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Abstract Spatio-temporal, geo-referenced datasets are growing rapidly, and will be more in
the near future, due to both technological and social/commercial reasons. From the data min-
ing viewpoint, spatio-temporal trajectory data introduce new dimensions and, correspond-
ingly, novel issues in performing the analysis tasks. In this paper, we consider the clustering
problem applied to the trajectory data domain. In particular, we propose an adaptation of a
density-based clustering algorithm to trajectory data based on a simple notion of distance
between trajectories. Then, a set of experiments on synthesized data is performed in order
to test the algorithm and to compare it with other standard clustering approaches. Finally, a
new approach to the trajectory clustering problem, calledtemporal focussing, is sketched,
having the aim of exploiting the intrinsic semantics of the temporal dimension to improve
the quality of trajectory clustering.

Note: The authors are members of the Pisa KDD Laboratory, a joint research initiative of
ISTI-CNR and the University of Pisa:http://www-kdd.isti.cnr.it .

1 Introduction

Spatio-temporal, geo-referenced datasets are growing rapidly, and will be more in the near
future. This phenomenon is due to the daily collection of transaction data through database
systems, network traffic controllers, web servers, sensor networks. In prospect, an impor-
tant source is telecommunication data from mobile phones and other location-aware devices
– data that arise from the necessity of tracking such wireless, portable devices in order to
support their interaction with the network infrastructure. But other than ordinary commu-
nication operations, the large availability of these forms of geo-referenced information is
expected to enable novel classes of applications, where the discovery of knowledge is the
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key step. As a distinguishing example, the presence of a large number of location-aware,
wireless mobile devices presents a growing possibility to access their tracking logs and re-
construct space-time trajectories of these personal devices and their human companions: tra-
jectories are indeed the traces of moving objects and individuals. These mobile trajectories
contain detailed information about personal and vehicular mobile behaviour, and therefore
offer interesting practical opportunities to find behavioural patterns, to be used for instance
in traffic and sustainable mobility management.

However, spatio-temporal data mining is still in its infancy, and even the most basic
questions in this field are still largely unanswered: what kinds of patterns can be extracted
from trajectories? Which methods and algorithms should be applied to extract them? One
basic data mining method that could be applied to trajectories isclustering, i.e., the discovery
of groups ofsimilar trajectories.

Spatio-temporal trajectory data introduce new dimensions and, correspondingly, novel
issues in performing the clustering task. Clustering moving object trajectories, for example,
requires finding out both a proper spatial granularity level and significant temporal sub-
domains. Moreover, it is not obvious to identify the most promising approach to the clus-
tering task among the many in the literature of data mining and statistics research; neither
it is obvious to choose among the various options to represent a trajectory of a moving ob-
jects and to formalize the notion of (dis)similarity (or distance) among trajectories. A brief
account of the research in this area is reported in Section 2.

In this context, we precisely address the problem of trajectory clustering. Our basic as-
sumption on source data is that a collection of individual trajectories of moving objects can
be reconstructed in an approximated way on the basis of tracking log data left by the objects
as they move within the network infrastructure. As an example, a mobile phone that moves
among the various cells of the wireless network leaves, during its interactions with the net-
work, a set of triples(id, loc, t), each specifying the localization at spaceloc and at timet
of the phoneid. Starting from the set of triples for a given objectid is therefore possible, in
principle, to approximate a functionfid : time→ space, which assigns a location to object
id for each moment in a given time interval. We call such a function atrajectory, and we
concentrate on the problem of clustering a given set of trajectories. This basic assumption
is consistent with the form of tracking log data that are (or can be) collected in the wire-
less network infrastructure; for the sake of concreteness, we could count in our research on
the availability of a synthesizer of trajectory data, which has been developed at our labora-
tory (Giannotti, Mazzoni, Puntoni & Renso 2005) and has been used to create the source
trajectory datasets employed in the empirical evaluation of the achieved results.

We address two distinct questions: (i) what is the most adequate clustering method for
trajectories, and (ii) how can we exploit the intrinsic semantics of the temporal dimension
to improve the quality of trajectory clustering.

Concerning the first problem, we advocate thatdensity-based clustering, in the forms
originally proposed in (Ester et al. 1996) and (Ankerst, Breunig, Kriegel & Sander 1999), is
particularly well-suited to the purpose of trajectory clustering, given its distinctive features:

– the ability to construct non-spherical clusters of arbitrary shape, unlike the classicalk-
means and hierarchical methods,

– the robustness with respect to noise in the data,
– the ability of discovering an arbitrary number of clusters to better fit the source data

– like hierarchical methods, but with a considerably lower complexity (O(nlogn) vs.
O(n2)).



3

All the above are key issues for trajectories: it is likely that trajectories of cars in the
urban traffic tend to agglomerate in snake-like, non-convex clusters, that many outlier tra-
jectories should not be included in meaningful clusters but rather considered as noise, and
that the number of clusters is unpredictable. Density-based clustering algorithms deal with
the above problems by agglomerating objects within clusters on the basis ofdensity, i.e.,
the amount of population within a given region in the space. In our approach, we gener-
alize the spatial notion of distance between objects to a spatio-temporal notion of distance
between trajectories, and we thus obtain a natural extension of the density-based cluster-
ing technique to trajectories. To analyze the consequences of our approach, we consider a
particular density-based clustering algorithm, OPTICS (Ankerst et al. 1999), and propose
an empirical comparison with several traditionalk-means and hierarchical algorithms; we
show how, on a set of experiments, our density-based approach succeeds in finding the nat-
ural clusters that are present in the source data, while all the other methods either fail or
obtain less accurate results. To some extent, this sort of empirical evidence points out that
density-based trajectory clustering yields a better quality output, with respect to the other
traditional methods.

The second contribution of this paper istemporal focusing. Here, we stress that the tem-
poral dimension plays a key role in trajectory clustering: two trajectories, which are very
different considering the whole time interval of their duration, may become very similar
if restricted considering a smaller sub-interval – an obvious observation with reference to,
e.g., the vehicle trajectories in the urban traffic. It is therefore interesting to generalize tra-
jectory clustering with a focus on the temporal dimension – basically enlarging the search
space of interesting clusters by considering the restrictions of the source trajectories onto
sub-intervals of time. Our proposed algorithm for temporal focussing is therefore aimed at
searching the most meaningful time intervals, which allow to isolate the (density-based)
clusters of higher quality.

The plan of the paper follows. In the next Section we briefly discuss related work, while
in Section 3 we define trajectories and their distances. In Section 4 we revise density-based
clustering and the OPTICS algorithm, while in Section 5 we propose the extension of OP-
TICS to trajectories and empirically evaluate our proposal. In Section 6 we propose the
temporal focusing methods, together with some preliminary empirical experiments. Finally,
in Section 7 we report the results of a larger experimentation aimed at assessing both the
output quality and the performances of the proposed algorithm.

2 Related Work

In recent years, the problem of clustering spatio-temporal data received the attention of
several researchers. Most of the actual work is focused on two kinds of spatio-temporal data:
moving objects trajectories (the topic of this paper), such as traffic data, and geographically
referenced events, such as epidemiological and geophysical data collected along several
years.

Trajectory clustering. In one of the first works related to the topic, Ketterlin (Ketterlin
1997) considers generic sequences (thus modelling trajectories as sequences of points) to-
gether with a conceptual hierarchy over the sequence elements, used to compute both the
cluster representatives and the distance between two sequences. Nanni, one of the authors
of the present paper adapted two classical distance-based clustering methods (k-means and
hierarchical agglomerative clustering) to trajectories (Nanni 2002). In the first part of the
present work, we perform a step in the same direction, by adapting instead the density-based
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approach to trajectories. An alternative strategy is to apply to trajectories some multidimen-
sional scaling technique for non-vectorial data, e.g., Fastmap (Faloutsos & Lin 1995), which
maps a given data space to an Euclidean space preserving (approximatively) the distances
between objects, so that any standard clustering algorithm for vectorial data can be applied.
Other distances can be inherited from the time-series domain, with the implicit assump-
tion that the temporal component of data can be safely ignored and replaced by an order in
the collected data values: the most common distance is the Euclidean metric, where each
value of the series becomes a coordinate of a fixed-size vector; other approaches, which try
to solve problems such as noise and time warping, include the computation of the longest
common subsequence of two series (e.g., see (Vlachos, Gunopulos & Kollios 2002)), the
count of common subsequences of length two (Agrawal, Lin, Sawhney & Shim 1995), the
domain-dependent extraction of a single representative value for the whole series (Kalpakis,
Gada & Puttagunta 2001), and so on. The main drawback of this transformational approach
is ad-hoc nature, bound to specific applications. A thoroughly different method, proposed
by Gaffney and Smyth (Gaffney & Smyth 1999), is model-based clustering for continuous
trajectories, which groups together objects which are likely to be generated from a common
core trajectory by adding Gaussian noise. In a successive work (Chudova, Gaffney, Mjol-
sness & Smyth 2003) spatial and (discrete) temporal shifting of trajectories within clusters
is also considered.

Spatio-temporal density. The problem of finding densely populated regions in space-
time is conceptually closely related to clustering, and it has been undertaken along several
different directions. In (Hadjieleftheriou, Kollios, Gunopulos & Tsotras 2003), a system is
proposed to support density queries over a database of uniform speed rectilinear trajecto-
ries, able to efficiently discover the spatial locations where moving objects are – or will be
– dense. In (Gudmundsson, van Kreveld & Speckmann 2004) the computational complexity
and approximation strategies for a few motion patterns are studied. In particular, the authors
studyflock patterns, that are defined as groups of at leastn moving objects (n being a param-
eter) such that there exists a time interval of width larger than a given threshold where all
such objects always lay inside a circle of given radius. A much similar objective is pursued
in (Hwang, Liu, Chiu & Lim 2005), with an emphasis on efficiency issues. Finally, in (Li,
Han & Yang 2004) an extension ofmicro-clusteringto moving objects is proposed, which
groups together rectilinear segments of trajectories that lay within a rectangle of given size
in some time interval. The objectives of such work, however, are a bit different, being fo-
cused on the efficient computation of static clusters at variable time instants. The second
contribution of this paper works in a direction similar to micro-clusters discovery. However,
in addition to the more general concept of density adopted, in this paper we focus on the
global clustering structure of the whole dataset, and not on small groups of objects.

Event clustering. A different view of the spatio-temporal clustering problem consists
in considering spatially and temporally referenced events, instead of moving objects. In this
case, the most basic approach consists in the application of spatial clustering algorithms
where time becomes an additional spatial dimension. In addition to that, in literature differ-
ent approaches have been proposed, mostly driven by specific application domains. Among
them, we mention Kuldorff’s spatial scan (Kulldorff 1997), a well known statistical method
developed for epidemiological data which searches spatio-temporal cylinders (i.e., spatial
circular shapes which remain still for some time interval) where the rate of disease cases is
higher than outside the cylinder, and extensions for considering more flexible square pyra-
mid shapes (Iyengar 2004).
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3 A data model and distance for trajectories

In this paper we consider databases composed by a finite set of spatio-temporal objects.
From an abstract point of view, a spatio-temporal objecto is represented by atrajectoryτo,
i.e., a continuous function of time which, given a time instantt, returns the position at time
t of the object in ad-dimensional space (typicallyd ∈ {2,3}). Formally:τo : R+ → Rd.

In a real-world application, however, trajectories of objects are given by means of a finite
set of observations, i.e. a finite subset of points taken from the real continuous trajectory.
Moreover, it is reasonable to expect that observations are taken at irregular rates within each
object, and that there is not any temporal alignment between the observations of different
objects. This calls for an approximate reconstruction of the original trajectory. In this paper,
we employ the model used in (Saltenis, Jensen, Leutenegger & Lopez 2000), where the
objects are assumed to move in a piecewise linear manner. Namely, an object moves along a
straight line with some constant speed till it changes the direction and/or speed. Such model
essentially corresponds to the well known parametric 2-spaghetti approach (Chomicki &
Revesz 1999).

In this work, we are interested in distances that describe the similarity of trajectories of
objects along time and therefore are computed by analyzing the way the distance between
the objects varies. More precisely, we restrict to consider only pairs ofcontemporaryin-
stantiations of objects, i.e., for each time instant we compare the positions of the objects at
that moment, thus aggregating the set of distance values obtained this way. This implies,
in particular, that we exclude subsequence matching and other similar operations usually
adopted in the time series field, as well as solutions that try to align – in time and/or in space
– shifted trajectories.

The distance between trajectories adopted in this paper is computed in a most natural
way, as the average distance between objects, that is to say:

D(τ1,τ2)|T =
R

T d(τ1(t),τ2(t))dt
|T| ,

whered() is the Euclidean distance overR 2, T is the temporal interval over which trajec-
toriesτ1 andτ2 exist, andτi(t) (i ∈ {1,2}) is the position of objectτi at timet. We notice
that such a definition requires a temporal domain common to all objects, which, in general,
is not a hard requirement. From a conceptual viewpoint, moreover, in order to computeD()
we need to compute the infinite set of distances for eacht ∈ T (e.g., in and, afterward, to ag-
gregate them. However, due to the (piece-wise) linearity of our trajectories, it can be shown
(Nanni 2002) thatD() can be computed as a finite sum by means ofO(n1 + n2) Euclidean
distances,n1 andn2 being the number of observations respectively available forτ1 andτ2.
Moreover, such distance is a metric, thus allowing the use of several indexing techniques
that help to improve performances in several applications, including clustering.

4 Density-based clustering and OPTICS

In this section we briefly review the principles of density-based clustering, summarizing the
motivations which led us to adopt this approach for trajectories, and describe the OPTICS
algorithm.
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4.1 Density-based Clustering

The key idea of density-based clustering algorithms is that for each object in some cluster
the neighborhood of a given radiusε has to contain at least a minimum numbernpts of
objects, i.e., the cardinality of the neighborhood has to exceed a given threshold. For that
reason, such algorithms are naturally robust to problems such as noise and outliers, since
they usually do not significantly affect the overall density distribution of data. This is an
important feature for several real world applications, such as all those that work with data
sources having some underlying random (unpredictable) component – e.g., data obtained
by observing human behaviour – or that collect data by means of not-completely reliable
methods – e.g., low-resolution sensors, sampled measures, etc. Trajectory data usually suffer
of both the mentioned problems, so noise tolerance is a major requisite.

Moreover, in typical applications dealing with moving objects, such as traffic analysis
or the study of PDAs usage and mobility, any strict constraint to the shape of clusters would
be a strong limitation, sok-means and other spherical-shape clustering algorithms could not
be generally applied (e.g., large groups of cars moving along the same road would form a
”snake”-shaped cluster, not a spherical one).

The algorithms in the DBSCAN family (Ester et al. 1996) appear to be a good candidate
choice for density-based clustering, since they satisfy the above mentioned requirements
and, additionally, can be easily applied also to complex data at reasonable computational
costs. In particular, in this paper we will focus on the OPTICS algorithm (Ankerst et al.
1999), a widely known evolution of the basic DBSCAN that solves many of its technical
issues, first of all the sensitivity to input parameters. Moreover, it is worth noting that the
output of OPTICS, thereachability plot, described in the following, is an intuitive, data-
independent visualization of the cluster structure of data, that yields valuable information
for a better comprehension of the data and that is (also) used to assign each object to its
corresponding cluster or to noise, respectively.

4.2 OPTICS

In the following, we will shortly introduce the definitions underlying OPTICS, i.e.,core
objectsand thereachability-distanceof an objectp w.r.t. a predecessor objecto, and briefly
describe how the algorithm works by means of a small example.

An objectp is called acore objectif the neighborhood around it is a dense region, and
thereforep should definitely belong to some cluster and not to the noise. More formally:

Definition 1 (Core object) Let p∈ D be an object in datasetD, ε a distance threshold and
Nε(p) the ε-neighborhood ofp, i.e., the set of points{x ∈ D|d(p,x) ≤ ε}. Then, given a
parameternpts∈N , p is acore objectif: |Nε(p)| ≥ npts.

Based on core objects, we have the following:

Definition 2 (Reachability-distance)Let p∈ D be an object,o∈ D a core object,ε a dis-
tance threshold andNε(o) theε-neighborhood ofo. Denoting withn-distance(p) the distance
from p to its n-th neighbor in order of proximity (n∈N ), and given a parameternpts∈N ,
thereachability-distance ofp with respect too is defined as

reach−dε,npts(p,o) = max{ npts−distance(o) , d(o, p) }
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Fig. 1 Sample run of OPTICS with the resulting reachability plot

The reachability-distance ofp w.r.t. o is essentially their distance, excepted whenp is
too close, in which case such distance isnormalizedto a suitable value. OPTICS works as
follows: initially a random objectp0 is chosen; then, at each iterationi, the next objectpi

chosen fromD is that with the smallest reachability-distance w.r.t. all the already visited
core objects; the process is repeated until all objects inD have been considered.

The whole process is summarized by means of areachability plot: on the horizontal axis
are represented the objects in their visit ordering0, . . . , |D|−1, and on the vertical axis, for
eachi the reachability-distance corresponding topi is plotted. The sequence〈p0, . . . , p|D|−1〉
is also called acluster-reorderingof the objects inD.

Intuitively, the reachability-distance of a pointpi corresponds to the minimum distance
from the set of its predecessorsp j ,0≤ j < i. As a consequence, a high value of reachability-
distance approximatively means a high distance from all other objects, and therefore indi-
cates ararefiedarea. Then, clusters, i.e., dense areas, are represented as valleys in the reach-
ability plot. In particular, only core objects are considered among the predecessors, which
results in not considering noise in the creation of clusters. Figure 1 shows a sample exe-
cution of OPTICS on a toy dataset with two clusters, and the corresponding values on the
reachability plot. We observe that the jump from point 9 to point 10, belonging to different
clusters, corresponds to a peak in the reachability plot.

From the reachability plot we can easily obtain a partitioning of the data into a set of
clusters, plus noise: we simply need to choose a threshold to separate clusters, expressed
in terms of the maximum value of the reachability distance allowed within clusters. Such
value, denotedε′ and set by the user, is used to separate the objects into peaks and valleys:
the former will be considered noise, the latter as clustered objects. In the example in Figure
1, settingε′ = 0.1, we would obtain two clusters: objects 1-9 and 11-18.

5 Extending OPTICS to trajectories

In order to define similarity measures for OPTICS over complex domains, its inventors pro-
posed and tested a few solutions, classified into two classes: feature-based models and direct
geometric models (Kriegel, Brecheisen, Kröger, Pfeifle & Schubert 2003). In the first case,
the basic idea is to use a feature extraction function that maps the objects onto vectors in
an appropriate multidimensional feature space. The similarity of two objects is then defined
as their proximity in the feature space, and the closer their feature vectors are located, the
more similar the objects are considered. In the second class of models, the distance is de-
fined by directly using the geometry of objects. Examples include the computation of the
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volume of the geometric intersection of the compared objects. In this paper, we followed
an approach similar to the latter, since trajectories are compared and clustered by means of
the spatio-temporal distance described in Section 3. In particular, our prototypes (both the
Trajectory-OPTICS described in this section and the TF-OPTICS introduced in Section 6)
have been implemented by integrating M-tree (Ciaccia, Patella & Zezula 1997), a index
for generic metric spaces aimed at supporting efficient range queries, which are the core
operation of the OPTICS algorithm. The results obtained in terms of performances will be
discussed in detail in Section 7. However, it is less obvious to verify that OPTICS deliver
high quality trajectory clusters. In the next section, we provide some very intuitive and pre-
liminary evidence that OPTICS finds dense and well defined trajectory clusters, with a good
tolerance to noise and outliers. A larger experimental assessment will presented later in the
paper, in Section 7.

5.1 OPTICS vs. Hierarchical and K-means algorithms

We considered a synthetic test dataset randomly generated with the C4C trajectory generator
– described in Section 7.1 – composed of 250 trajectories organized into four natural clusters
plus noise. The dataset is depicted in Figure 2(a), where horizontal coordinates represent
spatial positions and the vertical one represents time. Each cluster contains objects that
move towards some defined direction. The objective of these experiments is to evaluate
the behaviour of OPTICS on the trajectory data domain, as compared to other classical,
general purpose clustering algorithms. We applied to the dataset thek-means algorithm and
a standard hierarchical agglomerative algorithm in three versions: single-linkage, complete-
linkage and average-linkage. The same dataset was processed by the trajectory version of
OPTICS. All algorithms were configured to find four clusters (i.e., the expected number
of natural clusters in the data). For the output of each algorithm, the averagepurity of the
clusters (i.e., percentage of objects in the cluster that belonged to the corresponding real
cluster) and the average of theircoverage(i.e., percentage of objects of the real cluster that
appear in the cluster found). The results are discussed below:

– K-means yields a100%coverage but only a53.7% purity. That is due to the fact that
it merges together two clearly distinguished clusters, since it is sensible to noise and
outliers. In fact, a whole resulting cluster is composed only of noisy objects.

– The hierarchical single-linkage algorithm yields a100% coverage but only a52.0%
purity. Indeed, it is very sensitive to the chaining effect – i.e., the fact of collapsing far
clusters due to a thin, yet continuous, line of objects linking them – and therefore it
merges two dense and well separated clusters because of noise and the closeness of their
borders.

– The complete-linkage algorithm yields a99%coverage but only a50.0%purity: it tends
to form clusters with equal diameter, and so, due to the presence of noise that biases
such size, two of the natural clusters are again merged together.

– The average-linkage algorithm yields a100%coverage but only a50.5%purity: it keeps
clusters with balanced average intra-cluster distance, which usually results in a behavior
similar to the complete-linkage case. Again, a pair of natural clusters is merged.

– Finally, Trajectory-OPTICS yields a93.5% coverage and also a99.0% purity, i.e., the
best trade-off between the two measures. As we can see from the resulting reachability
plot (Figure 2(b)), Trajectory-OPTICS correctly finds the four natural clusters, which
can be easily isolated by selecting a proper value for theε parameter (ε = 24 in our
example, but any value that crosses the three central protrusions yield the same result).
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Fig. 2 A synthesized dataset (a) and the corresponding reachibility plot for OPTICS

6 Temporal Focusing

The approach to trajectory clustering presented above treats trajectories as unique, indivisi-
ble elements, and tries to group together those moving objects that globally move in a similar
way, ”smoothing” the effect of any sporadic divergence in their movement. However, such
global trajectory clustering may sometime be misleading and yield counter-intuitive results.
In particular, it might keep separated objects that moved together for a significant amount of
time, while gathering objects that constantly keep a significant distance between them.

From real world experience, we learnt that not all time intervals have the same impor-
tance. A meaningful example is urban traffic: in rush hours a large quantity of people move
from home to work and viceversa, or, more generally, from/to largely shared targets. There-
fore, we can expect that the sheer size of the population sample will make it possible for
groups of individuals having similar destinations to clearly emerge from traffic data to form
compact clusters. In quiet periods of the day, on the contrary, we expect to mainly observe
static individuals, whose distribution on the territory is more driven by the geographical pop-
ulation density than by collective motion behaviors. This is a general problem not limited to
urban traffic, and, while in this sample context some interesting hours of the day for cluster
analysis can be guessed – e.g., typical morning rush hours –, in other, less understood cases
and domains it might be not possible to fix a priori criteria for choosing the right period
of time. In these cases, some automatic mechanism to discover the most interesting inter-
vals of time should be applied. In what follows we formalize the problem mentioned above,
and suggest a solution. We anticipate that we will consider only single intervals of time in
our search problem, thus not taking into account more complex patterns of time, such as
periodical patterns or irregular sets of disjoint time intervals.

6.1 Problem setting

As discussed above, there may exist time segments where the clustering structure of our
moving objects dataset is clearer than just considering the whole trajectories. In order to
discover such clustering structure, then, we should provide a method for locating the right
time interval, and focus the clustering process on the segments of trajectories that lay in that
interval, ignoring the remaining parts.
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Our general approach consists in the following: the Trajectory-OPTICS algorithm is
modified to compute distances between trajectories focusing on any time interval specified
by the user; therefore, we (hypothetically) apply such algorithm to each possible time in-
terval, evaluate each result obtained and determine the best one. This entails solving the
following optimization problem:

argmax
θ

Q (D,θ)

whereD is the input dataset andQ is a quality function that measures the goodness of
the clustering results obtained with the parametersθ. The set of parametersθ can contain,
in a general setting, several different components, e.g.: basic parameters for OPTICS, a
temporal window, a spatial granularity, etc. In this work we will focus on time windows,
so θ = 〈 ε,ε′,npts, I 〉, ε, ε′ and npts being the already mentioned general parameters for
OPTICS andI being the time window we are focusing on. Moreover, since OPTICS is
not very sensible to its input parametersnpts andε, we can assume that they are set before
approaching the optimization problem, so that the only variables of the problem remainI
andε′.

We observe that the problem introduced above can be seen as a subspace clustering prob-
lem. In particular, if we assume that time is discrete, and therefore the time intervalI can be
reduced to a finite sequence ofN time points, trajectories can be seen as2N-dimensional ob-
jects, and our objective is to discover2N′ contiguous dimensions (N′ ≤N) that optimize our
quality function. However, in all works of the subspace clustering literature, the dimensions
are not related to each other by any specific semantics, differently from the temporal seman-
tics that underlies trajectories. In particular, distances that are additive w.r.t. dimensions1 are
usually applied, making density of regions a monotonic function w.r.t. the dimensions (i.e.,
dense regions on someN-dimensional space always correspond to dense regions on any of
its N−1-dimensional subspaces). On the contrary, when dealing with trajectories we have
to deal with a semantics of time, that significantly modifies the problem. The most direct
and relevant effects are the following: (i) a notion of contiguity is defined, that has to be
preserved when selecting subspaces; and (ii) a distance between objects is given, that is not
additive w.r.t. dimensions. As a consequence, actual subspace clustering techniques are not
applicable in our case. In what follows, we propose an heuristic solution to this new variant
of the subspace clustering problem.

6.2 Quality measure

The first issue to solve, now, is the definition of a quality functionQ , which can provide a
good criterion for deciding whether a clustering result is better than another. Any suitable
definition should take into account the nature of clusters we obtain. In particular, since we are
working with density-based tools, typical dispersion measures cannot be applied, because
we can have good non-spherical clusters, which, in general, are not compact.

In the density-based setting, the standardhigh intra-cluster vs. low inter-cluster similar-
ity principle could be naturally translated into ahigh-density clusters vs. low-density noise
rule. Highly dense clusters can be considered interesting per se, while having a rarefied
noise means that clusters are clearly separated. Put together, these two qualities seem to
reasonably qualify agood(density-based) clustering result.

1 I.e., distances betweenN-dimensional objects can be written as a sum ofN contributions independently
computed on each dimension. E.g., it holds for Euclidean distances, sinced2(a,b) = ∑N

i=1(ai −b1)2.
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The reachability plot returned by the OPTICS algorithm contains a summary of the
information on data density we need. Therefore, we can simplify the computation of theQ
measure by deriving it from the corresponding reachability plot, since density at each point
can be estimated by the corresponding reachability-distance.

Definition 3 Let D be an input dataset of trajectories,I a time interval andε′ a density
threshold parameter. Then, theaverage reachability, R(D, I ,ε′), is defined as the average
reachability-distance of non-noise objects:R(D, I ,ε′) = avg{r|〈p0, . . . , p|D|−1〉 is OPTICS
cluster reordering∧ r = reach−dε,npts(pi)∧ r ≤ ε′}. When clear from the context, average
reachability will be denoted asRC (reachability of clustered objects). When noε′-cut is
specified (i.e.,ε′ = ∞), average reachability will also be denoted asRG (global reachability).

In this work, in particular, we will give the greatest importance to high-density clusters,
which seem to be the most essential property between the two listed above, and will not take
into consideration noise. For the latter, we will consider as sufficient the minimum density
requirement specified by the user through theε′ parameter – noise, by definition, cannot
be denser than such threshold. As mentioned above, density within clusters can be easily
estimated by means of in-cluster reachabilities, leading to the following simple formulation:

Definition 4 Let D be an input dataset of trajectories,I a time interval andε′ a density
threshold parameter. Then, we define theQ 1 quality measure as follows:

Q 1(D, I ,ε′) =−R(D, I ,ε′).

Dispersed clusters yield high reachability distances, and therefore highly negative values
of Q 1, while compact clusters yield values ofQ 1 closer to zero. Moreover, notice thatQ 1,
being an average value and not a simple sum, does not force any preference for small or
large clusters.

6.3 Self-tuning of parameters

The search for an optimal time interval requires to iteratively analyze different views of
the input trajectory dataset. However, each view can result in a quite different reachability
plot, with peaks and valleys of highly variable size. As a consequence, it is not possible to
determine a single value of theε′ that is valid for all time intervals. Since it is not reasonable
to ask the user to choose a suitable value for each interval analyzed, we should design an
automated method for the purpose. We describe a solution to the problem that requires the
user to specify an initialε′0 value for the largest time interval, and then automatically adapts
such value to the smaller intervals.

In general, the optimalε′ value for an intervalI depends on several variables. We con-
sider a simple solution and assume that densities follow some general trend, so that a global
rescaling factor for density values can be computed. Such rescaling can be applied toε′0 to
obtain the actualε′. The overall density for a given time interval can be estimated in several
ways, the simplest being the average reachability-distanceRG. Adopting such measure and
a linear rescaling, we have the following value forε′:

ε′(D, I ,ε′0) =
RG

R0
G

ε′0

whereR0
G denotes the value ofRG on the largest time interval. In order to test the re-

liability of the ε′ re-scaling method proposed above, we performed an experiment on the
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trajectory dataset considered in Section 5.1. We assumed that for each reachability plot it is
possible to define an interval for the acceptable values of theε′ parameter, and that the spe-
cific ε′ value that a generic user would choose follows a random uniform distribution over
the above mentioned interval. Figure 3 (left) depicts an example of reasonable values over
the largest time interval (0−100), represented by a dark band, with an example of chosen
value forε. The same Figure (right) shows also their mapping to a smaller interval (20−60).

In our experiment, We considered 50 samples that include time intervals of all sizes and
of variable position, i.e., not biased towards initial or final intervals. Then, for each time
interval I considered, we compute the probability that a value chosen on the0−100 time
interval isadjustedto a reasonable value onI , i.e., a value that lays within corresponding
interval of reasonable values. Then, we compute the average probability of success, over all
cases. The result is the following: given a random intervalI and anε value randomly chosen
on the reachability plot of the0− 100 time interval, in the 80.5% of the cases suchε is
mapped onI to a reasonable value. Such estimate shows that, in spite of its simplicity, the
proposed rescaling method is empirically reliable.

6.4 Evaluating and improvingQ 1

In order to acceptQ 1 as a suitable quality measure, an important property to verify is its
non-shrinkingbehavior w.r.t. interval size, i.e., the fact that not all time intervalsI contain at
least a subintervalI ′ having a higher quality measure. Formally, we would like to refute the
following property:∀I .∃I ′ ⊂ I : Q 1(I ′) > Q 1(I). In fact, such property would imply that the
optimal time interval forQ 1 is always a minimal-size interval, thus trivializing the problem
and yielding uninteresting results. Fortunately, it is easy to find a counterexample:

Example 1Let consider a set of trajectories over a time interval that is formed by exactly
two time units: in the first unit trajectories are very dense, while in the second one they be-
come more rarefied, although not beyond the given density threshold. Now add a trajectory
that is always distant from all the others, but in the first time interval is close enough to them
to be part of the same cluster, while in the second one immediately gets extremely far from
them. Then, focusing on the first interval, all trajectories belong to the same cluster but, due
to the single outlier trajectory described above, it has only a medium density. In the sec-
ond interval, the outlier trajectory becomes noise, but the remaining ones are a bit rarefied,
so density is not high here. On the overall interval, we get all the positive aspects of both
the sub-intervals: the outlier trajectory is considered as noise, and so the first sub-interval
yields a very high density that is able to lift the overall density beyond the limits of the two
sub-intervals. As a consequence, the larger interval has a better quality than its sub-intervals.
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Fig. 4 Sample dataset and correspondingQ1 plot

The second step in validating the quality measure is a test against a dataset. In Figure 4,
on the left, a set of 320 trajectories is shown. Such dataset was generated by using the already
mentioned C4C system, and contains (in addition to noise) three groups of trajectories that
tend to move together within a central time interval, and tend to spread across a wider area in
the other intervals. Trajectories are defined over the[0,100] time interval, that is discretized
into 50 time units of 2 seconds each. In figure 4, on the right, a plot of theQ 1 measure
over all time intervals is depicted: the two horizontal axes represent the boundaries of time
intervals, so that only the lower-left part of the plane – where the lower bounds of intervals
are smaller than upper bounds – is significant. Below the 3D plot, the corresponding (plane)
contour plot gives a bi-dimensional view of the same value, with the optimal interval pointed
by an arrow. The plot shows that the optimum is located along the diagonal, which represents
the intervals with the smallest size. In general, there is a strong bias towards small intervals,
even though we can notice the presence of several central regions in the plot – corresponding
to larger intervals – withQ1 values close to the optimum.

When only very small variations ofQ1 are observed, it is reasonable to prefer larger
intervals, since they are more informative. We can do that by slightly promoting larger in-
tervals directly in the quality measure. A simple solution consists in adding a factor that
increases the quality function as the interval size grows, but only very slowly, in order to
avoid excessive bias. To this purpose, we adopt the following variation of theQ1 measure:

Q2(D, I ,ε′) = Q1(D, I ,ε′)/ log10(10+ |I |)
In Figure 5 we can see the plot corresponding to the newQ 2 measure. As we can notice, the
optimum value (pointed by the arrow) is now in the central region, on the[30,72] interval,
which means that the small correction introduced is sufficient to discover significantly large
dense intervals. On the righthand plot we see the resulting clusters, where the segments of
the clustered trajectories contained in the optimal time interval are emphasized: the densest
segments of the natural clusters present in the data are clearly discovered, leaving out the
portions of trajectory where the objects start/end dispersing.

6.5 Searching strategies

The basic method for finding the time interval that maximizesQ 2 is an exhaustive search
over all possible intervals. Such approach is obviously very expensive, since it adds to the
complexity of OPTICS a quadratic factor w.r.t. the the maximum size of time intervals,
expressed in time units. More precisely, given a granularity of timeτ, the global interval
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I0 is divided intoNt = |I0|/τ time units. Then, the cost of an exhaustive search isO(N2
t ·

OPTICS(n)) = O(N2
t nlogn).

A natural alternative to the exhaustive search of a global optimum is the search of lo-
cal one, adopting some greedy search paradigm. We considered a standard hill climbing
approach, where a randomly chosen solution (i.e., time interval) is iteratively modified, try-
ing to improve the quality function at each step. We follow the procedure described below,
whereτ is the chosen temporal granularity andI0 the largest interval:

1. Choose an initial random time intervalI ⊆ I0;
2. Let I ′ = argmaxT∈NeighI Q 2(D,T,ε′), whereNeighI = {T ∈ {[Ts±τ,Te], [Ts,Te±τ]}|T ⊆

I0} andI = [Ts,Te];
3. If Q 2(D, I ′,ε′) > Q 2(D, I ,ε′) then letI := I ′ and return to step 2; otherwise stop.

The total cost of the search procedure isO(niternlogn), where the number of iterations
niter has a worst-case value ofO(N2

t ), but usually assumes much smaller values, linear in
Nt . Executing the greedy search over our sample dataset from all possible starting points,
we obtained the exact global optimum in the 70.7% of cases, which provides the success
probability when seed points in the search strategy are chosen in a uniformly random way.
Therefore, on this sample data we reach a high success probability with a small number of
trials (with 5 runs we have over the 99.8% probability of finding the global optimum on this
dataset). On the average, each run required around 17 steps and 49 OPTICS invocations –
corresponding to less than4% of the invocations required by the exhaustive search – thus
keeping computational costs within reasonable limits.

7 Experiments

In this section we present a set of experiments aimed at assessing efficiency and effectiveness
of the Trajectory-OPTICS system (T-OPTICS) and its time-focused version (TF-OPTICS).
The datasets used in experiments have been synthetically generated by the C4C algorithm,
anad hocdata generator for trajectories with clusters briefly described below.

7.1 The C4C synthetic data generator

The C4C generator is a new, revised version of CENTRE (Giannotti et al. 2005). CENTRE
is a general purpose trajectory generator able to simulate a large variety of movements be-
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Fig. 6 Sample C4C dataset (spatial projection)

haviors, and the generation process is driven by several user defined parameters that act on
speed, direction, agility and so on.

C4C (CENTRE for Clustering) is a generator of spatio-temporal objects that evolve
in space and time producing a sequence of samples (i.e., spatial locations and their cor-
responding observation times) called trajectories. The main idea is to generate trajectories
that follow some pre-defined clusters in order to stress and probe the limits of a clustering
algorithm.

The core concept of C4C is to model a cluster with a sequence of rectangles (zones
of attraction) placed within the workspace of the generator: one object assigned to one
cluster must reach and cross the first zone of the sequence and subsequently all the oth-
ers, respecting some temporal constraints defined by the user. On one hand, the temporal
constraints definewhenan object belonging to a cluster starts to follow its correspond-
ing rectangles, i.e., the typical behavior that characterizes the objects in the cluster. On
the other hand, the density of clusters directly depends on the area of the rectangles in
the sequence: objects forced to pass through small rectangles will produce denser groups
of trajectories than others that can pass through larger rectangles. More in detail, each
cluster is defined as a set ofm sub-clusters{SubC1, . . . ,SubCm} (m > 0). A sub-cluster
SubC is defined as a single step of the generation, and is characterized by four values:
SubC= 〈StartPos,EndPos,StartTime,EndTime〉, whereStartPosrepresents the rectangle
where the object starts evolving andEndPosthe one where it stops.StartTimeandEndTime
describe the time restrictions, so that the object has to start from a point inStartPosat time
StartTimeand reach a point inEndPosat time EndTime. Finally, the sequence of sub-
clusters that defines a cluster must be sorted and continuous, i.e., times between adjacent
sub-clusters has to be non decreasing (EndTime(i) < StartTime(i +1), for 0< i < m) and a
sub-cluster has to start from the destination rectangle of the previous one (StartPos(i +1) =
EndPos(i), for 0 < i < m).

Figure 6 shows a (spatial projection view of a) sample dataset generated by C4C, with
the corresponding rectangles used in the generation. Trajectories that follow a cluster have
to move from a randomly chosen point in a rectangle to another one in the destination
rectangle. As we can see in the figure, there are rectangles of different sizes that we can
use to define clusters of different densities: small rectangles will produce close trajectories,
and therefore dense clusters. Moreover, a subset of trajectories do not follow any cluster,
generating simple noise. In particular, the figure shows an instance of 1000 trajectories with
5 clusters with slightly different densities.

The generation of trajectories and clusters is driven by two sets of input parameters.
The first set contains numerical parameters with some general information like random dis-
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Dataset n.cluster density type noise

A 5 high simple no
B 5 high complex yes
C 3 mixed simple no
D 8 medium complex no
E 4 mixed simple no
F 3 mixed simple yes

Table 1 Datasets in brief

tributions settings used to control random movements of the objects, number of objects to
generate, definition of clusters (times restrictions and rectangles they have to visit), etc.
The second sets of inputs provides spatial information about the rectangles used to define
clusters, i.e., their position on workspace and their size. In particular, C4C can import such
information through GML documents (an XML format with geographical extensions), so
these inputs can be generated by means of any GIS platform that supports it – e.g., the
JUMP environment, used to generate the datasets for our experiments.

The generation process of a single spatio-temporal object takes the following steps:

– Initial positioning: the object is randomly positioned within the workspace.
– Move to first sub-clusterStartPos: once the object has been placed in the workspace, the

generator assigns it to a cluster, and initializes its direction and speed in such a way that
the object is able to reach a point of rectangleStartPosof the first sub-cluster on time
(i.e., not later thanStartTime).

– Evolution of a sub-cluster: the object moves towards its current destinationEndPos, pos-
sibly performing some deviations that introduce noise in process, and adjusting direction
and speed along the generation in order to reach the destination rectangle in time.

– End of cluster-like movement: when the object completes all the sub-clusters it was as-
signed to, it chooses a final destination (inside the workspace, again) and moves towards
it (with possible perturbation) until the generation process is stopped.

7.1.1 Datasets description

In order to test our clustering algorithms, we used C4C to generate 6 datasets containing
around 10000 trajectories, each composed of a variable number of observations, ranging
from 10 to 30. Each dataset has different characteristics, in order to stress the algorithm by
simulating different scenarios, so for each one we chose a different number and positions
of the rectangles, different sizes and different levels of noise. Table 1 summarizes the char-
acteristics of the datasets: the number of clusters, their density (high for clusters formed by
small rectangles, and so on, while mixed stands for a mix of clusters in the same dataset hav-
ing different densities), their type (simple if clusters contain only one sub-cluster, complex
otherwise) and presence of noise.

7.2 Performance evaluation

7.2.1 Trajectory-OPTICS.

In order to measure the scalability of the T-OPTICS algorithm (without time-focusing) we
performed several runs of the system over input datasets of growing size. Such input data
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Fig. 7 Average performances of T-OPTICS

has been obtained as samples of the datasets generated through the C4C system, described
in the previous section. A summary of the (average) execution times obtained is depicted in
Figure 7.

As the graph shows, the curve apparently grows slightly more than linearly, which is
the expected general behavior of OPTICS over any data type having an efficient indexing
support. However, a detailed analysis of execution times reveals that (i) the greatest part of
the computational cost of the algorithm is always due to the computation of distances; and
(ii) the number of distances required to build the M-tree index and to answer the needed
range queries apparently grows quadratically, even though with small constants (that make
the phenomenon less visible in Figure 7), i.e., the M-tree seems to be not as efficient on
trajectories with our (rather complex) distance function as it has been shown to be on dif-
ferent metric spaces (Ciaccia et al. 1997). However, as it will be shown in the rest of this
section, working on time sub-intervals of trajectories makes the computational cost of the
distance function smaller, making each step of the TF-OPTICS algorithm comparatively
much cheaper than an execution of T-OPTICS.

7.2.2 Time-focused Trajectory-OPTICS.

As described in Section 3, the cost of computing distances between trajectories is linear
w.r.t. their complexity, i.e., the number of observations they contain. On the other hand, the
TF-OPTICS algorithm essentially consists in the reiterated execution of T-OPTICS on seg-
ments of trajectories, obtained by properlyclipping the original ones. The clipping process
in general reduces the complexity of trajectories, and therefore the cost of computing the
distances between them. Figure 8(a) briefly reports the results of an empirical verification of
such a behavior, showing the relation between the (average) execution time of a single step
of TF-OPTICS (vertical axis) and the size of the time interval explored in that step (horizon-
tal axis): on all datasets we obtain a linear or quasi-linear scale-up, confirming the intuition
that, on average, the complexity of trajectories grows linearly w.r.t. their time extension. No-
tice: in this and in all the following experiments, time of trajectories ranges from 0 to 100,
as in the examples already considered in this paper, and in the time-focusing processes it is
discretized into 20 segments of length 5.

Based on the results shown above, a general (though empirical) estimation of the impact
that the clipping process can produce on the execution times of TF-OPTICS can be obtained
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by measuring how often large intervals are explored in a generic execution of TF-OPTICS,
i.e., how many of the iterations of TF-OPTICS work on large intervals and how many work
on small ones. That is done in Figure 8(b), that plots for each dataset the number of intervals
of any given size that is analyzed by an execution of TF-OPTICS, averaged on all the pos-
sible paths followed by the search strategy – each path corresponding to a different random
starting point. As we can see, the most frequently analyzed interval sizes range between
20 and 40, i.e., medium- and small-sized intervals, while large intervals are seldom visited,
and therefore each step of TF-OPTICS is expected to be performed considerably faster than
the basic T-OPTICS. Finally, Figure 9 reports the execution time of a whole execution of
TF-OPTICS over different dataset sizes, averaged over the same datasets used for Figure 7:
as expected, we obtain a scale-up similar to that of T-OPTICS, although with a less regular
shape, where execution times are multiplied by the number of iterations of the algorithm but
are also mitigated by the clipping phenomenon studied above.

7.3 Output evaluation

The output results given by T-OPTICS and TF-OPTICS can be evaluated, as done in Section
5.1 on a toy dataset, in terms of purity and coverage of the clusters found w.r.t. the real
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K-means HC-avg T-OPTICS TF-OPTICS
Dataset purity coverage p c p c p c

A 0.798 0.8 0.761 0.74 1 0.33 1 0.449
B 0.769 0.749 0.606 0.608 0.661 0.222 0.694 0.283
C 0.997 0.997 1 1 1 0.365 1 0.365
D 0.807 0.83 0.992 0.992 0.952 0.325 0.967 0.375
E 0.626 0.626 0.624 0.743 0.878 0.23 0.992 0.397
F 0.711 0.653 0.334 0.321 0.746 0.301 0.975 0.347

Table 2 Comparison of T-OPTICS and TF-OPTICS output results

Dataset P(success) OPTICS runs Q2 error
A 9.05% 5.40% 30.95%
B 2.86% 4.53% 48.46%
C 2.38% 4.69% 93.49%
D 3.81% 4.28% 31.03%
E 5.24% 5.40% 34.70%
F 4.29% 4.49% 22.00%

Table 3 Results of the search heuristic

clusters in the datasets. A summary of such measures is given in Table 2, where they are
compared with analogous values obtained by applying a K-means and an average-based
hierarchical approach (HC-avg, in short).

We notice in particular that: (i) in most of the cases T-OPTICS yields a better purity of
K-means and HC-avg, and TF-OPTICS further improves such value; (ii) the coverage of T-
OPTICS and TF-OPTICS is always much smaller than the other approaches. These results
can be explained by noting that the clusters contained in the datasets are affected by a certain
amount of dispersion (as opposed to the extremely compact trajectories we had in the toy
example used in Section 5.1 and shown in Figure 2) that introduces a significant number of
borderline trajectories, i.e., trajectories that belong to some cluster but not to itscoregroup
of members. Therefore, the density-based approach focuses on the core subset of elements of
the clusters, identifying the ambiguous trajectories and labelling them as noise – a behavior
that fits quite well with the context, objectives and general requirements discussed in the
introduction – while the other approaches always assign them to some cluster – sometimes
successfully (e.g., on dataset C) sometimes not (e.g., HC-avg on dataset F). T-OPTICS and
TF-OPTICS consistently discover high-purity, non-ambiguous clusters, yielding compact
sets of trajectories (i.e., clusters) that, where needed, can be more easily summarized through
single/sets of representative trajectories or other concise forms of summarization.

Finally, we evaluate the effectiveness of the hill-climbing search strategy on our six
datasets. In Table 3 we summarize the results in terms of success probability (probability of
reaching global optimum), average number of T-OPTICS executions required (percentage
w.r.t. the exhaustive search) and average error of the local optimum w.r.t. the global one.

As we can see, the probabilities of finding the global optima are not high, but, at the
same time, on average the local optimum found has usually a quality value relatively close
to the global optimum: we remark, in fact, that theQ2 measure in our datasets has a high
variability that leads to have a high average error w.r.t. the optimum and, therefore, the
errors shown in Table 3 result to be comparatively small. Finally, we remark that the greedy
search of TF-OPTICS required on average a small number of T-OPTICS executions, always
between 4% and 6% of that required by an exhaustive search.
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8 Conclusions

In this paper we developed a density-based clustering method for moving objects trajec-
tories, aimed at properly exploiting the intrinsic temporal semantics to the purpose of dis-
covering interesting time intervals, where (when...) the quality of the achieved clustering
is optimal. Future research includes, on one hand, a refinement of the general method, the
adoption of several different distance measures between trajectories (in addition to the one
introduced in Section 3), and a vast empirical evaluation over various real-life datasets,
mainly aimed at consolidating (and possibly correcting) the preliminary results shown in
this work, and, on the other hand, a deeper integration between the underlying clustering
engine and the search method.
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