(JfM−1

. . . Jfi+1)−1||2 are Euclidian norms, i.e. the largest singu-
lar value of (JfM−1

. . . Jfi+1
)T , λmax, and the largest singular value of (JfM−1

. . . Jfi+1
)−1, 1

λmin

(λmin is the smallest singular value of (JfM−1
. . . Jfi+1

)T , because fk is invertable, so all the small-
est singular values of Jacobians are larger than 0). Finally, the angle αi between vec(δW bp

i ) and
vec(δW tp

i ) satisfies:

cos(αi) =
〈vec(δW bp

i ), vec(δW tp
i )〉

||vec(δW bp
i )||2 · ||vec(δW tp

i )||2

≥ ηbpη̃tp||v||22 · ||l||22√
η2
bp||v||22 · λ2

max · ||l||22
√
η̃2
bp||v||22 · (

1
λ2
min

) · ||l||22

=
λmin
λmax

(A-10)

we have 0 ≤ αi ≤ cos−1( λmin

λmax
), where αi ≥ 0 is trivial. �
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B PROOF OF PROPOSITION 2

Proof. Let us first give detail explanation for condition 2, 3, 4. For condition 2, proper learning rates
ηv and ηw satisfy

∞∑
t=1

η(t)
v (η(t)

w ) = +∞,
∞∑
t=1

(η(t)
v )2((η(t)

w )2) < +∞ (A-11)

Note that the the beginning learning rate η(1)
v (η

(1)
w ) can be assigned as 1

n0
to be sufficiently small to

satisfy locally smooth condition if needed. Condition 3 basically says that the norm of first order
terms like∇Vi

Linvi (ĥi+ε;Vi,Wi) and∇Wi
Li(Wi) which are special cases of Jacobians, and eigen-

values of second order terms like ∂2Linv
i (ĥi+ε;Vi,Wi)

∂V 2
i

, ∂
2Linv

i (ĥi+ε;Vi,Wi)
∂Vi∂Wi

are bounded. Codition 4 is
equavilent to the following

∀ε > 0, inf
||Vi−V ∗

i (W
(t)
i )||2>ε

(Vi − V ∗i (W
(t)
i ))T∇ViL̄

inv
i (Vi,W

(t)
i ) > 0 (A-12)

above condition basically says that oppoite of the gradient −∇Vi
L̄invi (Vi,W

(t)
i ) always at least

partly points towards its minimum with optimal V ∗i (W
(t)
i ).

Note that in the following proof, all Vis and Wis are in vector form. V (t)
i and W (t)

i follow their
update rules like

V
(t+1)
i = V

(t)
i − η(t)

v ∇ViL
inv
i (ĥ

(t)
i + ε;Vi,W

(t)
i ) (A-13)

W
(t+1)
i = W

(t)
i − η

(t)
w δW

(t)
i (A-14)

δW
(t)
i respects to∇WiLi(Wi) in difference target propagation. We define γt that

γt = ||V (t)
i − V ∗i (W

(t)
i )||22 (A-15)

The γt measures how far the current V (t)
i is from the optimum. During the learning process, the

randomness is only introduced by every update’s sample (x,y) and the ε used in updating Vi. We
care about whether γt converges and we check the following conditional expcation

E{γt+1 − γt | V (t)
i ,W

(t)
i }

= E{||V (t)
i − η(t)

v ∇Vi
Linvi (ĥ

(t)
i + ε;Vi,W

(t)
i )− V ∗i (W

(t+1)
i )||22

−||V (t)
i − V ∗i (W

(t)
i )||22 | V

(t)
i ,W

(t)
i }

= −2η(t)
v (V

(t)
i − V ∗i (W

(t)
i ))T E

ĥ
(t)
i ,ε

{∇Vi
Linvi (ĥ

(t)
i + ε;Vi,W

(t)
i )}

+(η(t)
v )2 E

ĥ
(t)
i ,ε

{||∇Vi
Linvi (ĥ

(t)
i + ε;Vi,W

(t)
i )||22}

+2(V
(t)
i − V ∗i (W

(t)
i ))TE{V ∗i (W

(t)
i )− V ∗i (W

(t+1)
i ) |W (t)

i } (A-16)

−2η(t)
v E

ĥ
(t)
i ,ε

{(∇Vi
Linvi (ĥ

(t)
i + ε;Vi,W

(t)
i ))T (V ∗i (W

(t)
i )− V ∗i (W

(t+1)
i ) |W (t)

i }

+E{||V ∗i (W
(t)
i )− V ∗i (W

(t+1)
i )||22 |W

(t)
i }

= −2η(t)
v (V

(t)
i − V ∗i (W

(t)
i ))T∇ViL̄

inv
i (V

(t)
i ,W

(t)
i ) (A-17)

+(η(t)
v )2 E

ĥ
(t)
i ,ε

{||∇Vi
Linvi (ĥ

(t)
i + ε;Vi,W

(t)
i )||22} (A-18)

−2η(t)
v E

ĥ
(t)
i ,ε

{(∇Vi
Linvi (ĥ

(t)
i + ε;Vi,W

(t)
i ))T (V ∗i (W

(t)
i )− V ∗i (W

(t+1)
i ) |W (t)

i }(A-19)

+E{||V ∗i (W
(t)
i )− V ∗i (W

(t+1)
i )||22 |W

(t)
i } (A-20)
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We can see that term (A-16) is cancelled by condition 5. In term (A-18), because the norm of
∇Vi

Linvi (ĥi + ε;Vi,Wi) is bounded by some non-negative constant αv , we have

E
ĥi,ε

{||∇Vi
Linvi (ĥi + ε;Vi,W

(t)
i )||22} ≤ α2

v (A-21)

Let us check term (A-19) and term (A-20) where both of them have the term

∆∗ = V ∗i (W
(t)
i )− V ∗i (W

(t+1)
i ) (A-22)

Because V ∗i (W
(t)
i ) is the optimum minimizing L̄invi (Vi,W

(t)
i ), we have

0 = ∇Vi
L̄invi (V ∗i (W

(t)
i ),W

(t)
i )

= ∇ViL̄
inv
i (V ∗i (W

(t+1)
i ),W

(t+1)
i )

= ∇Vi
L̄invi (V ∗i (W

(t)
i )−∆∗,W

(t)
i − η

(t)
w δW

(t)
i ) (A-23)

If the learning rate for Vi and Wi is small enough with local smoothness satisfied, we can transform
Eq.A-23 like

0 = −∂
2L̄invi (Vi,Wi)

∂V 2
i

∆∗ − η(t)
w

∂2L̄invi (Vi,Wi)

∂Vi∂Wi
δW

(t)
i + o(||∆∗||22) + o(||η(t)

w δW
(t)
i ||

2
2) (A-24)

Here ||o(||∆∗||22)||2 ≤ ε∆||∆∗||2 and ||o(||η(t)
w δW

(t)
i ||22)||2 ≤ εw||η(t)

w δW
(t)
i ||2 for local smooth-

ness. With the fact that all the second order terms are bounded, based on Eq.A-24 we have

||∆∗||2 ≤ α∆η
(t)
w ||δW

(t)
i ||2 (A-25)

Here α∆ is some non-negative constant. Further more, because the first order term of Wi like
∇Wi

Li(Wi) is also bounded, we have

||δW (t)
i ||2 ≤ αw (A-26)

Here αw is some non-negative constant. Now for term (A-19) we have

| E
ĥ

(t)
i ,ε

{(∇Vi
Linvi (ĥ

(t)
i + ε;Vi,W

(t)
i ))T (V ∗i (W

(t)
i )− V ∗i (W

(t+1)
i ) |W (t)

i }| ≤ α∆αvαwη
(t)
w (A-27)

and the absolute value of the entire term (A-19) is then bounded by

2α∆αvαwη
(t)
w η(t)

v (A-28)

Based on Cauthy-Schwarz inequality, η(t)
w η

(t)
v satisfies

(

N∑
t=1

η(t)
w η(t)

v )2 ≤ (

N∑
t=1

(η(t)
w )2)(

N∑
t=1

(η(t)
v )2) (A-29)

From the learning rates condition, we know that

lim
N→∞

N∑
t=1

(η(t)
w )2((η(t)

v )2) < +∞ (A-30)

Because η(t)
w and η(t)

v are positive, then we can easily have

lim
N→∞

N∑
t=1

η(t)
w η(t)

v < +∞ (A-31)

For term (A-20) we have

E{||V ∗i (W
(t)
i )− V ∗i (W

(t+1)
i )||22 |W

(t)
i } ≤ α

2
∆α

2
w(η(t)

w )2 (A-32)
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Finally, E{γt+1 − γt | V (t)
i ,W

(t)
i } satisfies

E{γt+1 − γt | V (t)
i ,W

(t)
i }

≤ −2η(t)
v (V

(t)
i − V ∗i (W

(t)
i ))T∇Vi

L̄invi (V
(t)
i ,W

(t)
i )

+(η(t)
v )2(αv)

2 + 2α∆αvαwη
(t)
w η(t)

v + α2
∆α

2
w(η(t)

w )2

≤ (η(t)
v )2(αv)

2 + 2α∆αvαwη
(t)
w η(t)

v + α2
∆α

2
w(η(t)

w )2 (A-33)

From Eq.A-11 and Eq.A-31, we know that the right side of Eq.A-33 is the summand of a convergent
infinite sum. Since process {γt} always larger than 0, and Eq.A-33 gives the upper bound of positive
expected variation of γt, from Quasi-martingale convergence theorem in section 4.4 of (Bottou,
1998), we have that γt converges amlost surely. The almost surely convergence of γt and Eq.A-33
imply that

∞∑
t=1

η(t)
v (V

(t)
i − V ∗i (W

(t)
i ))T∇Vi

L̄invi (V
(t)
i ,W

(t)
i ) ≤ +∞, a.s. (A-34)

Here a.s. means almost surely. With the learning rate η(t)
v satisfies

∞∑
t=1

η(t)
v = +∞ (A-35)

and (V
(t)
i − V ∗i (W

(t)
i ))T∇ViL̄

inv
i (V

(t)
i ,W

(t)
i ) is always positive because of condition 4, we have

lim
t→∞

(V
(t)
i − V ∗i (W

(t)
i ))T∇Vi

L̄invi (V
(t)
i ,W

(t)
i ) = 0, a.s. (A-36)

Assume that γt converges to some positive constant rather than 0. It implies that when t is large
enough, γt = ||V (t)

i − V ∗i (W
(t)
i )||22 > ε > 0. This is incompatible with condition 3 and Eq.A-36.

Therefore γt converges to 0 almost surely and we have

lim
t→∞

V
(t)
i − V ∗i (W

(t)
i ) = 0, a.s. (A-37)
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