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Abstract.

A co-location pattern is a group of spatial features/events that are frequently
co-located in the same region. For example, human cases of West Nile Virus often
occur in regions with poor mosquito control and the presence of birds. For co-
location pattern mining, previous studies often emphasize the equal participation
of every spatial feature. As a result, interesting patterns involving events with sub-
stantially different frequency cannot be captured. In this paper, we address the
problem of mining co-location patterns with rare spatial features. Specifically, we
first propose a new measure called the mazimal participation ratio (mazPR) and
show that a co-location pattern with a relatively high maxPR value corresponds to
a co-location pattern containing rare spatial events. Furthermore, we identify a weak
monotonicity property of the maxPR measure. This property can help to develop an
efficient algorithm to mine patterns with high maxPR values. As demonstrated by
our experiments, our approach is effective in identifying co-location patterns with
rare events, and is efficient and scalable for large-scale data sets.

Keywords: Spatial Data Mining, Co-location Patterns, Spatial Association Rules

1. Introduction

Advanced spatial data collecting systems, such as NASA Earth’s Ob-
serving System (EOS) and Global Positioning System (GPS), have been
accumulating increasingly large spatial data sets [8, 12, 18, 24, 25, 30].
For instance, since 1999, more than a terabyte of data has been pro-
duced by EOS every day. These spatial data sets with explosive growth
rate are considered nuggets of valuable information. The automatic
discovery of interesting, potentially useful, and previously unknown
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Co-location Patterns — Sample Data

800 >
m} x * O % X +
+ o3
70t o © . o
< X Y
4
*
[m]
60
O o
]
+><
50 .
+* * *
A T b
> 401
*
* o © «
30+ 2 > o
« o
+ *
20 fx x
+ * e
A * o
o #
o + x4 o
= X
N *
x *
0 ! ! ! ! * X ! O, o
0 10 20 30 40 50 60 70 80

X

Figure 1. An illustration of spatial co-location patterns. Shapes represent different
spatial feature types. Instances of spatial features in sets {‘+’, ‘x’} and {‘0’, “**’}
tend to be located together.

patterns from large spatial datasets is being widely investigated via
various spatial data mining [16, 23, 24, 29] techniques. Classical spatial
pattern mining methods include spatial clustering [22], spatial charac-
terization [9], spatial outlier detection [27], spatial prediction [28], and
spatial boundary shape matching [15].

Mining spatial co-location patterns [7, 10, 11, 20, 21, 26, 31] is an
important spatial data mining task. A spatial co-location pattern is
a set of spatial features that are frequently located together in spatial
prozimity. To illustrate the idea of spatial co-location patterns, let us
consider a sample spatial data set, as shown in Figure 1. In the figure,
there are various spatial instances with different spatial features that
are denoted by different symbols. As can be seen, spatial feature + and
X tend to be located together because their instances are frequently
located in spatial proximity.

The problem of mining spatial co-location patterns can be related to
various application domains. For example, in location based services,
different services are requested by service subscribers from their mobile
PDA’s equipped with locating devices such as GPS. Some types of
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services may be requested in proximate geographic area, such as finding
the nearest Italian restaurant and the nearest parking place. Location
based service providers are very interested in finding what services are
requested frequently together and located in spatial proximity. This
information can help them improve the effectiveness of their location
based recommendation systems where a user requested a service in a
location will be recommended a service in a nearby location. Knowing
co-location patterns in location based services may also enable the use
of pre-fetching to speed up service delivery. In ecology, scientists are
interested in finding frequent co-occurrences among spatial features,
such as drought, EI Nino, substantial increase/drop in vegetation, and
extremely high precipitation.

The previous studies on co-location pattern mining emphasize fre-
quent co-occurrences of all the features involved. This marks off some
valuable patterns involving rare spatial features. We say a spatial fea-
ture is rare if its instances are substantially less than those of the other
features in a co-location. This definition of “rareness” is relative with
respect to other features in a co-location. A feature could be rare in
one co-location but not rare in another. For example, if the spatial
feature A has 10 instances, the spatial feature B has 20 instances, and
the spatial feature C has 10,000 instances. A is not considered a rare
feature in the co-location {4, B} but it is considered a rare feature
in co-location {4, C}. Of course, a feature with very small number of
instances are often rare in many co-location patterns.

In many cases, it is important to capture co-location patterns with
rare features. For example, it is believed that human West Nile Virus
disease [2] often occurs in regions with poor mosquito control and the
presence of birds. The Center for Disease Control has received confir-
mation from state agencies of 8219 human cases of West Nile Virus for
the year 2003. However, due to numerous locations with poor mosquito
control and the presence of birds, we may not find that poor mosquito
control and domestic animals are strongly co-located with human West
Nile Virus disease using the existing co-location mining methods.

As another example, in a case settled in 1996 [1], PG&E’s nearby
plant was leaching chromium 6, a rust inhibitor, into the water supply
of Hinkley California, and the suit blamed the chemical for dozens of
symptoms, ranging from nosebleeds to breast cancer, Hodgkin’s disease,
miscarriages and spinal deterioration. The prosecutors argued that
chromium 6 contaminated water caused nosebleeds, breast cancer, etc.
in their nearby region with high probability. Again, this is a typical co-
location pattern involving rare spatial features; that is, the spatial event
“chromium 6 contaminated water” is rare compared to nose-bleeding.
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Therefore, it is necessary to explore new methods to discover co-
location patterns with rare spatial features, which is the motivation of
this paper. However, the existing co-location mining algorithms [20, 26]
have difficulties in identifying such patterns. In general, the challenges
of mining spatial co-location patterns with rare spatial features lay in
two aspects.

1. How to identify and measure spatial co-location patterns involving
rare spatial features ¢
Strong interactions involving rare spatial features are often marked
off in previous methods, since they require frequent co-occurrences
of all features in the co-location patterns. Many measures are based
on the measures of frequency or minimum participation ratio where
rare events are unfavorable.

Our contributions. In this paper, we propose a novel measure
called mazimal participation ratio, which can incorporate the spa-
tial co-location patterns in the presence of rare spatial features. We
show that finding spatial co-locations from spatial data sets with
rare spatial features can be achieved by finding co-location patterns
with respect to the maximal participation index.

2. How to mine the patterns involving rare spatial features efficiently?
Even though we have a good measure for co-location patterns in
the presence of rare spatial features, it is still challenging to find
all the patterns efficiently. One dominant obstacle is that the maxi-
mal participation ratio is not monotonic with respect to co-location
pattern containment relation. Thus, the conventional apriori-like
pruning technique [4] cannot be applied. Without proper pruning,
there could be many possible combinations. Checking them one by
one may be computationally prohibitive in many cases.

Our contributions. In this paper, we study the problem of effi-
ciently mining co-location patterns with rare spatial features sys-
tematically. We propose two algorithms. The first algorithm is a
rudimentary extension of the apriori-like [4] solution. It uses a
very low participation index threshold to prune and use the maxi-
mal participation ratio threshold to do a post-processing. It is not
efficient since it has to enumerate many patterns.

Our second algorithm is much more efficient. It exploits an inter-
esting weak monotonic property of the maximal participation ratio
to push the maximal participation ratio threshold deep into the
mining. It achieves good performance in most cases.
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We conduct an extensive performance study to test our meth-
ods. The experimental results show that our methods are effective,
efficient and scalable for mining large spatial databases.

The remainder of this paper is organized as follows. In Section 2, we
review related work. We recall important concepts of association rule
mining and compare it with spatial co-location mining in section 3.
Section 4 presents an overview of the co-location pattern mining frame-
work [26]. In Section 5, we introduce the maximal participation ratio.
Efficient algorithms for mining co-location patterns with rare features
are proposed in Section 6. An extensive performance study is reported
in Section 7. Finally, in Section 8, we draw conclusions and suggest
future work.

2. Related Work

The previous methods of mining co-location patterns can be divided
into two categories, namely the spatial data mining methods and the
spatial statistics methods. They are reviewed briefly in this section.

2.1. SPATIAL DATA MINING METHODS

In [26, 31], efficient algorithms were proposed to mine spatial co-location
patterns from spatial databases. A set of spatial features form a pattern
if, for each spatial feature, at least s% instances of that feature form a
clique with some instance of all the rest features in the pattern for a
given neighborhood relationship, such as an Euclidean distance thresh-
old. The parameter s% is called the participation index. In other words,
a set of spatial features form a pattern if whenever a feature of the set
is observed, with a probability of at least s%, all other features are also
observed in spatial proximity. When the number of objects of different
spatial features spans a wide range, the popular features (features with
a large number of objects) tend to get a low ratio compared to rare
features (features with a small number of instances). In [31], spatial co-
location patterns were generalized and expressed by multi-way spatial
joins. The space partitioning algorithms were proposed to solve the
spatial co-location pattern mining problem. The proposed algorithm is
not restricted to a particular interesting measure.

In [20], graphs formed by neighboring spatial instances are parti-
tioned to disjoint parts. A frequency-based pruning technique is devel-
oped. This frequency-based pruning method also favors popular spatial
features. A clustering-based map overlay approach [10, 11] treats every
spatial attribute as a map layer and considers spatial clusters (regions)

rare.tex; 16/12/2005; 20:02; p.5



6 Yan Huang, Jian Pei, and Hui Xiong

of point-data in each layer as candidates for mining associations. Given
X and Y as sets of layers, a clustered spatial association rule is defined
as X = Y(CS%,CC%), for XNY = 0, where CS% is the clustered
support, defined as the ratio of the area of the cluster (region) that
satisfies both X and Y to the total area of the region S under investi-
gation, and C'C% is the clustered confidence, which can be interpreted
as CC% of the areas of clusters (regions) of X intersect with areas of
clusters(regions) of Y. However, instances of rare spatial features, e.g.
Chromium 6 populated water sources, do not always form clusters or
regions.

The reference feature centric model proposed in [17] enumerates
proximity neighborhoods to “materialize” a set of transactions around
instances of a user specified reference spatial feature. Transactions are
created around instances of one user-specified spatial feature. The as-
sociation rules are derived using the apriori algorithm [4]. The rules
found are all related to the reference feature. The support based apriori
pruning marks off co-location patterns with rare spatial features.

Munro et al. [21] described the need for mining complex relationships
in spatial data including multi-feature colocation, self-colocation, one-
to-many relationships, self-exclusion and multi-feature exclusion.

2.2. SPATIAL STATISTICS METHODS

In spatial statistics, some dedicated techniques such as cross k-functions
with Monte Carlo simulations [7], mean nearest-neighbor distance, and
spatial regression models [6] have been developed to test the co-location
of two spatial features and find pairs of co-located spatial features. How-
ever, the Monte Carlo simulation could be expensive. Another approach
is to arbitrarily partition the space into a lattice. For each cell of the
lattice, count the number of instances of each spatial feature. Pairwise
correlation of spatial features could be found by tests such as x? [7]
or using classic association rule mining algorithms such as apriori [4]
by treating each cell as a transaction. Arbitrary partitioning may loss
neighboring instances across borders of cells. Both the cross k-function
and the pair wise correlation cannot be easily extended to the cases
with more than two spatial features.

To the best of our knowledge, this is the first systematic study on
mining co-location patterns with rare features in the spatial context.
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3. Association Rule Mining

Since spatial co-location pattern mining resembles association pattern
mining [3] in many aspects, we review the basic concepts of association
rules in this section.

Since its introduction [3], the problem of mining association rules
from large databases has been the subject of numerous studies. The
association rule mining problem is defined as follows.

Let T = {41,149, ..,%m} be aset of m items. Let TD = {T1,T>,..., Ty}
be a transactional database where T;(i € [1,n]) is a transaction which
is a subset of items in Z. For an itemset Y C Z, the support of Y is the
number of transactions containing Y in T'D, i.e., sup(Y) = {T;|T; 2
Y}|. Y is of size k if |Y] = k.

The confidence of an association rule in the form of X — Y, where
X NY =0, is the ratio of the support of X UY versus the support of
X. Itemset Y is a frequent pattern if the support of Y is no less than a
minimum support threshold specified by user. We compare and contrast
frequent pattern mining and spatial co-location mining in Table I.

Table I. Comparison of frequent pattern mining and spatial
co-location mining

Frequent pattern mining | Co-location mining

item spatial feature

item set spatial feature set

frequent pattern co-location pattern

support spatial interestingness measures
transactional database spatial database

The support of itemsets has a downward closure property (some-
times called the apriori property): the support of Y is no less than the
support of any superset of Y. Because of the downward closure property
of the support, a generate-and-test mining paradigm was employed by
the apriori algorithm proposed in [4]. This approach generates candi-
dates of size (k + 1) items set based on the size k frequent itemsets.
The set of size (kK + 1) candidates includes all and only those itemsets
of size (k + 1) whose size k subsets are all frequent. False candidates
are pruned by scanning the transactions before the next iteration.
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4. Co-location Patterns in Spatial Databases

In this section, we review a framework of mining co-location patterns,
since our proposed solution in this paper is based on this model. The
framework was proposed in [26] and is based on the participation indez.
We will point out why such a framework still may miss some co-location
patterns involving rare spatial features. In the next section, we will
extend the framework to mine co-location patterns with rare spatial
features.

For a spatial data set S, let F' = {f1,..., fx} be a set of boolean
spatial features. Let I = {i1,...,i,} be a set of n instances in S, where
each instance is a vector (instance-id, location, spatial features). The
spatial feature f of instance i is denoted by ¢.f. We assume that the
spatial features of an instance are from F' and the location is within
the spatial framework of the spatial database. Furthermore, we assume
that there exists a neighborhood relation R over pairwise instances in

S.

Example Dataset

B A
+ + B
13 18 v C
o D
1
x 16
& 3
1 12 17
9
1 814

Figure 2. An Example Dataset

EXAMPLE 1 (A Spatial Data Set). Figure 2 shows a spatial data set
with a spatial feature set F' = {A, B,C, D}, which will be used as
the running example in this paper. Objects with various shape repre-
sent different spatial features, as shown in the legend. Each instance
is uniquely identified by its instance-id. We have 18 instances in the
database. [

The objective of co-location pattern mining is to find frequently co-
located subsets of spatial features. For example, a co-location “{traffic
jam, police, car accident}” means that a traffic jam, police, and a car
accident frequently occur in a nearby region.
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To capture the concept of “nearby”, the concept of user-specified
neighbor-sets was introduced. A neighbor-set L is a set of instances such
that all pairwise locations in L are neighbors. A co-location pattern (or
just pattern for short) C is a set of spatial features, i.e., C C F. A
neighbor-set L is said to be a row instance of co-location pattern C' if
every feature in C appears as a feature of an instance in L, and there
exists no proper subset of L does so. We denote all row instances of a
co-location pattern C' by rowset(C).

EXAMPLE 2 (Neighbor-set, row instance and rowset). In Figure 2,
the neighborhood relation R is defined based on Euclidean distance.
Two instances are neighbors if their Euclidean distance is less than a
user specified threshold. Neighboring instances are connected by edges.
For instance, {3,6,17}, {4,5,13}, and {4,7,10,16} are all neighbor-sets
because each set forms a clique. Here, we use the instance-id to refer to
an object in Figure 2. Additional neighbor-sets include {6,17}, {3,6},
{2,15,11,14}, and {2,15,8,11,14}.

{A,B,C,D} is a co-location pattern. The neighborhood-set
{14,2,15,11} is a row instance of the pattern {4, B,C, D} but the
neighborhood-set {14,2,8,15,11} is not a row instance of co-location
{A,B,C,D} because it has a proper subset {14,2,15,11} which con-
tains all the features in {A, B,C, D}.

Finally, the rowset({A,B,C,D}) = {{7,10,16,4},{14,2,15,11},
{14,8,15,11}}. ]

For a co-location rule R: A — B, the conditional probability cp(R)
of R is defined as

{L € rowset(A)|3L" s.t. (L C L") A (L' € rowset(AU B))}
|rowset(A)|

In words, the conditional probability is the probability that a neighbor-
set in rowset(A) is part of a neighbor-set in rowset(AU B). Intuitively,
the conditional probability p indicates that, whenever we observe the
occurrences of spatial features in A, the probability to find occurrence
of B in a nearby region is p.

EXAMPLE 3 (Conditional probability). In Figure 2, based on the
Euclidean distance relation R as described in Example 2,

rowset({A, B,C,D}) = {{7,10,16,4},{14,2,15,11},{14,8,15,11}},

and
rowset({A, B}) = {{7,10},{14, 2}, {5, 13}, {14, 8} }.
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Since |rowset({A, B})| = 4, only 3 rows of {A, B} satisfy the subset
condition, i.e. row {7,10} of {A, B} is a subset of row {7,10,16,4} of
{A,B,C,D} ;row {14,2} of {A, B} is a subset of row {14,2,15,11} of
{4, B,C,D} and row {14, 8} of {A, B} is a subset of row {14, 8,15,11}
(;f {A,B,C,D} , the conditional probability ¢p({4,B} — {C,D}) =

Given a spatial database S, to measure how a spatial feature f is
co-located with other features in co-location pattern C, a participation
ratio pr(C, f) can be defined as

_ Hrl(r € S)A(r.f = f) A(r is in a row instance of C)}|
e = (i €S) A G = DN

In words, a feature f has a partition ratio pr(C, f) in pattern C' means
wherever the feature f is observed, with probability pr(C, f), all other
features in C are also observed in a neighbor-set.

In [26], a participation index was proposed to measure how all the
spatial features in a co-location pattern are co-located. For a co-location
pattern C, the participation index PI(C) = minscc{pr(C, f)}. In
words, wherever any feature in C' is observed, with a probability of at
least PI(C), all other features in C can be observed in a neighbor-set.
A high participation index value indicates that the spatial features in a
co-location pattern likely occur together. The participation index was
proposed because in spatial application domain there are no natural
“transactions” and thus “support” is not well-defined.

Given a user-specified participation index threshold min_prev, a co-
location pattern is called prevalent if PI(C) > min_prev.

EXAMPLE 4 (Participation ratio and participation index). To find the
participation index PI({A, B,C,D}) of pattern {4, B,C, D}, we first
identify the rowsets of {A, B,C, D} as shown in Example 2, i.e., {{7,
10,16,4}, {14,2, 15,11}, {14,8,15, 11} }.

Among all the five instances of A, two of them, namely 7 and
14, have B,C and D in a neighbor-set. So the participation ratio
pr({4,B,C,D}, A) = % Similarly, we can have pr({4,B,C,D},B) =
%’ p’r({A7 B7 07 D}’ C) = % = %’ andplr({A’ B’ C’ D}’ D) = % = 1' Tak_
ing the minimal of all the ratios, the participation index PI({A, B,C,D})
of co-location {A, B,C, D} is % [

As shown below, both the participation ratio and the participation
index are monotonic with respect to the size of co-location patterns.

LEMMA 1 (Monotonicity of participation ratio and participation index [26]).
Let C and C'" be two co-location patterns such that C C C'. Then,
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for each feature f € C, pr(C, f) > pr(C', f). Furthermore, PI(C) >
PI(C").

Proof: To have the first claim in the lemma, we only need to show
that for a spatial feature f € C,

H{r|(r € S)A(r.f = f) A(r is in a row instance of C)}| >
{r|(r € S)A (r.f = f) A(r is in a row instance of C')}|

Since C C C’, every row instance of C’ contains a subset of instances
which is a row instance of C. Thus, the inequality holds.
The second claim follows the fact that PI(C) = minfcc{pr(C, f)} >

mingec{pr(C’, f)} 2 mingec{pr(C’, f)} = PI(C). m

Based on Lemma 1, a level-by-level, iterative apriori-like algorithm
was developed in [26] to find the complete set of prevalent patterns from
a spatial database. For details of the algorithm, please refer to [26].

It is interesting to note that, in the above prevalent co-location
pattern mining framework, some co-location patterns involving rare
spatial features may be unfortunately missed.

EXAMPLE 5 (A Co-location Pattern for West Nile Disease). Let us
consider the co-location pattern C = {West Nile, poor mosquito control,
domestic animal}. Suppose participation ratios

pr(C, West Nile ) = 85%,

pr(C, poor mosquito control) = 10%

and
pr(C, domestic animal) = 1%.

Then, PI(C) = min{85%, 10%,1%} = 1%. As can be seen, even though
West Nile is strongly co-located with poor mosquito control and domes-
tic animal, unfortunately, the whole co-location pattern is weak in the
term of participation index because the West Nile is rare compared to
poor mosquito control and domestic animals. [

Can we extend the framework to mine such patterns even though
their participation index values are low? In other words, can we mine
co-location patterns with rare spatial features?’ We will address this
issue in the next two sections.
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5. Maximal Participation Ratio

There is one important observation about co-location patterns with
rare spatial features, “even though the participation index of the whole
pattern could be low, there must be some spatial feature(s) with high
participation ratio(s)”. In Example 5, in pattern P = {West Nile, poor
mosquito control, domestic animal}, the participation index is low, since
West Nile disease are rare compared to poor mosquito control and do-
mestic animals. However, the participation ratio of “West Nile Virus”
in the pattern is high.

The above observation motivates our extension of the participation
index framework. For a co-location pattern C, we define the mazimal
participation ratio as marPR = maxscc{pr(C, f)}. In words, a high
maximal participation ratio value indicates that there are some spatial
features strongly imply the pattern.

In general, given a co-location pattern C' = {f1,..., fx}, we sort all
spatial features in C in the participation ratio descending order. With-
out loss of generality, for a given minimum mazimal participation ratio
threshold min_mazPR, suppose for i € [1,1] pr(C, f;) > min-mazPR,
where 1 < 4 <[ < k and [ is the last spatial feature that has par-
ticipation ratio above the user given threshold. The output of the
co-location mining with rare spatial features will be in the form of
(C = {f1,---, fx},1). Then, we can say that if a spatial feature f;
(1 <14 <) is observed in some location, then the probability of observ-
ing all other spatial features in C — {f;} in a neighbor-set is at least
mazPR(C).

Given a minimum mazPR threshold min_maz PR, the problem of
mining co-location patterns with rare spatial features in a spatial database
is to find the complete set of co-location patterns C such that mazPR(C) >
min_mazPR.

In general, every pattern that is significant in participation index
is also significant in maximal participation ratio. In other words, min-
ing co-location patterns with rare spatial features using the maximal
participation ratio measure will find all prevalent patterns as a subset.

While the extension of participation index to maximal participation
index is intuitive, there is no easy way to extend the existing level-
by-level apriori-like algorithm [4] to mine patterns with respect to a
maximal participation ratio threshold. The dominant obstacle is that
mazimal participation ratio is not monotonic with respect to the pattern
containment relation, as shown in the following example.

EXAMPLE 6 (Maximal participation ratio is not monotonic). In Fig-
ure 2, the set of spatial features {B,C} C {A,B,C}. However,
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Table II. Rowsets, PIs and mazPRs of Co-locations of Dataset in Figure 2

ID co-loc rowset pr PI  max PI
1 {A}r  {{1}h{5}{6}.{7},{14}} {3 1 1
2 {B}  {{2},{8},{10}, {13},{18}} {3 1 1
3 {c¢} {{3},{9},{12}, {15}, {16},{17}} {1} 1 1
4 {p}  {{a,{n}} {3 1 1
ID  co-loc rowset pr PI max PI
5  {AB} {{513},{7,10},{14,2},{14,8}} {4/5:4/5}y 4/5  4/5
6 {AC}H {{1,12},{6,3},{6,17},{14,15},{7,16}}  {4/5,5/6} 4/5 ©5/6
7 {AD}  {{54},{14,1},{74}} {3/5.2/2}  3/5 1
8  {B,C} {{2,9},{2,15},{8,15},{10,16}} {3/5,3/6} 1/2 3/5
9 {BD} {{2111,{8,11},{10,4},{13,4}} {4/52/2) 45 1
10 {C,D} {{15,11},{16,4}} {2/6,2/2} 1/3 1
ID co-loc rowset pr PI maxPR
11 {A,B,C} {{7,10,16},{14,2,15},{14,8,15}} {2/5,3/5,2/6} 1/3 3/5
12 {A,BD} {{5,13,4},{7,10,4},{14,2,11},{14,8,11}}  {3/5,4/5,2/2} 3/5 1
13 {A,C,D} {{7,16,4},{14,15,11}} {2/5,2/6,2/2} 2/5 1
14 {B,cD} {{2,15,11},{10,16,4},{8,15,11}} {3/5,2/6,2/2} 1/3 1
ID  co-loc rowset pr PI maxPR
15 {A,B,C,D} {{7,10,16,4},{14,2,15,11},{14,8,15,11}}  {2/5,3/5,2/6,2/2} 1/3 1
mazPR({B,C}) = max{2,3} = 60% < mazPR({B,C,D})
= max{2, 2,2} = 100%! (Please see Table II for the rowsets and the
mazPR’s). L]

Now, the challenge becomes how we can push the mazimal partic-
ipation ratio threshold to prune the search space. That is the topic of
the next section.

6. Algorithms
In this section, we will develop efficient algorithms for mining co-location

patterns from spatial databases with rare spatial features using max-
imal participation ratio measure. We propose two methods. The first
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method is a rudimentary extension of the Apriori algorithm [4]. The
second method is based on an interesting weak monotonic property of
the maximal participation index.

6.1. A RUDIMENTARY ALGORITHM

As shown in the previous section, the maximal participation ratio is not
monotonic. Thus, we cannot apply the apriori-like pruning directly. In
many applications, very rare events could be just noise. Thus, we may
in fact have a minimum prevalent threshold min_prev and a minimum
maximal participation ratio threshold min_maz PR such that we only
want to find patterns P with PI(P) > min_prev and mazPR(P) >
min_maxrPR.

Based on this observation, we can develop an apriori-like algorithm
as follows. We use the minimum prevalent threshold min_prev to do
apriori-like pruning, then filter out patterns failed the maximal partic-
ipation ratio threshold by a post-processing.

To ease the presentation, we call a co-location pattern with k spatial
features a k-pattern. We assume that the spatial features in a k-pattern
C is ordered and indexed by their positions in the co-location pattern,
i.e. f; means the i*" spatial feature in C. The algorithm, called Min-
Maz, is presented in Figure 3.

The geometric algorithm is used in step 1 to generate length-2 can-
didates, since all singleton co-location patterns have both participation
index and max participation index equal to 1, and do not need to
be checked. Spatial join methods utilizing minimal rectangle bounding
box, such as the well known plane sweep [5], space partition [14], and
tree matching [19], can be used.

EXAMPLE 7 (Algorithm Min-Max). Suppose minprev = 0 and
min_marPR = 0.85, let us show one iteration of the algorithm from
2-patterns to 3-patterns for the dataset in Figure 2.

From Table II , we have

Py = {{A, B},{A,C},{4,D},{B,C},{B, D},{C,D}}

and
Iﬁ = {{145(7}’{1451)}’{1351)}5{(731)}}'

From those rowsets, it is straightforward to calculate their PIs and
mazPRs. The algorithm generates candidate 3-patterns C3 = {{4, B,C},
{A,B,D},{A,C,D},{B,C,D}} from Pj. Then the rowsets of the can-
didates are generated by joining the rowsets of the two 2-patterns. For
example, the rowset of {A,B} joins the rowset of {A,C} to produce
the rowset of {A, B,C}. At the end of this iteration, we have the set
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Input: A spatial database S, a neighborhood relation R, a mini-
mum prevalent threshold min_prev, and a minimum maximal
participation index threshold min_mazPR.

Output: Co-location patterns P such that PI(P) > min_prev and
mazPR(P) > min_mazPR.

Method:

1. let k& = 2; generate C5, the set of candidate 2-patterns and
their rowsets, by geometric methods;

2. for each C € Cy calculate PI(C) and mazPR(C) from C’s
rowset rowset(C);

3. let P/ be the subset of Cj, such that for each P € P/, PI(P) >
MIin_prev;

4. let P, be the subset of Pj such that for each P €
Py,maxPR(P) > min_mazrPR;

5. generate the set Cy,; of candidate (k + 1)-patterns, a co-
location pattern P with (k + 1) spatial features is in Cyyq
if and only if for each feature f € P, (P — {f}) € P|;

6. if Cxr1 #0, let k=k+ 1, go to Step 2;
7. output U; P; [

Figure 8. Algorithm Min-Max.

of candidate 3-patterns Cs and their rowsets. C3 is not empty. So, we
start the next round from step 2 in the algorithm. n

When the minimum prevalent threshold is set to 0, the algorithm
can find the complete set of patterns. If min_prev is over 0, some
patterns with high maximal participation ratio but low prevalence may
be missed. In Example 7, if min_prev is set to 0.45, PI({A,D}) = 0.4
and {A,D} is not in Pj. {A,C} and {A, D} will not join to produce
candidate {A, C, D}, though max PI({A,C,D}) =1 > min_mazPR.

One advantage of the Min-Max algorithm is that the user can specify
the prevalence of patterns she wants to see by the min_prev value. The
major disadvantage of the algorithm is that, if a user wants to find
the complete answer, the algorithm has to generate a huge number of
candidates and test them, even though the maximal participation ratio
threshold min_max PR is high.
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6.2. PrRUNING By A WEAK MONOTONIC PROPERTY

Is there any property of the maximal participation ratio we can use
to get efficient algorithms for co-location pattern mining with rare fea-
tures?

Let us re-examine Example 5. Pattern P = {West Nile, poor mosquito
control, domestic animal} has three proper subsets such that each sub-
set has exactly 2 features. Feature West Nile has a high participation
ratio, and it participates in two out of the three subsets. Since the
participation ratio is monotonic (Lemma 1), the maximal participation
ratio values of the two proper subsets containing West Nile must be
higher or equal to that of P. In other words, at most one 2-subpattern
of P can have a lower maximal participation ratio value.

The above observation can be generalized to a pattern with [ fea-
tures. Thus, we have the following weak monotonic property.

LEMMA 2 (Weak monotonicity). Let P be a k-co-location pattern. Then,
there exists at most one (k — 1)-subpattern P’ such that P' C P and
mazPR(P') < mazPR(P).

Proof. Let f; € P be a spatial feature whose participation ratio is max-
imal in P. For all (k—1)-pattern P’ such that (P" C P)A(P' # P/{f;}),
P’ contains f; and f; € P' N P. Based on Lemma 1, mazPR(P') >
pr(P', f;) > pr(P, fj) = mazPR(P). In other words, only one (k — 1)-
subpattern of P, i.e. P/{f;}, is possible to have a lower maximal
participation index value than P does. [

Based on the above weak monotonic property, if a k-pattern is
above the maximal participation ratio threshold, then at least (k — 1)
out of its k subpatterns with (k — 1) features are above the maximal
participation ratio threshold. Therefore, we can revise the candidate
generation process, such that only a k-pattern having at most one
(k — 1)-subpattern below the minimum maximal participation ratio
min_max PR threshold should be generated. The idea is illustrated in
the following example.

EXAMPLE 8 (Candidate generation using weak monotonicity). Sup-
pose the maximal participation ratio values of {4, B,C}, {A,C, D} and
{B, C, D} are all over the threshold min_maz PR, but that of {A, B, D}
is not. We still should generate a candidate P = {A, B, C, D}, since it
is possible that maxzPR(P) passes the threshold.

To achieve this, we need a systematic way to generate the candidates.
Please note that, in apriori, for the above example, {A, B, C, D} is gen-
erated only if {A, B,C} and {A, B, D} (differ only in their last spatial
feature) are both frequent. However, in the co-location pattern mining
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Input: A spatial database S, a neighborhood relation R, a minimum
maximal participation ratio min_maxzPR.

Output: Co-location patterns P such that mazPR(P) >
min_marPR.

Method:

1. let £ = 2; generate C5, the set of candidate 2-patterns and
their rowsets, by geometric methods;

2. For each C € Cj calculate mazPR(C) from C’s rowset
rowset(C); Let P, be the subset of Cy such that for each
P € Py, maxPR(P) > min_mazPR;

3. generate Cy,1, the set of candidates (k + 1)-patterns, as il-
lustrated in Example 8 ; if Cxy11 # 0, let Kk = k + 1, go to
Step 2;

4. output U; F; [

Figure 4. Algorithm maxPrune.

with rare spatial features using maximal participation ratio measure,
it is possible that {4, B, D} is below the given threshold min_maz PR
while {A, B, C, D} is above the threshold min_mazPR.

In general, for two co-location patterns P and P’ from the set P
of k-patterns above threshold min_mazPR, i.e. P € P, and P' € P,
P and P’ can be joined to generate a candidate (k + 1)-pattern in
Cl+1 if and only if P and P’ have one different feature in the last two
features. For example, even {A, B, D} is below threshold min_max PR,
candidate {4, B,C, D} can be generated by {A,B,C} and {A,C,D}
since they have the common feature C in their last two features, i.e.
they differ one spatial feature in their last two spatial features. [

We will illustrate the correctness of the above candidate generation
method in Lemma 3 and Example 9. Also, with the revised candidate
generator, the mining algorithm is presented in Figure 4.

The algorithm does not need a minimum prevalence threshold but
still finds all co-location patterns with maximal participation index
above threshold min_mazPR.

To make sure the candidate generation does not miss any co-location,
we need to prove that the candidate (k + 1)-patterns Cy.1 generated
by the maxPrune algorithm is a superset of the actual (k + 1)-patterns
Py y1. This is proved in the following lemma.
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LEMMA 3. Let P be a k-pattern above given threshold min_mazPR
(k > 3). Then, there exist two (k — 1) patterns Py and Py such that (1)
P, C P, P, C P, (2) P, and Py share their first k — 2 features, (3)
Py and P, share either the k™ or the (k — 1) feature or the (k —2)"
feature in P but not any two of them, and (4) both P, and P, are above
threshold min_maxPR.

Proof: The three length-(k —1) sub-patterns: P/{fx_2},P/{fx—1}, and
P/{fr} share their first £k — 2 features and pairwise share one feature
(k' feature, (k — 1) feature, or (k — 2)*" feature of P) in their last
two features but not two of the features in {fx_2, fx—1, fr}. Following
Lemma 2, P has at most one length-(k—1) subpattern P’ which is below
threshold min_maxzPR. Thus, if any one of the three below threshold
min_maxPR, we still have the other two length-(k — 1) patterns as
stated in the Lemma. [

Lemma 3 guarantees that if we generate size k candidate patterns by
joining any two (k — 1) patterns which differ in one feature in their last
two features, we will not miss any co-location patterns above threshold
min_-maxlP.

EXAMPLE 9 (Algorithm maxPrune). Suppose min_mazPR = 0.85.
Initially, all singleton co-location patterns are qualified since they have
mazPR = 1. A general geometric method is used to generate candidate
2-patterns and their rowsets. From their rowsets, we calculate their
maxzPR. Only the co-location patterns in

P = {{Aa C}’ {A7 D}’ {Ba C}’ {07 D}}

are above min_maz PR threshold.

Then, we generate candidates 3-patterns. In detail, {4,C} joins
{A, D}, {A,C} joins {B, C}, {4, C} joins {C, D}, {4, D} joins {C, D},
and {B, C} joins {C, D} to generate candidate 3-patterns. After dupli-
cate elimination, we have

Cs ={{A,B,C},{A,B,D},{A,C,D}{B,C,D}}.

The rowsets of the candidates are generated by joining the rowsets of
the two 2-patterns leading to the candidate.

We go back to step 2. From their rowsets, we calculate the max-
imal participation ratio values for the candidate 3-patterns. We get
Py = {{A,B,D},{A,C,D}{B,C,D}}. The patterns in P3 are above
threshold min_maxzPR. Then, we generate the candidate 4-patterns.
In detail, {4, B, D} joins {A,C, D} because they differ by one fea-
ture in their last two features. We thus generate candidate 4-pattern
Cs = {A, B,C, D}, as illustrated in Example 8. Rowsets of {A,C, D}
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and {B,C, D} are joined to produce the rowset of {A, B,C,D}. Its
maxzPR is calculated and it is above the threshold min_maxPR.

The algorithm proceeds similarly. It can be verified that Cs = () and
thus the algorithm stops. ]

Compared to the Min-Max algorithm, the maxPrune algorithm does
not need any minimum prevalence threshold and finds the complete set
of co-locations above the minimum maximal participation index thresh-
old min_maxPR with any prevalence. In the process of mining the
complete set of these co-locations, the maxPrune algorithm generates
much less candidate co-location patterns compared to that of min-max
with min_prev = 0, and thus lowers down the costs of expensive rowset
generation and test dramatically.

7. Experimental Results

In this section, we present extensive experiments to evaluate the per-
formance of two algorithms: Min-Max and maxPrune. Specifically, we
test three cases: (1) data sets which contains no co-location patterns in-
volving rare spatial features, (2) data sets containing patterns involving
rare spatial features, and (3) large data sets.

7.1. THE EXPERIMENTAL SETUP

Our experiments were performed on synthetic data sets. We developed
a data generator for generating synthetic data. Our data generator is
similar to the one used in [4], with some extensions to produce spatial
data sets. The major parameters for generating synthetic data sets are
illustrated as follows. For a synthetic data set 7100k.C10.R50, we gen-
erate 100k instances (denoted as I100k). There are up to 50 co-location
patterns containing rare features with high participation ratio but very
low prevalence (denoted as R50). We achieve this by binding a spatial
feature to a pre-generated potential co-location pattern, and making
those bound spatial features not prevalent. The number of features in
a co-location pattern yields to a Poisson distribution, while the mean
is 10 (denoted as C'10). For all generated data sets, the total number
of features is 100 and the total number of pre-generated potential co-
location patterns is 500. A summary of the parameter settings used to
generate the synthetic data sets is presented in Table III.

We implemented algorithms Min-Max and maxPrune using C++
and all experiments were performed on a Pentium IIT 550MHz PC
machine with 4G megabytes main memory, running Linux Redhat 6.1
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Table III. Parameter Settings
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Name |1 |C] |R|| Size || Name |1 |C| |R| | Size
MB MB

T1100K.C5.R0 | 100K| 5 | 0 | 1.86 || | | | |

I1100K.C5.R50 5 1750K.C5.R50 5

I100K.C10.R50| 100K| 10 50 1.86 I750K.C10.R50| 750K| 10 50 14.6

I100K.C15.R50 15 I750K.C15.R50 15

1250K.C5.R50 5 11M.C5.R50 5

I1250K.C10.R50| 250K| 10 50 | 4.8 I1M.C10.R500 | 1M 10 50 | 19.6

1250K.C15.R50 15 I1M.C15.R50 15

1100K.C5.RO 1100K.C5.R0
% maxPrune —¥— § 550 F maxPrune —¥— |

.80 Min-Max(0.0%) —<— X F 500 | Min-Max(0.0%) —<&—

2 Min-Max(0.05%) —H— 8 Min-Max(0.05%) —H—

S 701 Min-Max(0.5%) —&— 1 2 450 L Min-Max(0.5%) —&—

2 60 Min-Max(2.5.%) —&— , 38 Min-Max(2.5%) —&—

% 50t ™~ EZ = 400 -

£ z// 8 s50 |

P 7 g 300

& 304 A 2 r

20 5 250

38 36 34 32 3 28 26

maxP| Threshold (%) MaxPI Threshold (%)
(a) (b)

Figure 5. (a) The Runtime of Min-Max and maxPrune on Data Sets in which there
are no Co-location Patterns with High maxPI values. (b) The number of Co-locations
Identified on Data Sets in which no co-location has High maxPI values.

4 38 36 34 32 3 28 26

operating system. Due to the space limit, we only report the results on
some representative data sets.

7.2. THE PERFORMANCE COMPARISON ON DATA SETS IN WHICH
NO CO-LOCATION PATTERNS HAVE HIGH MAXPI VALUES.

We first evaluate the performance of Min-Max and maxPrune algo-
rithms on mining prevalent co-location patterns from spatial data sets
in which there are no co-location patterns with high maxPR values.
This experiment was conducted on the data set 7100kC5R0. The pa-
rameter R0 in this data set indicates that no co-location patterns have
relatively high maxPR values. In other words, the PI and mazPR do
not vary too much. Referred to the discussion in the previous sections,
this setting favors the Min-Max algorithm.

In the experiment, we varied maxPR thresholds from 2.5% to 4%.
Figure 5(a) shows the runtime of maxPrune and Min-Max at different
max PR thresholds. For the Min-Max algorithm, we chose the min_prev
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Figure 6. (a) The Runtime of Min-Max and maxPrune on Data sets Containing
Co-locations with High maxPR values. (b) The number of Co-location Patterns
Identified on Data Sets Containing Co-locations with High maxPI values.

values as 0%, 0.05%, 0.5%, and 2.5%, respectively. Only when the
min_prev value was set to 0%, Min-Max finds all the co-location pat-
terns with maxPR values above the maxPR threshold. Because the
Min-Max algorithm has to generate all co-location patterns with par-
ticipation index values above min_prev, the run time of Min-Max is not
sensitive to the change of maxPR thresholds. In contrast, the runtime
of maxPrune increases as the max PR threshold decreases.

When min_prev > 0, the Min-Max algorithm can potentially miss
some interesting co-location patterns. When two algorithms generate
the same set of co-location patterns, i.e., if min_prev is equal to zero for
the Min-Max algorithm, Min-Max outperforms maxPrune only when
the maxPR threshold is lower than 3.2%. In such an extreme region,
most co-location patterns have high maxPR values, and algorithm max-
Prune has a heavier overload on candidate generation than Min-Max
has. For all other parameter regions, maxPrune outperforms Min-Max.

Finally, Figure 5(b) shows the number of co-location patterns with
high maxPR values identified at different maxPR thresholds. As can be
seen, only if a very small min_prev threshold is specified, the Min-Max
algorithm can generate comparable results as maxPrune does. However,
the computation performance of the Min-Max algorithm degrades a lot
when the min_prev threshold is small.

7.3. PERFORMANCE COMPARISON ON DATA SETS CONTAINING
CO-LOCATION PATTERNS WITH HIGH MAXPI VALUES

Here, we compare the performance of maxPrune and Min-Max on a
data set (I100K.C5.R50) in which there are many co-location pat-
terns with high maxPR values but low prevalence. In this experiment,
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Figure 7. (a) Scalability of the maxPrune Algorithm w.r.t. maxPR. Threshold (b)
Scalability of the maxPrune Algorithm w.r.t. Number of Instances.

we identified many co-location patterns with relatively high maxPR
values, say above 50%.

Figure 6(a) shows the runtime of Min-Max and maxPrune on data
set [100K.C5.R50. As can be seen, the runtime of Min-Max dramati-
cally increases with the decrease of participation index thresholds. In
contrast, the runtime of maxPrune is not affected by the change of par-
ticipation index thresholds and is much smaller than that of Min-Max
with respect to different MaxPI thresholds. In addition, Figure 6(b)
shows that the number of co-location patterns identified by Min-Max
decreases with the increase of participation index thresholds. In other
words, for the Min-Max algorithm, there is a trade-off between the
efficiency and the completeness of results. However, the maxPrune
algorithm does not have such a dilemma situation.

7.4. THE SCALABILITY OF MAXPRUNE

In this subsection, we first evaluate the scalability of the maxPrune
algorithm with respect to maxPR thresholds. Figure 7(a) shows the
runtime of the maxPrune algorithm on data set I1M.C15.R50. As can
be seen, the runtime of the maxPrune algorithm almost linearly in-
creases with the decrease of maxPR thresholds. Another observation is
that more features on average are in a pattern, the long the runtime
we will have. Also, Figure 7(b) shows the scalability of maxPrune in
terms of the number of instances in spatial data sets. In the figure, we
can see that the execution time is linearly scalable to the database size.

Finally, please note that, we only reported results from the data set
I[1M.C15.R50 due to the page limit. Indeed, the results from other data
sets are consistent with the above presented results.
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8. Conclusions

In this paper, we formalized the problem of mining co-location patterns
with rare spatial features. We first introduced a new measure called the
maximal participation ratio (maxPR) and showed how this measure can
be used to capture co-location patterns in spatial data sets with rare
features. In addition, an algorithm called pruneMax was developed to
exploit the weak monotonicity property of the maxPR measure and
efficiently identify co-location patterns with rare features. Finally, our
experimental results showed that the performance of the pruneMax
algorithm is much better than an alternative, the Min-Max algorithm,
which is a simple extension of the apriori-like solution [4].

This study opens several interesting directions for future research.
First, in many applications, it is important to go beyond “support”-
based pruning to find co-location patterns involving rare spatial fea-
tures, but “infrequent” patterns. It would be interesting to examine
whether we can carry this spirit to mine other kinds of patterns with-
out “support”-based pruning. Second, the approach developed in this
paper only deals with boolean spatial features. In the real world, the
features can be categorical and continuous. There is a need to extend
the co-location mining framework to handle continuous spatial features.
Finally, if locations of spatial features change over time, it would be
interesting to mine spatio-temporal association patterns.
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