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Abstract:
Spatial data mining is the process of discovering interesting and previously un-
known, but potentially useful patterns from large spatial datasets. Extracting
interesting and useful patterns from spatial datasets is more difficult than ex-
tracting the corresponding patterns from traditional numeric and categorical
data due to the complexity of spatial data types, spatial relationships, and
spatial autocorrelation. This chapter focuses on the unique features that distin-
guish spatial data mining from classical data mining. Major accomplishments
and research needs in spatial data mining research are discussed.
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3.1 Introduction

The explosive growth of spatial data and widespread use of spatial databases
emphasize the need for the automated discovery of spatial knowledge. Spatial
data mining [Roddick & Spiliopoulou1999, Shekhar & Chawla2003] is the pro-
cess of discovering interesting and previously unknown, but potentially useful
patterns from spatial databases. The complexity of spatial data and intrinsic
spatial relationships limits the usefulness of conventional data mining techniques
for extracting spatial patterns. Efficient tools for extracting information from
geo-spatial data are crucial to organizations which make decisions based on large
spatial datasets, including NASA, the National Imagery and Mapping Agency
(NIMA), the National Cancer Institute (NCI), and the United States Depart-
ment of Transportation (USDOT). These organizations are spread across many
application domains including ecology and environmental management, public
safety, transportation, Earth science, epidemiology, and climatology.

General purpose data mining tools, such as Clementine, See5/C5.0, and En-
terprise Miner, are designed to analyze large commercial databases. Although
these tools were primarily designed to identify customer-buying patterns in mar-
ket basket data, they have also been used in analyzing scientific and engineering
data, astronomical data, multi-media data, genomic data, and web data. Ex-
tracting interesting and useful patterns from spatial data sets is more difficult
than extracting corresponding patterns from traditional numeric and categori-
cal data due to the complexity of spatial data types, spatial relationships, and
spatial autocorrelation.

Specific features of geographical data that preclude the use of general pur-
pose data mining algorithms are: i) rich data types(e.g., extended spatial ob-
jects) ii) implicit spatial relationships among the variables, iii) observations that
are not independent, and iv) spatial autocorrelation among the features. In this
chapter we focus on the unique features that distinguish spatial data mining
from classical data mining in the following four categories: data input, statisti-
cal foundation, output patterns, and computational process. We present major
accomplishments of spatial data mining research, especially regarding output
patterns known as predictive models, spatial outliers, spatial co-location rules,
and clusters. Finally, we identify areas of spatial data mining where further
research is needed.

3.2 Data Input

The data inputs of spatial data mining are more complex than the inputs of clas-
sical data mining because they include extended objects such as points, lines,
and polygons. The data inputs of spatial data mining have two distinct types of
attributes: non-spatial attribute and spatial attribute. Non-spatial attributes
are used to characterize non-spatial features of objects, such as name, popula-
tion, and unemployment rate for a city. They are the same as the attributes
used in the data inputs of classical data mining. Spatial attributes are used



to define the spatial location and extent of spatial objects [Bolstad2002]. The
spatial attributes of a spatial object most often include information related to
spatial locations, e.g., longitude, latitude and elevation, as well as shape.

Relationships among non-spatial objects are explicit in data inputs, e.g.,
arithmetic relation, ordering, is instance of, subclass of, and membership of.
In contrast, relationships among spatial objects are often implicit, such as
overlap, intersect, and behind. One possible way to deal with implicit spa-
tial relationships is to materialize the relationships into traditional data in-
put columns and then apply classical data mining techniques [Quinlan1993,
Barnett & Lewis1994, Agrawal & Srikant1994, Jain & Dubes1988]. However,
the materialization can result in loss of information. Another way to capture
implicit spatial relationships is to develop models or techniques to incorporate
spatial information into the spatial data mining process. We discuss a few case
studies of such techniques in Section 3.4.

Non-spatial Relationship Spatial Relationship
(Explicit) (Often Implicit)
Arithmetic Set-oriented: union, intersection, membership, · · ·
Ordering Topological: meet, within, overlap, · · ·
Is instance of Directional: North, NE, left, above, behind, · · ·
Subclass of Metric: e.g., distance, area, perimeter, · · ·
Part of Dynamic: update, create, destroy, · · ·
Membership of Shape-based and visibility

Table 3.1: Relationships among Non-spatial Data and Spatial Data

3.3 Statistical Foundation

Statistical models [Cressie1993] are often used to represent observations in terms
of random variables. These models can then be used for estimation, description,
and prediction based on probability theory. Spatial data can be thought of as
resulting from observations on the stochastic process Z(s): s ∈ D, where s is a
spatial location and D is possibly a random set in a spatial framework. Here we
present three spatial statistical problems one might encounter: point process,
lattice, and geostatistics.

Point process: A point process is a model for the spatial distribution of the
points in a point pattern. Several natural processes can be modeled as spatial
point patterns, e.g., positions of trees in a forest and locations of bird habitats
in a wetland. Spatial point patterns can be broadly grouped into random or
non-random processes. Real point patterns are often compared with a random
pattern(generated by a Poisson process) using the average distance between a
point and its nearest neighbor. For a random pattern, this average distance is
expected to be 1

2∗
√
density

, where density is the average number of points per

unit area. If for a real process, the computed distance falls within a certain limit,
then we conclude that the pattern is generated by a random process; otherwise
it is a non-random process.



Lattice: A lattice is a model for a gridded space in a spatial framework.
Here the lattice refers to a countable collection of regular or irregular spatial sites
related to each other via a neighborhood relationship. Several spatial statistical
analyses, e.g., the spatial autoregressive model and Markov random fields, can
be applied on lattice data.

Geostatistics: Geostatistics deals with the analysis of spatial continuity
and weak stationarity [Cressie1993], which is an inherent characteristics of spa-
tial data sets. Geostatistics provides a set of statistics tools, such as krig-
ing [Cressie1993] to the interpolation of attributes at unsampled locations.
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Figure 3.1: Attribute Values in Space with Independent Identical Distribution
and Spatial Autocorrelation

One of the fundamental assumptions of statistical analysis is that the data
samples are independently generated: like successive tosses of coin, or the rolling
of a die. However, in the analysis of spatial data, the assumption about the in-
dependence of samples is generally false. In fact, spatial data tends to be highly
self correlated. For example, people with similar characteristics, occupation and
background tend to cluster together in the same neighborhoods. The economies
of a region tend to be similar. Changes in natural resources, wildlife, and
temperature vary gradually over space. The property of like things to cluster
in space is so fundamental that geographers have elevated it to the status of
the first law of geography: “Everything is related to everything else but nearby
things are more related than distant things” [Tobler1979]. In spatial statistics,
an area within statistics devoted to the analysis of spatial data, this property
is called spatial autocorrelation. For example, Figure 3.1 shows the value
distributions of an attribute in a spatial framework for an independent identical
distribution and a distribution with spatial autocorrelation.
Knowledge discovery techniques which ignore spatial autocorrelation typi-

cally perform poorly in the presence of spatial data. Often the spatial depen-
dencies arise due to the inherent characteristics of the phenomena under study,
but in particular they arise due to the fact that the spatial resolution of imag-
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Figure 3.2: A Spatial Framework and Its Four-neighborhood Contiguity Matrix.

ing sensors are finer than the size of the object being observed. For example,
remote sensing satellites have resolutions ranging from 30 meters (e.g., the En-
hanced Thematic Mapper of the Landsat 7 satellite of NASA) to one meter
(e.g., the IKONOS satellite from SpaceImaging), while the objects under study
(e.g., Urban, Forest, Water) are often much larger than 30 meters. As a result,
per-pixel-based classifiers, which do not take spatial context into account, often
produce classified images with salt and pepper noise. These classifiers also suffer
in terms of classification accuracy.

The spatial relationship among locations in a spatial framework is often mod-
eled via a contiguity matrix. A simple contiguity matrix may represent a neigh-
borhood relationship defined using adjacency, Euclidean distance, etc. Example
definitions of neighborhood using adjacency include a four-neighborhood and an
eight-neighborhood. Given a gridded spatial framework, a four-neighborhood
assumes that a pair of locations influence each other if they share an edge. An
eight-neighborhood assumes that a pair of locations influence each other if they
share either an edge or a vertex.

Figure 3.2(a) shows a gridded spatial framework with four locations, A,
B, C, and D. A binary matrix representation of a four-neighborhood relation-
ship is shown in Figure 3.2(b). The row-normalized representation of this
matrix is called a contiguity matrix, as shown in Figure 3.2(c). Other conti-
guity matrices can be designed to model neighborhood relationships based on
distance. The essential idea is to specify the pairs of locations that influence
each other along with the relative intensity of interaction. More general mod-
els of spatial relationships using cliques and hypergraphs are available in the
literature [Warrender & Augusteijn1999]. In spatial statistics, spatial autocor-
relation is quantified using measures such as Ripley’s K-function and Moran’s
I [Cressie1993].

3.4 Output Patterns

In this section, we present case studies of four important output patterns for
spatial data mining: predictive models, spatial outliers, spatial co-location rules,
and spatial clustering.



3.4.1 Predictive Models

The prediction of events occurring at particular geographic locations is very
important in several application domains. Examples of problems which require
location prediction include crime analysis, cellular networking, and natural dis-
asters such as fires, floods, droughts, vegetation diseases, and earthquakes. In
this section we provide two spatial data mining techniques for predicting lo-
cations, namely the Spatial Autoregressive Model (SAR) and Markov Random
Fields (MRF).

An Application Domain We begin by introducing an example to illus-
trate the different concepts related to location prediction in spatial data mining.
We are given data about two wetlands, named Darr and Stubble, on the shores
of Lake Erie in Ohio USA in order to predict the spatial distribution of a marsh-
breeding bird, the red-winged blackbird (Agelaius phoeniceus). The data was
collected from April to June in two successive years, 1995 and 1996.
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Figure 3.3: (a) Learning dataset: The geometry of the Darr wetland and the
locations of the nests, (b) The spatial distribution of vegetation durability over
the marshland, (c) The spatial distribution of water depth, and (d) The spatial
distribution of distance to open water.



A uniform grid was imposed on the two wetlands and different types of
measurements were recorded at each cell or pixel. In total, the values of seven
attributes were recorded at each cell. Domain knowledge is crucial in deciding
which attributes are important and which are not. For example, Vegetation
Durability was chosen over Vegetation Species because specialized knowledge
about the bird-nesting habits of the red-winged blackbird suggested that the
choice of nest location is more dependent on plant structure, plant resistance to
wind, and wave action than on the plant species.

An important goal is to build a model for predicting the location of bird
nests in the wetlands. Typically, the model is built using a portion of the data,
called the learning or training data, and then tested on the remainder of the
data, called the testing data. In this study we build a model using the 1995
Darr wetland data and then tested it 1995 Stubble wetland data. In the learning
data, all the attributes are used to build the model and in the training data, one
value is hidden, in our case the location of the nests. Using knowledge gained
from the 1995 Darr data and the value of the independent attributes in the test
data, we want to predict the location of the nests in 1995 Stubble data.

Modeling Spatial Dependencies Using the SAR and MRF Mod-

els Several previous studies [Jhung & Swain1996], [Solberg, Taxt, & Jain1996]
have shown that the modeling of spatial dependency (often called context) dur-
ing the classification process improves overall classification accuracy. Spatial
context can be defined by the relationships between spatially adjacent pixels in
a small neighborhood. In this section, we present two models to model spa-
tial dependency: the spatial autoregressive model(SAR) and Markov random
field(MRF)-based Bayesian classifiers.

Spatial Autoregressive Model The spatial autoregressive model decom-
poses a classifier f̂C into two parts, namely spatial autoregression and logistic
transformation. We first show how spatial dependencies are modeled using the
framework of logistic regression analysis. In the spatial autoregression model,
the spatial dependencies of the error term, or, the dependent variable, are di-
rectly modeled in the regression equation[Anselin1988]. If the dependent values
yi are related to each other, then the regression equation can be modified as

y = ρWy +Xβ + ε. (3.1)

HereW is the neighborhood relationship contiguity matrix and ρ is a param-
eter that reflects the strength of the spatial dependencies between the elements
of the dependent variable. After the correction term ρWy is introduced, the
components of the residual error vector ε are then assumed to be generated
from independent and identical standard normal distributions. As in the case
of classical regression, the SAR equation has to be transformed via the logistic
function for binary dependent variables.
We refer to this equation as the Spatial Autoregressive Model (SAR). Notice

that when ρ = 0, this equation collapses to the classical regression model. The
benefits of modeling spatial autocorrelation are many: The residual error will
have much lower spatial autocorrelation (i.e., systematic variation). With the



proper choice of W , the residual error should, at least theoretically, have no
systematic variation. If the spatial autocorrelation coefficient is statistically
significant, then SAR will quantify the presence of spatial autocorrelation. It
will indicate the extent to which variations in the dependent variable (y) are
explained by the average of neighboring observation values. Finally, the model
will have a better fit, (i.e., a higher R-squared statistic).

Markov Random Field-based Bayesian Classifiers Markov random
field-based Bayesian classifiers estimate the classification model f̂C using MRF
and Bayes’ rule. A set of random variables whose interdependency relationship
is represented by an undirected graph (i.e., a symmetric neighborhood matrix) is
called a Markov Random Field [Li1995]. The Markov property specifies that a
variable depends only on its neighbors and is independent of all other variables.
The location prediction problem can be modeled in this framework by assuming
that the class label, li = fC(si), of different locations, si, constitutes an MRF.
In other words, random variable li is independent of lj if W (si, sj) = 0.

The Bayesian rule can be used to predict li from feature value vector X and
neighborhood class label vector Li as follows:

Pr(li|X,Li) =
Pr(X|li, Li)Pr(li|Li)

Pr(X)
(3.2)

The solution procedure can estimate Pr(li|Li) from the training data, where
Li denotes a set of labels in the neighborhood of si excluding the label at si,
by examining the ratios of the frequencies of class labels to the total number of
locations in the spatial framework. Pr(X|li, Li) can be estimated using kernel
functions from the observed values in the training dataset. For reliable esti-
mates, even larger training datasets are needed relative to those needed for the
Bayesian classifiers without spatial context, since we are estimating a more com-
plex distribution. An assumption on Pr(X|li, Li) may be useful if the training
dataset available is not large enough. A common assumption is the uniformity
of influence from all neighbors of a location. For computational efficiency it can
be assumed that only local explanatory data X(si) and neighborhood label Li
are relevant in predicting class label li = fC(si). It is common to assume that
all interaction between neighbors is captured via the interaction in the class
label variable. Many domains also use specific parametric probability distribu-
tion forms, leading to simpler solution procedures. In addition, it is frequently
easier to work with a Gibbs distribution specialized by the locally defined MRF
through the Hammersley-Clifford theorem [Besag1974].

A more detailed theoretical and experimental comparison of these meth-
ods can be found in [Shekhar et al.2002]. Although MRF and SAR classifi-
cation have different formulations, they share a common goal, estimating the
posterior probability distribution: p(li|X). However, the posterior for the two
models is computed differently with different assumptions. For MRF the pos-
terior is computed using Bayes’ rule. On the other hand, in logistic regression,
the posterior distribution is directly fit to the data. One important difference
between logistic regression and MRF is that logistic regression assumes no de-



pendence on neighboring classes. Logistic regression and logistic SAR models
belong to a more general exponential family. The exponential family is given

by Pr(u|v) = eA(θv)+B(u,π)+θ
T
v u where u, v are location and label respectively.

This exponential family includes many of the common distributions such as
Gaussian, Binomial, Bernoulli, and Poisson as special cases.
Experiments were carried out on the Darr and Stubble wetlands to compare

classical regression, SAR, and the MRF-based Bayesian classifiers. The results
showed that the MRF models yield better spatial and classification accuracies
over SAR in the prediction of the locations of bird nests. We also observed that
SAR predictions are extremely localized, missing actual nests over a large part
of the marsh lands.

3.4.2 Spatial Outliers

Outliers have been informally defined as observations in a dataset which appear
to be inconsistent with the remainder of that set of data [Barnett & Lewis1994],
or which deviate so much from other observations so as to arouse suspicions that
they were generated by a different mechanism [Hawkins1980]. The identifica-
tion of global outliers can lead to the discovery of unexpected knowledge and
has a number of practical applications in areas such as credit card fraud, ath-
lete performance analysis, voting irregularity, and severe weather prediction.
This section focuses on spatial outliers, i.e., observations which appear to be
inconsistent with their neighborhoods. Detecting spatial outliers is useful in
many applications of geographic information systems and spatial databases, in-
cluding transportation, ecology, public safety, public health, climatology, and
location-based services.
A spatial outlier is a spatially referenced object whose non-spatial attribute

values differ significantly from those of other spatially referenced objects in its
spatial neighborhood. Informally, a spatial outlier is a local instability (in val-
ues of non-spatial attributes) or a spatially referenced object whose non-spatial
attributes are extreme relative to its neighbors, even though the attributes may
not be significantly different from the entire population. For example, a new
house in an old neighborhood of a growing metropolitan area is a spatial outlier
based on the non-spatial attribute house age.

Illustrative Examples We use an example to illustrate the differences
among global and spatial outlier detection methods. In Figure 3.4(a), the X-
axis is the location of data points in one-dimensional space; the Y-axis is the
attribute value for each data point. Global outlier detection methods ignore the
spatial location of each data point and fit the distribution model to the values
of the non-spatial attribute. The outlier detected using this approach is the
data point G, which has an extremely high attribute value 7.9, exceeding the
threshold of µ+2σ = 4.49+2∗1.61 = 7.71, as shown in Figure 3.4(b). This test
assumes a normal distribution for attribute values. On the other hand, S is a
spatial outlier whose observed value is significantly different than its neighbors
P and Q.

Tests for Detecting Spatial Outliers Tests to detect spatial outliers
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Figure 3.4: A Dataset for Outlier Detection.

separate spatial attributes from non-spatial attributes. Spatial attributes are
used to characterize location, neighborhood, and distance. Non-spatial attribute
dimensions are used to compare a spatially referenced object to its neighbors.
Spatial statistics literature provides two kinds of bi-partite multidimensional
tests, namely graphical tests and quantitative tests. Graphical tests, which are
based on the visualization of spatial data, highlight spatial outliers. Example
methods include variogram clouds and Moran scatterplots. Quantitative meth-
ods provide a precise test to distinguish spatial outliers from the remainder of
data. Scatterplots [Anselin1994] are a representative technique from the quan-
titative family.

A variogram-cloud [Cressie1993] displays data points related by neighbor-
hood relationships. For each pair of locations, the square-root of the absolute
difference between attribute values at the locations versus the Euclidean dis-
tance between the locations are plotted. In datasets exhibiting strong spatial
dependence, the variance in the attribute differences will increase with increas-
ing distance between locations. Locations that are near to one another, but
with large attribute differences, might indicate a spatial outlier, even though
the values at both locations may appear to be reasonable when examining the
dataset non-spatially. Figure 3.5(a) shows a variogram cloud for the example
dataset shown in Figure 3.4(a). This plot shows that two pairs (P, S) and (Q,S)
on the left hand side lie above the main group of pairs, and are possibly related
to spatial outliers. The point S may be identified as a spatial outlier since it
occurs in both pairs (Q,S) and (P, S). However, graphical tests of spatial out-
lier detection are limited by the lack of precise criteria to distinguish spatial
outliers. In addition, a variogram cloud requires non-trivial post-processing of
highlighted pairs to separate spatial outliers from their neighbors, particularly
when multiple outliers are present, or density varies greatly.

A Moran scatterplot [Anselin1995] is a plot of normalized attribute value

(Z[f(i)] =
f(i)−µf

σf
) against the neighborhood average of normalized attribute
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Figure 3.5: Variogram Cloud and Moran Scatterplot to Detect Spatial Outliers.

values (W ·Z), where W is the row-normalized (i.e.,
∑

jWij = 1) neighborhood
matrix, (i.e., Wij > 0 iff neighbor(i, j)). The upper left and lower right quad-
rants of Figure 3.5(b) indicate a spatial association of dissimilar values: low
values surrounded by high value neighbors(e.g., points P and Q), and high val-
ues surrounded by low values (e.g,. point S). Thus we can identify points(nodes)
that are surrounded by unusually high or low value neighbors. These points can
be treated as spatial outliers.

A scatterplot [Anselin1994] shows attribute values on the X-axis and the
average of the attribute values in the neighborhood on the Y -axis. A least
square regression line is used to identify spatial outliers. A scatter sloping
upward to the right indicates a positive spatial autocorrelation (adjacent values
tend to be similar); a scatter sloping upward to the left indicates a negative
spatial autocorrelation. The residual is defined as the vertical distance (Y -axis)
between a point P with location (Xp, Yp) to the regression line Y = mX+b, that
is, residual ε = Yp − (mXp + b). Cases with standardized residuals, εstandard =
ε−µε
σε
, greater than 3.0 or less than -3.0 are flagged as possible spatial outliers,

where µε and σε are the mean and standard deviation of the distribution of the
error term ε. In Figure 3.6(a), a scatterplot shows the attribute values plotted
against the average of the attribute values in neighboring areas for the dataset
in Figure 3.4(a). The point S turns out to be the farthest from the regression
line and may be identified as a spatial outlier.

A location (sensor) is compared to its neighborhood using the function
S(x) = [f(x) − Ey∈N(x)(f(y))], where f(x) is the attribute value for a loca-
tion x, N(x) is the set of neighbors of x, and Ey∈N(x)(f(y)) is the average
attribute value for the neighbors of x [Shekhar, Lu, & Zhang2003]. The statis-
tic function S(x) denotes the difference of the attribute value of a sensor located
at x and the average attribute value of x′s neighbors.

Spatial statistic S(x) is normally distributed if the attribute value f(x) is



1 2 3 4 5 6 7 8
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Scatter Plot

Attribute Values

Av
er

ag
e 

At
tri

bu
te

 V
al

ue
s 

O
ve

r N
ei

gh
bo

rh
oo

d

← S

P →

Q →

(a) Scatterplot

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

3

4
Spatial Statistic Zs(x) Test

Location

Zs
(x

)

S →

P →
← Q

(b) Spatial statistic Z
s(x)

Figure 3.6: Scatterplot and Spatial Statistic Zs(x) to Detect Spatial Outliers.

normally distributed. A popular test for detecting spatial outliers for nor-
mally distributed f(x) can be described as follows: Spatial statistic Zs(x) =

|S(x)−µs
σs

| > θ. For each location x with an attribute value f(x), the S(x) is the
difference between the attribute value at location x and the average attribute
value of x′s neighbors, µs is the mean value of S(x), and σs is the value of
the standard deviation of S(x) over all stations. The choice of θ depends on
a specified confidence level. For example, a confidence level of 95 percent will
lead to θ ≈ 2.
Figure 3.6(b) shows the visualization of the spatial statistic method de-

scribed above. The X-axis is the location of data points in one-dimensional
space; the Y -axis is the value of spatial statistic Zs(x) for each data point. We
can easily observe that point S has a Zs(x) value exceeding 3, and will be de-
tected as a spatial outlier. Note that the two neighboring points P and Q of
S have Zs(x) values close to -2 due to the presence of spatial outliers in their
neighborhoods.

3.4.3 Spatial Co-location Rules

Boolean spatial features are geographic object types which are either present
or absent at different locations in a two dimensional or three dimensional met-
ric space, e.g., the surface of the Earth. Examples of boolean spatial features
include plant species, animal species, road types, cancers, crime, and business
types. Co-location patterns represent the subsets of the boolean spatial features
whose instances are often located in close geographic proximity. Examples in-
clude symbiotic species, e.g., Nile crocodile and Egyptian plover in ecology, and
frontage roads and highways in metropolitan road maps.
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Co-location rules are models to infer the presence of boolean spatial features
in the neighborhood of instances of other boolean spatial features. For example,
“Nile Crocodiles → Egyptian Plover” predicts the presence of Egyptian Plover
birds in areas with Nile Crocodiles. Figure 3.7(a) shows a dataset consisting
of instances of several boolean spatial features, each represented by a distinct
shape. A careful review reveals two co-location patterns, i.e., (‘+’,’×’) and
(‘o’,‘*’).

Co-location rule discovery is a process to identify co-location patterns from
large spatial datasets with a large number of boolean features. The spatial co-
location rule discovery problem looks similar to, but, in fact, is very different
from the association rule mining problem [Agrawal & Srikant1994] because of
the lack of transactions. In market basket datasets, transactions represent sets
of item types bought together by customers. The support of an association is
defined to be the fraction of transactions containing the association. Associa-
tion rules are derived from all the associations with support values larger than
a user given threshold. The purpose of mining association rules is to identify
frequent item sets for planning store layouts or marketing campaigns. In the
spatial co-location rule mining problem, transactions are often not explicit. The
transactions in market basket analysis are independent of each other. Transac-
tions are disjoint in the sense of not sharing instances of item types. In contrast,
the instances of Boolean spatial features are embedded in a continuous space
and share a variety of spatial relationships (e.g., neighbor) with each other.

Co-location Rule Approaches Approaches to discovering co-location
rules in the literature can be categorized into three classes, namely spatial statis-
tics, association rules, and the event centric approach. Spatial statistics-based
approaches use measures of spatial correlation to characterize the relationship
between different types of spatial features using the crossK function with Monte



Carlo simulation and quadrat count analysis [Cressie1993]. Computing spatial
correlation measures for all possible co-location patterns can be computation-
ally expensive due to the exponential number of candidate subsets given a large
collection of spatial boolean features.
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Figure 3.8: Example to Illustrate Different Approaches to Discovering Co-
location Patterns (a) Example dataset. (b) Data partition approach. Support
measure is ill-defined and order sensitive (c) Reference feature centric model (d)
Event centric model

Association rule-based approaches focus on the creation of transactions over
space so that an apriori like algorithm [Agrawal & Srikant1994] can be used.
Transactions over space can use a reference-feature centric [Koperski & Han1995]
approach or a data-partition [Morimoto2001] approach. The reference fea-
ture centric model is based on the choice of a reference spatial feature and
is relevant to application domains focusing on a specific boolean spatial fea-
ture, e.g., incidence of cancer. Domain scientists are interested in finding the
co-locations of other task relevant features (e.g., asbestos) to the reference fea-
ture. A specific example is provided by the spatial association rule presented in
[Koperski & Han1995]. Transactions are created around instances of one user-
specified reference spatial feature. The association rules are derived using the
apriori [Agrawal & Srikant1994] algorithm. The rules found are all related to
the reference feature. For example, consider the spatial dataset in Figure 3.8(a)
with three feature types, A,B and C. Each feature type has two instances.
The neighbor relationships between instances are shown as edges. Co-locations
(A,B) and (B,C) may be considered to be frequent in this example. Figure
3.8(b) shows transactions created by choosing C as the reference feature. Co-
location (A,B) will not be found since it does not involve the reference feature.

Defining transactions by a data-partition approach [Morimoto2001] defines
transactions by dividing spatial datasets into disjoint partitions. There may
be many distinct ways of partitioning the data, each yielding a distinct set
of transactions, which in turn yields different values of support of a given co-
location. Figure 3.8 (c) shows two possible partitions for the dataset of Figure
3.8 (a), along with the supports for co-location (A,B).

The event centric model finds subsets of spatial features likely to occur in
a neighborhood around instances of given subsets of event types. For exam-
ple, let us determine the probability of finding at least one instance of feature
type B in the neighborhood of an instance of feature type A in Figure 3.8 (a).
There are two instances of type A and both have some instance(s) of type B



Table 3.2: Interest Measures for Different Models

Model Items Transactions
defined by

Interest measures for C1 → C2

Prevalence Conditional proba-
bility

reference
feature
centric

predicates
on refer-
ence and
relevant
features

instances of
reference fea-
ture C1 and
C2 involved
with

fraction of
instance of
reference
feature with
C1 ∪ C2

Pr(C2 is true for an
instance of reference
features given C1 is
true for that instance
of reference feature)

data par-
titioning

boolean
feature
types

a partitioning
of spatial
dataset

fraction of
partitions
with C1 ∪ C2

Pr(C2 in a partition
given C1 in that par-
tition)

event
centric

boolean
feature
types

neighborhoods
of instances of
feature types

participation
index of
C1 ∪ C2

Pr(C2 in a neighbor-
hood of C1)

in their neighborhoods. The conditional probability for the co-location rule is:
spatial feature A at location l → spatial feature type B in neighborhood is 100%.
This yields a well-defined prevalence measure(i.e., support) without the need
for transactions. Figure 3.8 (d) illustrates that our approach will identify both
(A,B) and (B,C) as frequent patterns.
Prevalence measures and conditional probability measures, called interest

measures, are defined differently in different models, as summarized in Table
3.2. The reference feature centric and data partitioning models “materialize”
transactions and thus can use traditional support and confidence measures. The
event centric approach defined new transaction free measures, e.g., the partici-
pation index (see [Shekhar & Huang2001] for details).

3.4.4 Spatial Clustering

Spatial clustering is a process of grouping a set of spatial objects into clusters so
that objects within a cluster have high similarity in comparison to one another,
but are dissimilar to objects in other clusters. For example, clustering is used
to determine the “hot spots” in crime analysis and disease tracking. Hot spot
analysis is the process of finding unusually dense event clusters across time and
space. Many criminal justice agencies are exploring the benefits provided by
computer technologies to identify crime hot spots in order to take preventive
strategies such as deploying saturation patrols in hot spot areas.
Spatial clustering can be applied to group similar spatial objects together;

the implicit assumption is that patterns in space tend to be grouped rather than
randomly located. However, the statistical significance of spatial clusters should
be measured by testing the assumption in the data. The test is critical before
proceeding with any serious clustering analyses.



Complete Spatial Randomness, Cluster, and Decluster In spatial
statistics, the standard against which spatial point patterns are often compared
is a completely spatially random point process, and departures indicate that
the pattern is not distributed randomly in space. Complete spatial randomness
(CSR) [Cressie1993] is synonymous with a homogeneous Poisson process. The
patterns of the process are independently and uniformly distributed over space,
i.e., the patterns are equally likely to occur anywhere and do not interact with
each other. However, patterns generated by a non-random process can be either
cluster patterns(aggregated patterns) or decluster patterns(uniformly spaced
patterns).

To illustrate, Figure 3.9 shows realizations from a completely spatially ran-
dom process, a spatial cluster process, and a spatial decluster process (each
conditioned to have 80 points) in a square. Notice in Figure 3.9 (a) that the
complete spatial randomness pattern seems to exhibit some clustering. This is
not an unrepresentive realization, but illustrates a well-known property of ho-
mogeneous Poisson processes: event-to-nearest-event distances are proportional
to χ22 random variables, whose densities have a substantial amount of proba-
bility near zero [Cressie1993]. Spatial clustering is more statistically significant
when the data exhibit a cluster pattern rather than a CSR pattern or decluster
pattern.

(a) CSR Pattern (b) Cluster Pattern (c) Decluster Pattern

Figure 3.9: Illustration of CSR, Cluster, and Decluster Patterns

Several statistical methods can be applied to quantify deviations of patterns
from a complete spatial randomness point pattern [Cressie1993]. One type of
descriptive statistics is based on quadrats (i.e., well defined area, often rect-
angle in shape). Usually quadrats of random location and orientations in the
quadrats are counted, and statistics derived from the counters are computed.
Another type of statistics is based on distances between patterns; one such type
is Ripley’s K-function [Cressie1993].

After the verification of the statistical significance of the spatial clustering,
classical clustering algorithms [Han, Kamber, & Tung2001] can be used to dis-
cover interesting clusters.



3.5 Computational Process

Many generic algorithmic strategies have been generalized to apply to spatial
data mining. For example, as shown in Table 3.3, algorithmic strategies, such
as divide-and-conquer, filter-and-refine, ordering, hierarchical structure, and pa-
rameter estimation, have been used in spatial data mining.

Generic Spatial Data Mining

Divide-and-Conquer Space Partitioning
Filter-and-Refine Minimum-Bounding-Rectangle(MBR)
Ordering Plane Sweeping, Space Filling Curves
Hierarchical Structures Spatial Index, Tree Matching
Parameter Estimation Parameter estimation with spatial autocorrelation

Table 3.3: Algorithmic Strategies in Spatial Data Mining

In spatial data mining, spatial autocorrelation and low dimensionality in
space(e.g., 2-3) provide more opportunities to improve computational efficiency
than classical data mining. NASA Earth observation systems currently generate
a large sequence of global snapshots of the Earth, including various atmospheric,
land, and ocean measurements such as sea surface temperature, pressure, pre-
cipitation, and net primary production. Each climate attribute in a location has
a sequence of observations at different time slots, e.g., a collection of monthly
temperatures from 1951-2000 in Minneapolis. Finding locations where climate
attributes are highly correlated is frequently used to retrieve interesting rela-
tionships among spatial objects of Earth science data. For example, such queries
are used to identify the land locations whose climate is severely affected by El
Nino. However, such correlation-based queries are computationally expensive
due to the large number of spatial points, e.g., more than 250k spatial cells on
the Earth at a 0.5 degree by 0.5 degree resolution, and the high dimensionality
of sequences, e.g., 600 for the 1951-2000 monthly temperature data.

A spatial indexing approach proposed by [Zhang et al.2003] exploits spa-
tial autocorrelation to facilitate correlation-based queries. The approach groups
similar time series together based on spatial proximity and constructs a search
tree. The queries are processed using the search tree in a filter-and-refine style
at the group level instead of at the time series level. Algebraic analyses us-
ing cost models and experimental evaluations showed that the proposed ap-
proach saves a large portion of computational cost, ranging from 40% to 98%(see
[Zhang et al.2003] for details).

3.6 Research Needs

In this section, we discuss some areas where further research is needed in spatial
data mining.



• Comparison of classical data mining techniques with spatial data mining tech-
niques
As we discussed in Section 3.2, relationships among spatial objects are often im-
plicit. It is possible to materialize the implicit relationships into traditional data
input columns and then apply classical data mining techniques[Quinlan1993,
Barnett & Lewis1994, Agrawal & Srikant1994, Jain & Dubes1988]. Another way
to deal with implicit relationships is to use specialized spatial data mining tech-
niques, e.g., the spatial autoregression and co-location mining. However, exist-
ing literature does not provide guidance regarding the choice between classical
data mining techniques and spatial data mining techniques to mine spatial data.
Therefore new research is needed to compare the two sets of approaches in ef-
fectiveness and computational efficiency.

• Modeling semantically rich spatial properties, such as topology
The spatial relationship among locations in a spatial framework is often mod-
eled via a contiguity matrix using a neighborhood relationship defined using
adjacency and distance. However, spatial connectivity and other complex spa-
tial topological relationships in spatial networks are difficult to model using the
continuity matrix. Research is needed to evaluate the value of enriching the
continuity matrix beyond the neighborhood relationship.

• Statistical interpretation models for spatial patterns
Spatial patterns, such as spatial outliers and co-location rules, are identified in
the spatial data mining process using unsupervised learning methods. There is
a need for an independent measure of the statistical significance of such spatial
patterns. For example, we may compare the co-location model with dedicated
spatial statistical measures, such as Ripley’s K-function, characterize the distri-
bution of the participation index interest measure under spatial complete ran-
domness using Monte Carlo simulation, and develop a statistical interpretation
of co-location rules to compare the rules with other patterns in unsupervised
learning.
Another challenge is the estimation of the detailed spatial parameters in a

statistical model. Research is needed to design effective estimation procedures
for the continuity matrices used in the spatial autoregressive model and Markov
random field-based Bayesian classifiers from learning samples.

• Spatial interest measures
The interest measures of patterns in spatial data mining are different from those
in classical data mining, especially regarding the four important output patterns
shown in Table 3.4.
For a two-class problem, the standard way to measure classification accuracy

is to calculate the percentage of correctly classified objects. However, this mea-
sure may not be the most suitable in a spatial context. Spatial accuracy−how
far the predictions are from the actuals−is equally important in this application
domain due to the effects of the discretizations of a continuous wetland into
discrete pixels, as shown in Figure 3.10. Figure 3.10(a) shows the actual loca-



Classical Data Mining Spatial Data Mining
Predictive
Model

Classification accuracy Spatial accuracy

Cluster Low coupling and high cohesion in
feature space

Spatial continuity, unusual density,
boundary

Outlier Different from population or neigh-
bors in feature space

Significant attribute discontinuity in
geographic space

Association Subset prevalence, Spatial pattern prevalence
Pr[B ∈ T | A ∈ T, T : a transaction] Pr[B ∈ N(A) | N : neighborhood]
Correlation Cross K-Function

Table 3.4: Interest Measures of Patterns for Classical Data Mining and Spatial
Data Mining

tions of nests and 3.10(b) shows the pixels with actual nests. Note the loss of
information during the discretization of continuous space into pixels. Many nest
locations barely fall within the pixels labeled ‘A’ and are quite close to other
blank pixels, which represent ’no-nest’. Now consider two predictions shown in
Figure 3.10(c) and 3.10(d). Domain scientists prefer prediction 3.10(d) over
3.10(c), since the predicted nest locations are closer on average to some actual
nest locations. However, the classification accuracy measure cannot distinguish
between 3.10(c) and 3.10(d) since spatial accuracy is not incorporated in the
classification accuracy measure. Hence, there is a need to investigate proper
measures for location prediction to improve spatial accuracy.

A

= nest location

P   = predicted nest in pixel

A  =  actual nest in pixel
P P

A

APP

AA

A

(a)

A

AA

(b) (d)(c)

P
P

Legend

Figure 3.10: (a)The actual locations of nests, (b)Pixels with actual nests,
(c)Location predicted by a model, (d)Location predicted by another model.
Prediction(d) is spatially more accurate than (c).

• Effective visualization of spatial relationships
Visualization in spatial data mining is useful to identify interesting spatial pat-
terns. As we discussed in Section 3.2, the data inputs of spatial data mining
have both spatial and non-spatial features. To facilitate the visualization of
spatial relationships, research is needed on ways to represent both spatial and
non-spatial features.

For example, many visual representations have been proposed for spatial
outliers. However, we do not yet have a way to highlight spatial outliers within
visualizations of spatial relationships. For instance, in variogram cloud (Fig-
ure 3.5 (a)) and scatterplot (Figure 3.6 (b)) visualizations, the spatial rela-
tionship between a single spatial outlier and its neighbors is not obvious. It is
necessary to transfer the information back to the original map in geographic



space to check neighbor relationships. As a single spatial outlier tends to flag
not only the spatial location of local instability but also its neighboring loca-
tions, it is important to group flagged locations and identify real spatial outliers
from the group in the post-processing step.

• Improving computational efficiency
Mining spatial patterns is often computationally expensive. For example, the
estimation of the parameters for the spatial autoregressive model is an order of
magnitude more expensive than that for the linear regression in classical data
mining. Similarly, co-location mining algorithm is more expensive than the
apriori algorithm for classical association rule mining [Agrawal & Srikant1994].
Research is needed to reduce the computational costs of spatial data mining
algorithms by a variety of approaches including the classical data mining algo-
rithms as potential filters or components.

• Preprocessing spatial data
Spatial data mining techniques have been widely applied to the data in many
application domains. However, research on the preprocessing of spatial data has
lagged behind. Hence, there is a need for preprocessing techniques for spatial
data to deal with problems such as treatment of missing location information
and imprecise location specifications, cleaning of spatial data, feature selection,
and data transformation.

3.7 Summary

In this chapter we have presented the features of spatial data mining that distin-
guish it from classical data mining in the following four categories: input, statis-
tical foundation, output, and computational process as shown in Table 3.5. We
have discussed major research accomplishments and techniques in spatial data
mining, especially those related to four important output patterns: predictive
models, spatial outliers, spatial co-location rules, and spatial clusters. We have
also identified research needs for spatial data mining.

3.8 Acknowledgments

This work was supported in part by the Army High Performance Computing
Research Center under the auspices of the Department of the Army, Army
Research Laboratory cooperative agreement number DAAD19-01-2-0014, the
content of which does not necessarily reflect the position or the policy of the
government, and no official endorsement should be inferred.

We are particularly grateful to our collaborators Prof. Vipin Kumar, Prof.
Paul Schrater, Dr. Sanjay Chawla, Dr. Chang-Tien Lu, Dr. Weili Wu, and
Prof. Uygar Ozesmi for their various contributions. We also thank Xiaobin Ma,
Hui Xiong, Jin Soung Yoo, Qingsong Lu, Baris Kazar, and anonymous reviewers



Classical Data Min-
ing

Spatial Data Mining

Input Simple types Complex types
Explicit relationship Implicit relationships

Statistical
Foundation

Independence of sam-
ples

Spatial autocorrelation

Output Set-based interest
measures

Spatial interest measures,

e.g., classification ac-
curacy

e.g., spatial accuracy

Computational
Process

Combinatorial opti-
mization,

Computational efficiency opportunity

Numerical Spatial autocorrelation, plane-
sweeping

Algorithms New complexity: SAR, co-location

Table 3.5: Difference between Classical Data Mining and Spatial Data Mining

for their valuable feedbacks on early versions of this chapter. We would also
like to express our thanks to Kim Koffolt for improving the readability of this
chapter.





Bibliography

[Agrawal & Srikant1994] Agrawal, R., and Srikant, R. 1994. Fast Algorithms
for Mining Association Rules. In Proc. of Very Large Databases.

[Anselin1988] Anselin, L. 1988. Spatial Econometrics: Methods and Models.
Dordrecht, Netherlands: Kluwer.

[Anselin1994] Anselin, L. 1994. Exploratory Spatial Data Analysis and Ge-
ographic Information Systems. In Painho, M., ed., New Tools for Spatial
Analysis, 45–54.

[Anselin1995] Anselin, L. 1995. Local Indicators of Spatial Association: LISA.
Geographical Analysis 27(2):93–115.

[Barnett & Lewis1994] Barnett, V., and Lewis, T. 1994. Outliers in Statistical
Data. John Wiley, 3rd edition edition.

[Besag1974] Besag, J. 1974. Spatial Interaction and Statistical Analysis of
Lattice Systems. Journal of Royal Statistical Society: Series B 36:192–236.

[Bolstad2002] Bolstad, P. 2002. GIS Foundamentals: A Fisrt Text on GIS.
Eider Press.

[Cressie1993] Cressie, N. 1993. Statistics for Spatial Data (Revised Edition).
New York: Wiley.

[Han, Kamber, & Tung2001] Han, J.; Kamber, M.; and Tung, A. 2001. Spatial
Clustering Methods in Data Mining: A Survey. In Miller, H., and Han, J.,
eds., Geographic Data Mining and Knowledge Discovery. Taylor and Francis.

[Hawkins1980] Hawkins, D. 1980. Identification of Outliers. Chapman and
Hall.

[Jain & Dubes1988] Jain, A., and Dubes, R. 1988. Algorithms for Clustering
Data. Prentice Hall.

[Jhung & Swain1996] Jhung, Y., and Swain, P. H. 1996. Bayesian Contextual
Classification Based on Modified M-Estimates and Markov Random Fields.
IEEE Transaction on Pattern Analysis and Machine Intelligence 34(1):67–75.

23



[Koperski & Han1995] Koperski, K., and Han, J. 1995. Discovery of Spatial
Association Rules in Geographic Information Databases. In Proc. Fourth
International Symposium on Large Spatial Databases, Maine. 47-66.

[Li1995] Li, S. 1995. A Markov Random Field Modeling. Computer Vision.

[Morimoto2001] Morimoto, Y. 2001. Mining Frequent Neighboring Class Sets
in Spatial Databases. In Proc. ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[Quinlan1993] Quinlan, J. 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers.

[Roddick & Spiliopoulou1999] Roddick, J.-F., and Spiliopoulou, M. 1999. A
Bibliography of Temporal, Spatial and Spatio-Temporal Data Mining Re-
search. SIGKDD Explorations 1(1): 34-38 (1999).

[Shekhar & Chawla2003] Shekhar, S., and Chawla, S. 2003. Spatial Databases:
A Tour. Prentice Hall (ISBN 0-7484-0064-6).

[Shekhar & Huang2001] Shekhar, S., and Huang, Y. 2001. Co-location Rules
Mining: A Summary of Results. In Proc. of the 7th Int’l Symp. on Spatial
and Temporal Databases.

[Shekhar et al.2002] Shekhar, S.; Schrater, P. R.; Vatsavai, R. R.; Wu, W.; and
Chawla, S. 2002. Spatial Contextual Classification and Prediction Models for
Mining Geospatial Data. IEEE Transaction on Multimedia 4(2).

[Shekhar, Lu, & Zhang2003] Shekhar, S.; Lu, C.; and Zhang, P. 2003. A Unified
Approach to Detecting Spatial Outliers. GeoInformatica 7(2).

[Solberg, Taxt, & Jain1996] Solberg, A. H.; Taxt, T.; and Jain, A. K. 1996.
A Markov Random Field Model for Classification of Multisource Satellite
Imagery. IEEE Transaction on Geoscience and Remote Sensing 34(1):100–
113.

[Tobler1979] Tobler, W. 1979. Cellular Geography, Philosophy in Geography.
Dordrecht, Reidel: Gale and Olsson, Eds.

[Warrender & Augusteijn1999] Warrender, C. E., and Augusteijn, M. F. 1999.
Fusion of image classifications using Bayesian techniques with Markov rand
fields. International Journal of Remote Sensing 20(10):1987–2002.

[Zhang et al.2003] Zhang, P.; Huang, Y.; Shekhar, S.; and Kumar, V. 2003.
Exploiting Spatial Autocorrelation to Efficiently Process Correlation-Based
Similarity Queries. In Proc. of the 8th Intl. Symp. on Spatial and Temporal
Databases.


